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Abstract: In this paper, two design optimisation methods are evaluated using gradient-based optimi-
sation for electric vehicle traction applications. A driving cycle-based approach is used to evaluate
specific operational points for the design optimisation procedure. To determine the operational
points, an energy centre of gravity (ECG) approach is used. Both optimisation methods are described,
namely the point based method and the flux mapping method, with a focus on the flux mapping
procedure. Within the flux mapping approach, an inner optimisation loop is defined in order to
maintain the stability of gradient calculation for the gradient-based optimisation. An emphasis
is placed on the importance of how the optimisation problem is defined, in terms of the objective
function and constraints, and how it affects a gradient based optimisation. Based on a design case
study conducted in the paper, it is found that the point-based strategy realised motor designs with a
slightly lower overall cost (5.66% lower than that of the flux mapping strategy with 8 ECG points),
whereas the flux mapping strategy found motor designs with a lower input energy (1.48% lower
than that of the point-based strategy with 8 ECG points). This may be attributed to the difference
in the definition and interpretation of constraints between these two methods. It is also shown that
including more operational points from the driving cycle in the design optimisation leads to designs
with reduced total input energy and thus better drive-cycle energy efficiency. This paper further
illustrates the significant computational advantages of a gradient-based optimisation over a global
optimisation method as it can be completed within a fraction of the time while still finding a global
optimum, as long as the problem definition is correctly determined.

Keywords: design optimisation; drive cycle; electric vehicle; finite element analysis; gradient-based
optimisation; permanent magnet machines

1. Introduction

There is a global increase in the use of electrified power trains within the transportation
sector. Electric motors are one of the critical components in electric vehicle (EV) power
trains. The design of these electric motors can be a challenging task as it involves multiple
design considerations such as the efficiency, cost, size, weight, and torque quality or a
combination of them [1–4]. Traditionally, the EV motor design mainly focuses on one or two
key working points of the torque–speed envelope [5–7]. In recent years, driving cycle-based
motor design optimisation, where the efficiency of the machine over the entire driving
cycle is considered, has become increasingly popular. Several works have been carried
out utilising finite element analysis (FEA) and driving cycle-based techniques to maximise
the efficiency of the motor over a driving cycle. In [2], a system level design optimisation
is conducted over multiple driving modes for a synchronous reluctance machine, while
in [3], a design optimisation is undertaken which optimises the efficiency of the permanent
magnet (PM) motor over a given driving cycle. The research conducted in these papers
shows the significance of using equivalent working points from the driving cycle analysis,
as well as how a design optimisation can be conducted for a driving-cycle based design.

Energies 2022, 15, 1095. https://doi.org/10.3390/en15031095 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15031095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4491-7446
https://orcid.org/0000-0001-5057-5185
https://orcid.org/0000-0001-6582-9563
https://orcid.org/0000-0002-3371-5016
https://doi.org/10.3390/en15031095
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15031095?type=check_update&version=2


Energies 2022, 15, 1095 2 of 21

As it is not feasible to optimize a motor design for every speed and torque point of the
driving cycle, certain data segmentation and clustering techniques are required. There are
many different methods to consider when determining these representative points. In [8],
the equivalent representative points from the driving cycle are determined through a centre
of gravity means. This method determines these points by breaking the driving cycle up
into equivalent grids and using the equivalent centre of gravity for these points over the
grid space. With this method, it was shown that an increase in overall efficiency is obtained
compared to a key working point optimisation technique. However, this method has also
a weakness—i.e., it may not fully encapsulate the primary working points at which the
motor operates during the driving cycle.

In [1,9–12], the energy representative points are defined through an energy center of
gravity approach from the driving cycle, which is used to maximise the energy efficiency
of an EV’s traction motor over the driving cycle. The energy centre of gravity is similar to
the center of gravity method; however, it uses the equivalent energy distribution over the
driving cycle instead of the speed–torque points. In [9], the maximum energy efficiency
of an EV was defined and presented. A total of 12 equivalent operating points were used
from the driving cycle with different energy distributions. The proposed design technique
was further validated by a design case and measurement results. In [10], the influences
of different driving cycles on design optimisations for PM motors are analysed. From the
research conducted, it was shown that for all different driving cycles used, a high efficiency
is achieved over a wide torque–speed range. This further proves the validity of the energy
center of gravity approach.

In [11], an optimised torque distribution strategy of maximising the motor efficiency
for a front and rear-wheel driven EV is described. By using the energy center of gravity
method, an understanding was developed of the energy consumption during the low-
torque region for a particular driving cycle. In [12], a hybrid approach of combining a data
clustering and energy center approach was implemented. It was found in the research
that the energy center of gravity and hybrid approaches both converged to similar results,
which shows that either can be used when a drive cycle-based optimisation is required.
These papers show the validity of the energy center of gravity approach and its use in
determining equivalent working points from a driving cycle.

In [4,13], a k-means clustering algorithm is used in order to determine the most
relevant points from an energy distribution of the driving cycle. From both papers, the
k-means algorithm helped to locate the key areas where the greatest amount of energy
is consumed from the driving cycle using a data mining algorithm. This method helps
to define the most important working points that the motor operates at compared to a
segmented approach. Further, an evaluation is conducted in [1] for different clustering and
grouping methods of representative points from the driving cycle. It was shown that by
considering these representative operating points, an improved efficiency can be found over
a single operating point method. There is clearly an advantage for the drive cycle-based
motor design approaches when compared with the traditional design approach.

It is further noted that using different optimisation and design techniques plays a vital
role as well. Methods are used where the representative points of the driving cycle are
simulated through finite element (FE) analysis, where the specified voltage and current are
determined for each particular point. One method that can be taken into consideration is
a simple point-based method. DQ currents of the motor for specific operating points are
used to determine the output parameters of the motor at specified speed points. These
parameters include the voltage, torque, current density, and flux-linkage. This is seen to be
one of the easier methods to implement for design techniques. One other method which is
considered is the use of flux-linkage mapping. This method simulates a flux-linkage map
for a motor design. The map is then searched over in order to find the best operational
parameters for the specified operating point [4,10,14–17]. An area that is not always clear
for EV motor designers is the choice of suitable design strategies to use for FEA-based
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design optimisation procedures. An understanding is required of the differences between
the two methods, as well as their respective implementations.

In the above-discussed literature, global optimisation algorithms are almost exclu-
sively used in machine design optimisations, which shows the popularity of the global
optimisation algorithms in engineering designs [18]. Despite the advantages of these global
optimisation algorithms, they are known to be computationally expensive when compared
with their gradient-based counterparts. Gradient-based optimisation has been shown to be
more computationally efficient than global optimisation methods, especially when many
variables are being considered. Yet, the latter also suffers from finding local minima and its
dependence of the starting values of variables [19]. In [20], a gradient-based optimisation
was used for a grid-connected wound-rotor induction motor. It was shown that for the
gradient based optimisation problem, the gradient-based algorithm needs to be carefully
formulated to ensure a global minimum is found. Success was also shown in [21] using
gradient-based optimisation; however, only a two-point method was used instead of the
full driving cycle analysis. Furthermore, in [22], it was determined that the gradient-based
optimisation method used was comparable to a global optimisation solution with the
gradient method converging in a faster time.

In this paper, an evaluation is conducted of the two design techniques for traction
motors—namely, the point-based design and the flux-linkage map methods—through
gradient-based design optimisation. This is conducted in order to show the differences
between both design techniques and to help to choose a technique to implement for traction
design. Further, this paper shows that gradient-based design optimisation is still an
attractive method for traction motor designs as it is computationally efficient and effective
in locating a global optimum, provided that the design optimisation is carefully configured.
The remaining part of the paper is organised as follows: in Section 2, the driving cycle
is analysed and the equivalent representative points are determined. In Section 3, the
different design optimisation techniques are elaborated on. In Section 4, an evaluation is
conducted for both techniques, and the design and simulation of a case study machine is
conducted. Lastly, relevant conclusions are drawn in Section 5.

2. Drive Cycle Analysis

In this section, the motor torque–speed envelope based on the specifications of the
studied electric vehicle and the world-wide harmonised light-duty vehicle test procedure
(WLTP) drive cycle for a class 3 vehicle is described. The motor energy consumption
distribution over the WLTP drive cycle is analysed and is then used to determine cer-
tain representative points through clustering techniques. These representative points are
important for formulating a drive cycle-based optimisation process.

2.1. Electric Vehicle and Motor Design Specifications

An electric vehicle with the capabilities of being able to operate in suburban areas is
investigated for a drive cycle-based optimisation in this paper. The power train topology of
the vehicle is shown in Figure 1, where a PM motor is coupled to the front axial of the vehi-
cle via a differential. The power and torque capabilities of the motor are derived through
fundamental analytical vehicle load equations, which take into account the vehicle’s resis-
tances and acceleration [23,24]. The specifications and properties of the investigated EV
and motor are given in Table 1, with wind resistance being regarded as negligible for this
case study.

2.2. Determining Representative Points from the Driving Cycle

The torque and speed demand required by the vehicle is analysed over the WLTP drive
cycle. This driving cycle procedure is predominately used to measure fuel consumption,
CO2 emissions, pollutant emissions, and the energy consumption of alternative power
trains such as electric vehicles [25]. The driving cycle has a duration of 1800 s, with a
distance of 23,266 m. The driving cycle is divided up into four different sub-systems, with
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each simulating an urban, suburban, rural, and highway driving scenario, respectively. The
maximum speed required by the cycle is 131.3 km/h. The speed profile of the WLTP is
shown in Figure 2.
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Figure 1. The power train of the light EV.

Table 1. Specifications of proposed EV Design.

Parameters Value

Electric Wheel radius (m) 0.27
Vehicle Vehicle frontal area (m2) 2.5

Aerodynamic drag coefficient (Cd) 0.3
Rolling resistance coefficient (Cr) 0.013
Vehicle mass (kg) 1000
Differential gear ratio 6:1
Maximum vehicle speed (km/h) 131.3

Figure 2. Motor speed over the WLTP range.

Using the vehicle dynamics model in [23,24], the required traction efforts for the given
wheel radius and differential gear ratio can be determined [3,8]. The torque requirements
over the driving cycle range can be readily calculated and mapped as shown in Figure 3.
As the motor is designed and optimised for motor operation, regenerative braking is not
considered. The torque distributions over the entire motor speed range (constant torque
and constant power) for the WLTP driving cycle are given in Figure 4.
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Figure 3. Motor torque over the WLTP drive cycle.

Figure 4. Vehicle torque profile for the WLTP speed range.

Several different methods are used to determine the representative operating points
from a driving cycle for the design optimisation process. In [8,26], the geometric center
of gravity method is used, which is based on the geometric representation of torque
distribution points within an area of the driving cycle. Essentially, this method focuses on
the greatest amount of time for which the motor operates within a given area specified
by the user. Another method used to determine the operating points for a driving cycle
is the use of the distribution of energy consumed during a driving cycle. Figure 5 shows
the energy load profile of the motor in joules, which is determined from the product
of torque and speed in Figure 4 over a time period for each torque and speed point.
Determining the representative points from the load energy distribution can be done in
multiple ways. In [1,9–12,27], the energy center of gravity (ECG) method is used, which is
based on the energy distribution of points within a region of the driving cycle. This method
considers the amount of energy used within each region and the weight of the energy
for the representative points. Another method is the use of clustering methods. Different
types of clustering techniques can be used in order to determine the representative points
[1,4,12,13,28]. An evaluation of different methods of choosing the representative points and
their respective impact on the design optimisations is reported in [1,12].

For this study, the ECG method is used. The load energy density of the drive cycle is
divided up into i clusters. The energy, Ei, of the ith cluster or region is calculated as

Ei =
Ni

∑
j=1,2...

Ej,i (1)



Energies 2022, 15, 1095 6 of 21

where Ni is the number of operating points within each ith cluster and j is the number of
clusters chosen. The calculated representative torque and speed points within each region,
Teq,i and ωeq,i, are given as follows:

Teq,ij =
1
Ei

Ni

∑
j

EijTij (2)

ωeq,i =
1
Ei

Ni

∑
j=1

Eijωij (3)

Figure 5. Load energy consumption over the WLTP drive cycle

In order to account for the magnitude of each representative point calculated, a
weighting factor is required for the optimisation design. These weighting factors are
determined according to the amount of required energy during the driving cycle process.
These weighting factors of the representative points are calculated according to the ratio of
energy consumed by all the operating points during the driving cycle, given as [1]

WE,i =
Ei

∑k=1,2... Ek
(4)

where k is each operating point of the drive cycle. By using Equations (1)–(4) and specifying
the number of clusters to be 8, the representative points shown in Figure 6 are defined in
Table 2. The motor parameters can be deduced and are given in Table 3.

Table 2. Summary of representative points.

Region Point Weighting of Energy WE

0–2000 rpm
0–42.8 Nm

1345.9 rpm
26.01 Nm 4.64%

0–2000 rpm
42.8–85.8 Nm

1351 rpm
60.1 Nm 10.15%

2001–4000 rpm
0–42.8 Nm

3182.5 rpm
24.69 Nm 20.93%

2001–4000 rpm
42.8–85.8 Nm

2806.6 rpm
56.27 Nm 15.1%

4001–6000 rpm
0–42.8 Nm

4861.8 rpm
26.02 Nm 14.36%
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Table 2. Cont.

Region Point Weighting of Energy WE

4001–6000 rpm
42.8–85.8 Nm

4601.7 rpm
53.5 Nm 5.88%

6001–8000 rpm
0–42.8 Nm

7014.1 rpm
29.42 Nm 19.42%

6001–8000 rpm
42.8–85.8 Nm

6897.2 rpm
44.48 Nm 9.53%

Base Speed
Maximum Torque

3000 rpm
118.7 Nm N/A

Maximum Speed
Torque

8000 rpm
44.5 Nm N/A

0 1000 2000 3000 4000 5000 6000 7000 8000
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Figure 6. Representative points from ECG.

Table 3. Specifications of proposed motor design.

Parameters Value

Nominal power (kW) 37.28
Motor base speed (r/min) 3000
Motor maximum speed (r/min) 8000
Maximum torque (maximum speed) (Nm) 44.5
Peak torque (base speed) (Nm) 118.7
CPSR 2.66

3. Design Optimisation Procedure

The motor topology considered for this study is a 24-slot, 8-pole V-shaped interior
permanent magnet (IPM) machine. For the finite element based design, a parametric 2D
model is shown in Figure 7 with the relevant design parameters that are used for the design
optimisation. For each design consideration, a rather conservative slot fill factor of 0.35 is
assumed with the temperature of the stator windings and the PM being 120 ◦C and 80 ◦C,
respectively. Further, given the power rating and the space constraints of the motor, the
maximum current density allowed is set to be 10 A/mm2 in the design, which means that
the motor is required to be water cooled. More detailed motor design specifications are
tabulated in Table 4.

To evaluate the motor capabilities for the optimisation procedures, the torque and
voltage are required for each operating point as given by (5)–(7), where vd, vq, id, iq, Ld, and
Lq are the d and q-axis voltages, currents, and inductances, respectively, Rs is the phase
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resistance, λPM is the PM’s flux-linkage, ωe is the electric angular speed, p is the number of
pole pairs, and Te is the electromagnetic torque, as described in [29].

Te =
3
2

p[λPM + (Ld − Lq)id]iq (5)

vd = Rsid − ωeLqiq (6)

vq = Rsiq + ωe(Ldid + λPM) (7)

Figure 7. Cross section of motor parameters .

Table 4. Motor design specifications.

Parameters Value

Number of pole pairs 4
Number of slots 24
Air-gap length 1 mm
Winding fill factor 0.35
Lamination steel M19_26G
PM material and grade NdFeB N48H
Maximum Line voltage 310 V
Maximum phase current 75 A
Maximum current density 10 A/mm2

Further, in order to calculate the efficiency of all the representative points of the
driving cycle, Equations (8)–(10) can be used, where the windage and friction losses are not
considered. The core losses (Pcore) in Equation (9) are computed by employing time-step FE
solutions and the Steinmetz-based equation [30]. The copper losses are calculated using
the finite element mesh in the copper area on a per element basis.

Pcopper =
n

∑
e=1

J2k f AeL(1 + kew)

σ
(8)

where n is the number of elements in the copper area, J is the RMS current density, k f is the
copper fill factor, Ae is the area of element e, L is the active stack length of the machine, kew
is the ratio of end-winding length to stack length, and σ is the conductivity of copper.
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η =
Te · ω

Te · ω + Pcopper + Pcore
(9)

ηeng =
N

∑
i=1

ηi · ωeq,i (10)

By using the ηeng value as the average efficiency, which takes into account the weight-
ing of energy, and ensuring a constraint is added to this, an overall high efficiency can be
maintained for the motor’s operating range. Within the optimisation methods discussed
further, the minimum constraint of ηeng is chosen to be 94% due to the allowed cooling
capabilities and loss restrictions for the specified case study motor.

3.1. Optimisation Strategies

The optimisation algorithm used within each method of this study is the sequential
least squares programming algorithm (SLSQP) [31], which is a gradient-based optimi-
sation method. The SLSQP algorithm minimises a single objective function of multiple
variables, subject to both equality and inequality constraints. Both optimisation strategies
implemented are conducted using an in-house 2D FE package. Although gradient-based
algorithms are more efficient than global methods for electrical machine design with many
design variables, they are susceptible to becoming trapped into a local optimum and nu-
merical noise [32]. While the former can be mitigated by using different starting points, the
latter can still affect the accuracy and stability of the gradient evaluation for gradient-based
optimisation. For this study, a unique implementation of a gradient-based optimisation
procedure is applied, which employs a mesh reshaping technique described in [33]. This
technique shows significant improvements on the performance of gradient-based optimisa-
tion, as it helps with the stability of the gradient calculation while maintaining the mesh
quality over a large design space.

3.1.1. Point Based Optimisation Strategy

The first optimisation method considered is the point-based optimisation strategy.
This method evaluates the motor design along −n points specified from the driving cycle.
By evaluating the motor along these design points, it ensures the motor is within the
constant power speed range (CPSR) limits set by the user. The motor design is evaluated
through an optimisation loop which adjusts both the rotor and stator geometric variables,
as well as the dq-currents at each operating point, inherently adjusting the optimal current
angle. This process is shown in Figure 8. This method begins by the user setting the initial
geometric and operating point parameters. The geometric parameters are given boundaries,
and constraints are assigned to the operating point parameters. It is possible to include
a relatively large number of design points in the optimisation loop within an efficient
time span.

The optimisation problem is formulated as

Minimise: F(X) = Ctotal

Subject to: Tx ≥ Tmin (Nm)

VLLx ≤ Vmax (V)

Iφx ≤ Imax (A) (11)

ηeng ≥ ηengmin

BMMx ≥ Bmax (T)

Jx ≤ Jmax (A/mm2)

where X represents the vector of design variables, which includes the geometric variables
and dq-currents for each operating point of the machine. Ctotal is the cost of the active
material of the machine, which includes PM material, copper, and steel. The costs of
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materials used are given in Table 5. Tmin is the minimum torque for each operating point,
VLLx and Iφx are the maximum allowable voltage and current for each operating point,
respectively, BMMx is the demagnetisation margins of the magnets at each operating point,
and Jmax is the maximum current density allowed. The intrinsic value of this method is the
rapid computational time when few points are selected from the driving cycle, as well as
the simplicity of the optimisation process.

Geometric and Operating Point 

Parameters

Optimal Geometric and operating 

parameters

Performance Results

Motor Optimisation

Converged

Point 0 

Performance

Operating Point 

Analysis

Point 1 

Performance

Point n 

Performance

Yes

No

Initialisation of machine design

Machine Optimisation Point based Method

Optimal Design

Motor Geometry

Figure 8. Point-based optimisation flow chart.

Table 5. Costs of materials.

Material Cost

PM $50/kg
Silicon steel $2/kg

Copper $6.67/kg

3.1.2. Flux Mapping Optimisation Strategy

The second optimisation strategy considered is the flux mapping strategy. The process
of using flux maps for the optimisation is where the flux linkages on the dq-axis are
formulated across multiple points, and an interpolation of these points is mapped out. The
flow diagram of this method is shown in Figures 9 and 10. A single geometric design is
evaluated over multiple points set by the user, similar to the point-based method. However,
a look up map of the entire dq-parameters is generated. The formulation of a flux map
is seen to be less computationally efficient compared to the point-based method due to
each dq-current point being simulated. However, it has the advantage of the algorithm
determining the best fit current curve for each geometric design on all operating points
specified, known as the maximum torque per ampere (MTPA) curve. This further allows
the user to discern the full capabilities of the motor. An example of the d- and q-axis
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flux-linkage map of a motor design is shown in Figure 11, which is used to determine the
torque map in Figure 12.
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Figure 9. Flux mapping optimisation flow chart.
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Figure 10. Flux mapping methodology.
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Figure 11. Flux-linkage maps with dq-axis currents (a) d-axis flux-linkage (b) q-axis flux-linkage.

In order to evaluate the MTPA on the flux map for each of the operating points, the
SLSQP is used once more. This method searches along the flux map while keeping to the
specifications set for the dq-currents, as shown in Figure 10. The bound and constraints for
each operating point on the outer optimisation loop (where the geometric parameters of
the machine are optimised) are defined as

Minimise: F(X) = Ctotal

Subject to: Tx ≥ Tpoint (Nm)

VLLx ≤ Vmax (V)

Iφx ≤ Imax (A) (12)

ηeng ≥ ηengmin

BMMx ≥ Bmax (T)

Jx ≤ Jmax (A/mm2)

where X represents the vector of design variables of the machine. Tpoint is the minimum
torque for each operating point.
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Figure 12. Torque flux map with dq-axis currents.

For the inner optimisation loop, where the operating point is evaluated according to
the MTPA point on the flux map, the optimisation problem is formulated as

Minimise: F(X) = Iφ (A)

Subject to: Tx ≥ Tpoint (Nm) (13)

VLL ≤ Vmax (V)

where X represents the vector of the dq-currents as well as the constant of the specified
speed for the evaluated operating point. Tx is the set torque value for each operating point.
By finding the MTPA point, the output parameters and dq-currents are returned to the
outer optimisation loop for the geometric design, as shown in Figures 9 and 10.

However, during the design optimisation process, certain outcomes may arise during
the outer optimisation process. When a design with certain geometric parameters is
simulated, various parameters, such as VLLx , may not be within the constraints of Vmax for
any dq-currents specified. This may occur when the magnet thickness is sizeable and a large
flux linkage is evident. This generates a significant back-EMF in the motor. From this, the
inner optimisation algorithm (MTPA) may not able to satisfy the constraints being violated
for these points, which either results in the optimisation algorithm failing and terminating
or resulting in large gradients occurring during the outer optimisation loop. This further
causes the gradient-sensitive optimisation to be incapable of finding the correct minimum
cost. In [17], the voltage constraints were handled by formulating an optimisation objective
function using Lagrange multipliers. However, the applied on–off gate function may
negatively impact the accuracy and stability of the gradient calculations, which is not ideal
for gradient-based optimisations. To ensure that the objective and constraints are relatively
smooth functions, an optimisation inner-loop shown in Figure 10 has been formulated to
deal with these non-convergence cases; i.e.,

Minimise: F(X) = α2

Subject to: VLL ≤ VLLmax (1 + α)2 (V) (14)

Tx ≥ Tpoint (Nm)

Iφ ≤ Imax (A)

where X represents the vector of the dq-currents, as well as the constant of the specified
speed for the evaluated operating point. α is chosen as a variable parameter that adjusts
the maximum voltage constraint during each iteration of the optimisation loop. During the
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inner optimisation loop search across the flux map, the constraints given may be violated.
From here, this variable parameter is adjusted, which shifts the maximum voltage of the
design. Therefore, the constraints may be further improved with each iteration, until a
valid design is found. The objective of this optimisation is still tasked with minimising the
current on the flux map subject to the constraints; however, the added parameter is also
required to be set at a minimum to ensure that the voltage constraint is not overly inflated.
This allows the outer optimisation loop to have a smoother gradient for each iteration
where a non valid design is found, which improves the gradient-based optimisation of
the SLSQP.

4. Evaluation of Optimisation Strategies

A summary of the optimisation results for different numbers of ECG points is given in
Table 6. For each design variation that is developed with different ECG points, the base
speed and maximum speed points are also required to be evaluated to ensure that the
correct operating parameters are able to be reached. From the results of Table 6, it is seen
that the multi-point method generally has a better output result in terms of the objective
function of costing when compared to the flux mapping method, with a note regarding
the difference in cost for 8 ECG points, with the multi-point method being 5.66% less than
the flux mapping method. The number of ECG points included in the optimisation has a
greater influence on the optimum results from the flux mapping method than those from
the multi-point method.

Table 6. Evaluation of optimisation method results.

Number of ECGs Parameters Multi-Point Flux Mapping

2

Total cost ($) 108.26 109.2
Total mass (kg) 21.57 21.83
PM mass (kg) 0.726 0.771
Copper mass (kg) 6.48 6.11
Steel mass (kg) 14.36 14.95

4

Total cost ($) 108.21 115.94
Total mass (kg) 26.87 24.09
PM mass (kg) 0.604 0.881
Copper mass (kg) 5.45 5.46
Steel mass (kg) 20.81 17.75

6

Total cost ($) 108.62 111.83
Total mass (kg) 21.59 23.965
PM mass (kg) 0.748 0.735
Copper mass (kg) 6.32 6.13
Steel mass (kg) 14.51 17.1

8

Total cost ($) 106.23 112.42
Total mass (kg) 23.93 25.66
PM mass (kg) 0.61 0.63
Copper mass (kg) 6.26 6.66
Steel mass (kg) 17.06 18.37

Figures 13–16 show the efficiency maps of the optimum designs, with two ECGs and
eight ECGs for both optimisation methods. It is evident that the more ECG points are
added, the greater the increase in the overall efficiency range. The flux mapping method
has a slightly better performance in terms of the efficiency range for both two ECG and
eight ECG cases. This is further elaborated upon in Table 7, which shows that the drive
cycle energy consumption for the designs generated from the flux mapping method is
invariably lower than that of the multi-point designs. The difference for the flux mapping
method for two ECG points and eight ECG points is a reduction in total input energy by
1.25%, whereas for the multi-point method, it is only 0.07%. In contrast, the flux mapping
method with eight ECG points is 1.48% lower in terms of the total input energy for the
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eight ECG points. The total input energy given is determined by taking all the points of
the driving cycle in Figure 5, and determining from the MTPA algorithm an efficiency map
and the efficiency at each point. The total output energy from Equation (1) is used and the
corresponding efficiency is incremented, allowing the total input energy required to be
given. A pseudo-code is shown in Figure 17 of this process.
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Figure 13. Efficiency map of two ECG points with multi-point method.

0 1000 2000 3000 4000 5000 6000 7000 8000
Speed (rpm)

0

20

40

60

80

100

120

To
rq

ue
 (N

m
)

0.
70

0
0.

75
0

0.
80

0

0.8300.850
0.870

0.
90

0

0.910

0.
92

0

0.930

0.940

0.
95

0

0.70

0.80

0.85

0.90

0.92

0.94

1.00

Figure 14. Efficiency map of two ECG points with flux map method.

The reason that the flux mapping method realises more globally efficient designs when
more ECG points are used may be explained as follows. For the multi-point method, the
dq-currents are specified as variables in the optimisation loop. If these currents satisfy
a constraint for an operating point, the optimisation determines this to be valid. This
results in the optimisation finding a minimum costing machine, but not necessarily at the
MTPA for each operating point. Further, the global ηeng constraint defined is determined
intrinsically by the dq-currents. This therefore means that if the constraint is met through
the optimisation, the most optimal energy efficiency may not be found, but the ideal costing
will be. For the flux mapping method, the MTPA for each operating point is determined.
This causes the total input energy to be lower compared to the multi-point method, as the
MTPA dq-current points are optimally determined for each iteration cycle. This leads to a
more globally efficient machine design, but not necessarily the lowest-cost design.



Energies 2022, 15, 1095 16 of 21

0 1000 2000 3000 4000 5000 6000 7000 8000
Speed (rpm)

0

20

40

60

80

100

120

To
rq

ue
 (N

m
)

0.
70

0
0.

75
0

0.
80

0

0.830

0.8500.870

0.900

0.
91

0

0.
92

0

0.9
30

0.940
0.950

0.70

0.80

0.85

0.90

0.92

0.94

1.00

Figure 15. Efficiency map of eight ECG points with multi-point method.
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Figure 16. Efficiency map of eight ECG points with flux map method.

Table 7. Comparison of drive-cycle energy consumption of the optimum motor designs.

Number of ECGs Multi-Point Flux Mapping

2 16.934 GJ 16.882 GJ
4 16.931 GJ 16.793 GJ
6 16.931 GJ 16.778 GJ
8 16.921 GJ 16.673 GJ

The cross-sections of the optimum designs from both the multi-point and flux mapping
methods with two ECG points and eight ECG points are shown in Figures 18 and 19. Their
respective optimised motor geometric parameters are summarised in Table 8. Clearly, the
optimum designs obtained from both methods are very similar to each other.

Figure 20 displays the computational time of both multi-point and flux mapping
methods with different numbers of ECG points. It is observed that for the multi-point
method, there is an increase of 8 times in time from 2 ECG points to 8 ECG points, whereas
the flux mapping method only has an increase of 1.5 times. Further, for 8 ECG points,
the multi-point method took up to 7397 s whereas the flux mapping method took 3028 s.
This shows that the flux mapping method has the potential of being 2.4 times faster than
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the multi-point method when many ECG points are used. In order to show the rationale
of selecting the gradient-based design optimisation procedure for this study, multi-point
optimisation using the differential evolution (DE) method was also conducted. The time
taken for the DE design is also shown on the same graph. It can be seen that the DE
optimisation using only two ECG points takes weeks to complete, whereas the gradient-
based design needs only a few minutes. This clearly shows the huge computational
advantages that the gradient-based optimisation can offer.
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Figure 17. Pseudo-code for drive cycle energy consumption calculation.

Table 8. Comparison of multi-point and flux mapping optimum designs with two and eight ECG
points.

Parameter Number of ECGs: 2 Number of ECGs: 8
Multi-Point Flux Mapping Multi-Point Flux Mapping

S1 (mm) 2.79 2.81 2.76 2.81
S2 (mm) 6.1 6.22 7.34 7.55
S3 (mm) 31.13 30.17 24.74 25.8
S4 (mm) 13.85 14.49 14.63 15.53
S5 (mm) 7.29 7.24 9.09 9.33
V1 (mm) 6.98 6.16 4.17 4.28
V2 (mm) 0.5 0.5 0.5 0.78
V3 (mm) 42.98 42.72 55.33 57.1
V4 (mm) 22.37 22.94 39.24 36.98
V5 (mm) 7.55 6.7 2.94 3.54
Vθ◦ 115.51 115.1 114.8 114.61
R (mm) 137.14 136.17 151.6 156.07
L (mm) 45.43 46.82 40.33 40.73
Coil turns 12 12 11 11

It can also be seen that when the number of ECG points is greater than 4, the flux
mapping method becomes computationally more efficient. This is because the multi-point
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method has an increase of two design variables, namely the dq-currents for each specific
point, as the number of ECG points increases. This drastically increases the amount of time
taken as the search space for the optimal design becomes much larger. However, for the
flux mapping method, the search space remains the same, with only an increase in the
amount of points to find on the actual interpolated map.

(a) (b)

Figure 18. Cross-section of optimum designs from (a) multi-point method and (b) flux map method,
all with two ECG points.

(a) (b)

Figure 19. Cross-section of optimum designs from (a) multi-point method and (b) flux map method,
all with eight ECG points.

The multi-point method is relatively simple to implement for a designer compared
to the flux mapping method. The flux mapping method requires the user to implement
interpolation and MTPA analysis, while for the multi-point method, only the dq-currents are
required in order to analyse the motor’s performance. Another issue of the flux mapping
method is the search space of the flux map. By creating a large map that is densely
populated and takes longer to generate, a more accurate MTPA search can be conducted.
On the contrary, with a small and less densely populated flux map, the flux mapping
technique is computationally faster with a reduced accuracy. This shows the flux mapping
method is sensitive to the size of the flux map, and there is a trade-off between speed
and accuracy.

A factor that also needs to be considered is the core losses of the machine. For larger
machines, core losses have a much larger effect on the design of the motor. This would need
to be included within the constraint function, dependent on the particular motor design.
For traction applications, the torque ripple is also an important design consideration,
which is not part of the design study in this paper. However, this can be easily included
in the design optimisation with either method and further constrained according to the
design specifications.
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Figure 20. Computational time comparison of optimisation processes.

It is up to the designer to determine which method is best suited for their application.
If the MTPA is required for each operating point, a more globally efficient machine design
can be found when using the flux mapping method. However, if material costing is the
goal of the design, the multi-point method is the best strategy, and few operating points
are required.

5. Conclusions

An evaluation of design optimisation techniques for gradient-based optimisation is
conducted in this paper. Using a drive cycle-based approach for motor design optimisation,
an increase in overall efficiency can be achieved for the specified drive cycle. A weighting of
energy method can be used when analysing the drive cycle, which is further implemented in
the design strategies. The methods evaluated are the multi-point-based approach and a flux
mapping method. The multi-point-based method is shown to have an advantage in terms
of costing, computational efficiency, and ease of implementation when few operational
points are used; however, it becomes less attractive when more operational points are
used, due to the significantly increased time requirement to complete a design optimisation
process. The other design optimisation technique, flux mapping, is more complicated to
implement and use; however, when many operational points are used from the driving
cycle, it is seen to be computationally more efficient, and a greater global efficiency can be
found at the detriment of a slightly higher cost of the machine.

This paper shows how either methodology can be implemented and which may be
more beneficial for the designer according to the design requirements. It further shows the
importance of the problem definition for a gradient-based design optimisation problem.
Compared with a global optimisation method, a gradient-based optimisation method
is still very attractive because of its superior computational speed. This topic can be
further researched in terms of adding more parameters to the design specifications, such
as including core losses and torque ripple analysis. Given the scope of the work, the
proposed optimisation strategies are only evaluated based on a typical design case study. It
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is necessary to further compare and verify the suitability of these design strategies with
more case studies and even practical validations.
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