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Abstract: The performance of sodium-ion batteries largely depends on the presence and properties
of passive films formed on the electrode/electrolyte interfaces. Passive films on negative electrodes
inevitably result from the reduction in electrolyte components (solvent and salt anion). They have
the properties of a solid electrolyte with sodium ion conductivity and are insulators in terms of
electronic conductivity. Usually, they are called SEI—solid electrolyte interphase. The formation
of SEI is associated with the consumption of a certain charge, which is an irreversible capacity.
Passive films on the surface of positive electrodes (CEI—cathode electrolyte interphase) arise as a
result of electrolyte oxidation. The present review summarizes the literature of the recent 15 years
concerning the effects of electrode nature (hard carbon, other carbon materials, various metals, oxides,
chalcogenides, etc.), electrolyte composition, and other factors on composition and properties of SEIs
in sodium-ion batteries. Literary data on CEIs are reviewed as well, although their volume is inferior
to that of data on SEIs.

Keywords: sodium-ion batteries; solid-electrolyte interphase; cathode interphase; electrolyte reduc-
tion; sodium metal; hard carbon; carbonaceous materials; oxides; chalcogenides; anodes; cathodes

1. Introduction

One of the most important notions inherent in lithium-ion batteries is the concept
of a passive film on the negative electrode, commonly called a solid electrolyte interface
(SEI) [1]. Actually, the concept of SEI was formulated long before the advent of lithium-
ion batteries in connection with the question of the kinetic stability of metallic lithium
in aprotic electrolytes [2,3]. Because it is the most negative metal, lithium reduces the
electrolyte (primarily an aprotic solvent) and simultaneously corrodes. Thus, lithium is
thermodynamically unstable in aprotic electrolytes. Under certain conditions, insoluble
electrolyte reduction products form a passive film on the lithium surface, which has the
properties of a solid electrolyte with lithium-ion conductivity and negligible electronic
conductivity. The presence of this film (SEI) does not prevent the flow of the current-
generating process, namely the anodic dissolution of lithium (for rechargeable batteries,
both anodic dissolution and cathodic reduction in lithium) but prevents direct contact of
lithium with the electrolyte and the reduction in the latter. The electrolyte reduction is an
undesirable (parasitic) process, and the electricity expended in this process represents an
irreversible capacity loss. A good SEI contributes to minimizing irreversible capacity, i.e.,
improving battery performance in general.

Later it was found that SEI is formed not only on the metal lithium electrode but
also on the negative electrodes of lithium-ion batteries, the operating potential of which
is quite negative. The formation of SEI on electrodes made of carbon materials has been
investigated in length.

On the positive electrodes of lithium-ion batteries, which are characterized by rather
high values of operating potentials, electrolyte oxidation is possible with the formation
of corresponding passive films. Such films were named cathode electrolyte interphase
(CEI) [4]. (The term solid permeable interphase (SPI) [5] is less commonly used).
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The very existence and role of SEI and CEI in sodium-ion batteries are taken for
granted. There are much fewer studies of SEI and CEI in the sodium system than similar
studies in the lithium one, but there are still several reviews on sodium SEI and CEI [6–15].

The principle of SEI functioning is depicted in Figure 1. Coarse-solvated Li+ ions
approach an electrode surface coated with SEI. They cannot penetrate SEI, but after desol-
vation, small Li+ ions are transferred through SEI and fit in the crystal lattice. SEI consists
of inorganic particles embedded in an organic (polymer, oligomer) matrix.
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Figure 1. Schematic of SEI functioning.

The composition and properties of SEI and CEI depend on many factors, including the
nature of the electrode material, the nature of the electrolyte and the presence of additives
in the electrolyte, the pre-history of the electrode, etc.

2. SEI on Sodium Metal

Sodium metal is not used in sodium-ion batteries (except for all-solid-state ones).
Sodium metal electrodes are intended for sodium-oxygen [16], sodium-sulfur [17], sodium-
carbon dioxide [18], and so on systems. However, it is reasonable to consider the formation
of SEIs on sodium metal, especially considering the difference between such SEIs and SEIs
on lithium metal. Although lithium and sodium are very similar in physical and chemical
properties, and lithium and sodium power sources have a similar principle of operation,
their electrochemical behavior is very different. The nucleation and growth of sodium
dendrites are more difficult than for lithium ones due to the higher energy barrier and the
slowness of processes with sodium compared to lithium. Accordingly, sodium deposition
overpotential is typically higher than for lithium, resulting in a lower discharge voltage for
power sources with sodium electrodes. At the same time, sodium is more reactive with
respect to electrolyte than lithium.

At the first contact of sodium metal with an electrolyte under open circuit conditions, a
continuous primary passive film is formed on its surface. With further cathodic polarization,
the growth of sodium dendrites begins, mainly in the places of cracks and other defects in
the passive film. The interaction of the surface of the dendrites with the electrolyte leads
to the well-known phenomenon of encapsulation and the removal of part of the sodium
from the further electrochemical process. In contrast to lithium needle-like dendrites,
sodium dendrites have a branched, bushy, or mossy shape with a much more developed
surface [19]. Thus, natural SEIs on sodium has a much lower protective ability than on
lithium [10–12,19–23]. For example, it was shown in [12] that the potential of a lithium
electrode at both anode and cathode current density of 1 mA/cm2 in a 1 M LiPF6 in a
mixture of ethylene carbonate (EC), propylene carbonate (PC), and diethyl carbonate (DEC)
retains a value that does not change with time, while the potential of a sodium electrode
at the same current densities in a 1 M NaClO4 solution in the same solvent oscillates with
a large amplitude. These oscillations point to the continuous destruction and healing of
SEI on sodium under these conditions. Moreover, it turned out that SEIs on sodium is
much more soluble in the electrolyte than SEIs in lithium systems [24]. It was shown in [25]
that, under open circuit conditions, the impedance of the interface between sodium metal
and an electrolyte (1 M NaPF6 in a mixture of EC with dimethyl carbonate (DMC) or in a
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mixture of EC:PC:DMC) is way more than the impedance of the interface between lithium
metal and a similar electrolyte. Unlike the lithium system, the impedance in the sodium
system increases continuously with time. That is why repeated attempts have been made
to create “artificial” SEIs on sodium metal by optimizing the composition of the electrolyte,
including using various additives to the electrolyte.

The properties of SEI formed in carbonate electrolytes depend markedly on the elec-
trolyte composition, in particular, on the solvent nature. For example, it was shown in [26]
that the polarization of a sodium electrode in 1 M NaClO4 in pure PC significantly exceeds
that in 1 M NaClO4 in a PC:EC mixture.

As a rule, SEI formed in carbonate electrolytes has a much lower protective ability than
SEI in ether electrolytes [10,12,22]. For example, it was shown in [22] that the replacement
of the traditional carbonate electrolyte with NaPF6 solutions in glymes (mono-, di-, and
tetraglyme) makes it possible to carry out the cathodic deposition of sodium without SEI
destruction and without the formation of dendrites. SEIs, in this case, contain Na2O and
NaF as mineral constituents and sodium alkoxides (RCH2ONa) as organic constituents. It
was emphasized that the formation of high-quality SEI, in this case, is provided by both
the solvent and the salt. Replacing sodium hexafluorophosphate with other salts, such
as sodium imide, triflate, or perchlorate, while retaining glyme as a solvent, or replacing
glyme with carbonates, resulted in SEI that did not prevent dendrite formation. However,
in [27–29], the formation of reliable SEIs in a carbonate electrolyte, specifically 1 M sodium
difluorooxalatoborate in an EC-DEC mixture, was reported.

Another example of a successful electrolyte for the functioning of a rechargeable
sodium electrode is highly concentrated (about 5 M) solutions of sodium bisfluorosul-
fonylimide (NaFSI) in 1,2-dimethoxyethane (DME) [30], with a high concentration (close to
saturation) of NaFSI being an indispensable condition for the formation of high-quality
SEI. The authors of [31] came to the same conclusion somewhat earlier. It was shown
in [32] that the same effect could be achieved in much less concentrated (1.5 M) NaFSI
solutions in mixtures of 1,2-dimethoxyethane (DME) with bis(2,2,2-trifluoroethyl) ether
(BTFE). It is high time to stress the fact that the elemental composition of SEI formed in a
concentrated solution of NaFSI in DME and in a dilute solution of NaFSI in a DME-BTFE
mixture turned out to be almost the same and differed from the composition of SEI formed
in a dilute solution of NaFSI in DME (Figure 2). Figure 2 also clearly shows the change
in SEI composition with depth. The content of carbon and nitrogen (that is, the organic
component) on the surface of the SEI is much greater than at a depth of 10 nm. The ratio
of solvents DME:BTFE in the mixture should be from 1:2 to 1:3. A solution of NaFSI in an
ionic liquid, tri(isobutyl)methylphosphonium bis(fluorosulfonyl)imide, also proved to be a
successful electrolyte [33]. At a NaFSI concentration of 45% in such an electrolyte, dense,
high-quality SEIs were formed.
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Somewhat exotic electrolytes that ensure the formation of high-quality SEIs on the sur-
face of sodium metal were proposed in [34]. Here, ammonia-based quasi-ionic liquids were
used, having the composition NaY·xNH3, where Y is any anion, in particular, NaI·3.3NH3,
NaBH4·1.5NH3, and NaBF4·2.5NH3. These compounds have boiling points of 40, 18, and
10 ◦C, respectively, and are highly concentrated (7.6, 12.3, and 9.7 M, respectively) solutions
of Na+ in liquid ammonia. (It is not out of place to mention that NaI·3.3NH3, as an elec-
trolyte for primary cells with a sodium anode, was proposed back in 1988 [35]). In [36], a
similar electrolyte based on the quasi-ionic liquid NaAlCl4·2SO2 is described. In such an
electrolyte, SEI is formed on the sodium surface, consisting mainly of NaCl (along with
small amounts of Na2O and Na2S), and completely prevents the formation of dendrites
during cathodic sodium deposition.

As for various additives to the electrolyte, perhaps the most discussed additive is fluo-
roethylene carbonate (FEC) [37], which has good film-forming properties [38], suppresses
the destruction of solvents, and improves the conditions for the electrode process [19,39–42].
The addition of FEC has proven itself well in the lithium system. When used in power
sources with a sodium electrode, the concentration of this additive should be increased
compared to lithium systems [12]. However, in the literature, one can also find an indication
of the negative effect of the addition of FEC on the properties of SEI on sodium metal [30,43].
(But, for example, in [43], it is shown that the harmful effect of FEC can be neutralized by
the addition of 1,1,1,3,3,3-hexafluoroisopropyl methyl ether). The addition of FEC leads to
a significant enrichment of SEI with sodium fluoride, which was shown both by theoretical
calculations [44–47] and by direct experiments [19,41,42]. Another important additive to
the electrolyte that provides high-quality SEI on sodium metal is sodium sulfide, more
precisely, sodium polysulfides [48].

In general, the nomenclature of additives that improve SEI on sodium metal is not at all
systematic. For example, potassium bis(trifluoromethylsulfonyl)imide was mentioned as a
useful additive [49]. (It was assumed that in the presence of TFSI–anions, the composition
of SEI would include sodium nitride (Na3N) and sodium oxynitrides (NaNxOy); it is
surprising that this idea is not mentioned in work [30], which is especially devoted to
the imide electrolyte). In [50], SbF3 is announced as a useful additive to a concentrated
imide electrolyte. Figure 3 vividly shows the effect of SbF3 additive to the electrolyte on
dendrite formation. In the presence of such an additive, a bilayer SEI is formed on the
sodium surface. The inner layer consists of a Na-Sb alloy. The outer layer is a regular SEI
enriched with NaF (Figure 3c). This bilayer SEI is thinner than the SEI formed in the same
electrolyte without the addition of SbF3 (Figure 3b) and ensures the deposition of a uniform
dendrite-free sodium layer. A comparison of Figure 3a,b shows the advantage of the ether
electrolyte over the carbonate one.

The authors of [51] propose the addition of NaAsF6 to carbonate electrolytes. It is
indicated that in this case, SEI contains significant amounts of sodium fluoride and O–As–O
polymer, and it is this combination that provides high protective properties of SEI. At the
same time, authors of [52] postulate the detrimental effect of NaF on the properties of SEI
on sodium metal and show that excellent SEI can be obtained in completely fluoride-free
electrolytes, for example, in a solution of sodium tetraphenylborate (NaBPh4) in DME.
In [53], tin chloride is proposed as an additive to carbonate electrolytes. It is assumed that
in such electrolytes, an Sn–Na alloy is formed on the sodium surface (due to the contact
reduction in tin ions), and SEI will be enriched with NaCl. It has also been proposed to
apply a thin (sub-nanometer) layer of protective coating to the surface of sodium metal
as some kind of “artificial SEI.” These can be layered 2D materials (hexagonal boron
nitride, graphene, silicene, germanene, stannene, phosphorene, etc.) [54,55] or composite
layers consisting of a polymer (for example, a copolymer of polyvinylidene fluoride with
hexafluoropropylene (PVdF-HFP) saturated with an ordinary liquid electrolyte (plasticizer)
with a filler of Al2O3 nanopowder) [56,57]. Another option for “artificial SEI” is a thin layer
of sodium disulfide [58]. To form such an “artificial SEI,” a layer of molybdenum disulfide
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is applied to the surface of metallic sodium, which interacts with sodium according to
the equation

4Na + MoS2 = 2Na2S + Mo (1)

In [59], it is proposed to use not pure sodium metal but a sodium composite with
reduced graphene oxide. In this case, it is not sodium that contacts the electrolyte, but
graphene, on the surface of which a stable SEI is formed.
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3. SEI on Hard Carbon

Of the wide variety of anode materials proposed for sodium-ion batteries, the most
popular is hard carbon, the use of which in sodium-ion batteries was first described
in [60,61]. In the non-graphitized disordered turbostratic structure of hard carbon, there
are various places for sodium insertion (randomly oriented graphene layers with a “house
of cards” structure, various defects, and micropores in stacks of graphene layers) [62–64].
As a result, reversible insertion and extraction of sodium occur over a relatively wide
range of potentials. The galvanostatic charge curves show two almost straight segments: a
decreasing segment in the potential range from about 1.0 to 0.1 V (hereinafter, all potential
values are given relative to the sodium electrode) and a flat segment (plateau) from 0.1
to 0.01 V [62,65,66]. It is on the first falling section that the main charge is spent on
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the formation of SEI. Figure 4 explains how a comparison of the charge and discharge
galvanostatic curves gives a possibility to find the reversible and irreversible capacity of
the electrode.
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It has been shown in many works that the composition of SEI on hard carbon electrodes
substantially depends on the composition of the electrolyte [66–80]. Thus, according to [66],
SEI formed in NaClO4 solution in butylene carbonate (BC) possesses worst protective
properties than SEI formed in solutions in EC and PC (Figure 5a). Even more revealing
is the comparison of NaClO4 solutions in mixtures EC:DMC, EC:ethyl methyl carbonate
(EMC), and EC:DEC (Figure 5b).
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The composition of the electrolyte affects not only the brutto-composition of the
SEI but also the distribution of the SEI components over its thickness. Figure 6 shows
the fundamental difference between conventional carbonate electrolytes (Figure 6a) and
electrolytes based on ionic liquid (Figure 6b).
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The composition of SEI formed in 1 M solutions of NaPF6, NaClO4, NaFSI, NaTFSI
(sodium bis(trifluoromethanesulfonyl)imide), and NaFTFSI (sodium fluorosulfonyl-
(trifluoromethanesulfonyl)imide) in a mixture of EC-DEC was studied in length in [69]. It
was shown by X-ray photoelectron spectroscopy (XPS) that the organic part of SEI con-
tains sodium carbonate (Na2CO3), sodium alkyl carbonates (ROCO3Na), sodium alkoxides
(RONa), ethylene oxide oligomers, semicarbonates and double sodium alkyl carbonates
formed as a result of the reductive destruction of solvents, and the relative amounts of
these components depend on the nature of the salt anion. The nature of the salt anion also
affects the density and thickness of SEIs: thicker SEIs are formed in the electrolyte with
NaClO4, while thinner SEIs are formed in the electrolytes with NaPF6 and NaTFSI. The
distribution of organic and inorganic (NaCl, NaF, Na2CO3) components over the SEI depth
also depends on the nature of the anion. The authors of [70] came to similar conclusions. It
is also stated in [76] that double alkyl carbonates constitute the main organic component of
SEI on hard carbon.

It was shown in [71] that, in a solution of sodium tetraphenylborate in DME, quite
stable SEIs are formed on hard carbon electrodes (as well as on sodium metal [52]), which
do not contain fluorine compounds and ensure electrode cycling at current densities up to
6 A/g. The behavior of hard carbon in carbonate-based (1 M NaClO4 in an EC-PC mixture)
and ether-based (1 M NaClO4 in a mixture of tetraglyme with DME) electrolytes were
compared in more detail in [80]. It was found that in the former case, loose, non-continuous
SEIs, whereas in the latter case, thin, dense, continuous SEIs of uniform thickness is formed.
As a result, in the carbonate electrolyte, the electrode processes proceed with greater
polarization. Just as in the case of sodium metal, the composition and properties of SEI on
hard carbon depend markedly on the presence of additives in the electrolyte. The most
popular additive is again FEC [37,67,70,78,81–83], which promotes the formation of thinner
dense SEIs. (Intriguingly, such an additive as vinylene carbonate (VC) turned out to be
much less effective in sodium-ion batteries than in lithium-ion batteries [37]). The addition
of FEC leads to a significant improvement in the properties of SEIs on hard carbon in those
electrolytes in which low-quality SEIs generally form, for example, in solutions of NaClO4
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in plain PC [84]. At the same time, in electrolytes based on an EC-PC mixture, the addition
of FEC led to a deterioration in the quality of SEI [63].

The reductive decomposition of FEC was found to proceed with significantly lower
activation energy than the propylene carbonate reduction [46,47,85]. This conclusion was
made by using the density functional theory (DFT) and the method of molecular dynamics.
This very feature determines the easier formation of SEI enriched with sodium fluoride.
The efficiency of the addition of FEC was shown to depend on its concentration [81,83].
For 1 M solutions of NaPF6 in PC and EC:PC mixture, the optimal concentration of FEC is
0.5%. It is also stated in [81] that it is the combination of NaPF6 with FEC that provides a
synergistically successful SEI on hard carbon electrodes.

It is commonly accepted that SEI is formed mainly in the first cycle. However, a
number of studies have shown that the evolution of the composition and structure of SEI
on hard carbon continues over the initial 10–20 cycles. Such a conclusion, in particular, was
made in [76], where it was found that in a solution of 1 M NaTFSI in PC with the addition
of 3% FEC, SEI on hard carbon thickens and enriches with sodium carbonate and sodium
fluoride over the first 20 cycles.

Other additives that have a beneficial effect on the formation of high-quality SEI on hard carbon
include tris(trimethylsilyl)phosphite (TMSP, [(CH3)3Si]3PO3) [86], 1,3-propanesultone (C3H6O3S)
and ethylene sulfate (C2H4SO4) [87], ionic liquids [88–90]. The role of TMSP in improving SEI on
hard carbon is that the TMSP additive traps traces of oxygen, moisture, as well as HF and PF5 in the
electrolyte [91,92]. Additives of sulfur-containing 1,3-propanesultone and ethylene sulfate contribute
to the formation of sulfates and sulfites (ROSO2Na and RSO3Na), which stabilize SEI on hard
carbon during long-term cycling. The examples of ionic liquids are 1-butyl-3-methyl-imidazolium
bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide,
and N-propyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide [88], N-propyl-N-
methylpyrrolidinium bisfluorosulfonylamide [89] and 1-ethyl-3-methylimidazolium bisfluorosul-
fonylimide [90]. It is worth noting that in all cases, the presence of ionic liquids in the electrolyte
contributes to an increase in the mechanical and electrochemical stability of SEI due to a change in
its composition, although no quantitative data on the composition of SEI are given.

Somewhat unexpected was the effect of nano-zeolite additions to the active mass of
hard-carbon-based electrodes on the SEI characteristics [93]. The replacement of part of
the carbon black (as an electrically conductive additive) in the active mass of the electrode
with alumina-silicate zeolite Nano-ZSM5 P91 (Zeolite Socony Mobil-5) led to a certain
decrease in the thickness and resistance of the SEI. It puzzles why the authors of [93] do
not comment on the fact that the replacement of 80% of the electronic conductor (carbon
black) with an ionic conductor (zeolite) was not accompanied by a deterioration in the
characteristics of the electrode even at elevated currents (up to 5 C).

Attempts have been made to create artificial SEIs on solid carbon. For example,
paper [94] describes hard carbon fibers on the surface of which arrays of V2O5 nanosheets
are grown. The total amount of V2O5 was 14–20%. When V2O5 nanosheets were deposited,
the surface of hard carbon was “healed” (decrease in the density of defects and nanovoids),
which ensured the formation of a thinner dense SEI. In [95], it is proposed to deposit an
Al2O3 layer about 2 nm thick on the surface of hard carbon. Such a layer is applied by
atomic layer deposition (ALD) and serves as a sublayer for SEI. The authors showed that
the SEI formed on such a sublayer has a lower thickness and a higher ionic conductivity.
The alumina sublayer is assumed to slow down the process of electrolyte reduction on the
surface of hard carbon. Amorphous (soft) carbon coatings obtained from coal tar pitch
exert approximately the same effect [96,97].

In general, the composition and properties of SEIs formed on hard carbon are highly
dependent on the state of its surface. As a rule, the less defective the surface and the lower
the porosity of the surface layer, the perfect SEIs are formed on such surfaces [98–100]. In
the synthesis of hard carbon by pyrolysis of various precursors, the state of the surface
significantly depends on the temperature and mode of pyrolysis. Thus, it was shown in [98]
that when hard carbon is obtained by pyrolysis of peat, samples synthesized at a tempera-
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ture of 1400 ◦C are characterized by the maximum reversible and minimum irreversible
capacity and, accordingly, the thinnest and densest SEI. In [100], it was found that at a
constant temperature of sucrose pyrolysis, the surface of the resulting hard carbon is more
perfect (defect-free), and the slower the heating during pyrolysis occurs. A somewhat
different conclusion was formulated in [101], where it was found that thinner and more
perfect SEIs are formed on microporous hard carbon than on samples with low porosity.

An original method for stabilizing SEI on hard carbon is described in [102]. Here it is
proposed to carry out preliminary short-term treatment of the surface of hard carbon in
oxygen plasma [103,104]. In this case, oxygen-containing functional groups are formed on
the carbon surface, and the surface itself becomes hydrophilic. On such a surface, very thin
SEIs are formed with negligible irreversible capacitance.

Some interesting observations were reported in [105]. It is shown here that dense thin
(8 nm) SEIs are formed on electrodes made of hard carbon obtained by pyrolysis of longan
peel at room temperature, providing stable cycling with a sufficiently high reversible
capacity. Thicker (21 nm) SEIs are formed on the same electrodes at a temperature of
−20 ◦C, which leads to strong degradation during cycling (capacity decreased from 280
to 80 mAh/g in 5 cycles). However, upon subsequent heating to room temperature, the
SEI was transformed, i.e., it returned to its previous thickness with a simultaneous increase
in capacity up to 250 mAh/g. The expected results on the effect of current density during
the charging of electrodes based on hard carbon are reported in [106]. It is shown here that
increasing the cathode current density leads to the formation of thinner perfect SEIs. Thus,
according to the data of electrochemical impedance spectroscopy, the total electrolyte, and
SEI resistance, corresponding to the active component of the impedance at an infinitely
high frequency, was 1.3 Ohm·cm2 at a charge with a current of 100 A/g and 15.1 Ohm·cm2

at a charge with a current of 1 A/g.
When SEI is formed, a significant charge is consumed on the first cycle, and accordingly,

a certain amount of sodium ions is lost from the positive electrode. In order tto compensate
for this loss, it is recommended that the electrode, in particular, a hard-carbon-based
one [107], be pre-sodiated. A simple but effective method of pre-sodiation consists in
spraying a sodium naphthaline (Naph-Na) solution onto a carbon electrode. Figure 7a
shows how the first charge curve changes upon pre-sodiation: open circuit voltage shifts
from 2.35 V to 0.75 V, and irreversible capacity diminishes by 60 mAh/g. Some interfacial
layer with a thickness of ≈20 nm is formed upon pre-sodiation (Figure 7b). This layer
consists of sodium-containing-organic and inorganic compounds, such as sodium alkyl
carbonates, sodium carboxylate, sodium carbonate, sodium fluoride, etc.
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Figure 7. Electrochemical performances of the carbon electrodes with and without presodia-
tion. (a) The voltage-capacity curves of the pristine and presodiated carbon electrode for the first
charge/discharge cycle. (b) TEM images of presodiated carbon after immersed in a liquid electrolyte
before battery cycling. (Reprinted with permission from [107]. Copyright 2019, Wiley Online Library).
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Works [108–110] are devoted to a detailed analysis of the morphology and composition
of SEI on hard carbon. Various characteristics of sodium alkyl carbonates are given in [111].
It was found in [112] that SEI on hard carbon grows inward rather than outward, i.e., in the
direction from the interface with the electrolyte to the carbon surface.

4. SEI on Other Anode Materials

The list of anode materials in addition to hard carbon is extensive [113] and includes var-
ious other forms of carbon [114–145], metals, and their composites with carbon (Sb [146–161],
Sn [162–168], Bi [169–175], Cu [176]), silicon [177,178], germanium [179,180] oxides [181–228],
chalcogenides [229–243], phosphides and phosphorus composites [244–251], as well as more
complex compounds from sodium titanates [252–255], to very exotic compounds [256–260].
As a result, information on each specific material is rather limited.

Some regularities outlined in Sections 1 and 2 happen to be valid also for many other
anode materials. For example, the advantages of ether-based electrolytes over carbonate
electrolytes have been confirmed for the formation of SEI on graphite [130,142], tin [162,165],
bismuth [261], bismuth sulfide [229], bismuth oxychloride [182], Na3(TiOPO4)2F [256],
molybdenum and iron sulfides [231,237], TiO2 [187], etc. A favorable effect of FEC is
noted in the formation of SEI on antimony [147–149,153], tin [167], bismuth-carbon compos-
ites [169], SnO [222], SnO2 composites with reduced oxide graphene [224,262], a composite
of antimony sulfide with graphene [263], etc. There are examples in the literature of
the positive effect of pre-sodiation on the reduction in the irreversible capacity of the
first cycle [138,253,264].

At the same time, the composition and structure of SEIs and the features of the pro-
cesses of their formation and destruction on different materials are, in general, individual.
So, on different forms of carbon, even in the same electrolyte, SEIs are formed in several
different potential ranges. For example, on carbon nanofibers doped with fluorine and
nitrogen, stable high-quality SEIs in an EC-PC-based electrolyte are formed at potentials of
about 0.92 and 0.46 V (these values correspond to extrema on voltammograms) [115]. On a
carbon material obtained by heat treatment of a mixture of resorcinol and formaldehyde
and having the shape of smooth spherical particles (i.e., having a small specific surface
area), the SEI formation potential is close to 1.1 V [114]. It is of deep interest that the cited
work reports the formation of very thin dense SEIs in an electrolyte based on a mixture of
EC-DEC. This fact comes as rather a surprise and contradicts most other works in which
SEIs in such an electrolyte have a large thickness and defectiveness (see, e.g., [80]). Thin
SEIs on hollow fibers obtained by carbonization of polyaniline is formed at potentials of
0.43 and 1.13 V [117]. At the same time, in the experiments with carbon fibers made by
cellulose carbonization, a certain irreversible capacity was registered in the potential range
of 0.2 to 0.3 V in EC-PC-based electrolytes [118].

Although graphite is inferior to hard carbon as an anode material for sodium-ion
batteries, a sufficient number of studies have been published on the reversible sodium in-
sertion into graphite and the formation of SEI [120,121,127–131,141]. It has been established
that, such as lithium, sodium is intercalated into graphite in stages, with the formation of
distinct steps on galvanostatic curves [127]. Usually, solvated (or incompletely desolvated)
sodium ions are intercalated into graphite. For example, sodium ions bound to one solvent
molecule are intercalated from an electrolyte based on diethylene glycol dimethyl ether
(DEGDME) [130]. It was shown in [128] that sodium ions solvated by two solvent molecules
are reversibly intercalated from a diglyme-based electrolyte. In [141], the formation of
SEI was studied in detail upon the sodium intercalation into graphite from a solution of
NaFSI in tetraethylene glycol dimethyl ether (TEGDME). Under these conditions, SEI has
a thickness of 3 to 8 nm and consists of the reduction products of both the salt anion and
the solvent. In [131], a paradoxical conclusion was made that when a graphite electrode is
cycled in an electrolyte based on diglyme, SEI is not formed at all. An explanation of this
paradox can be found in [140]. Here, using soft X-ray absorption spectroscopy (XAS) it
was shown that in an ether-based electrolyte (1 M NaPF6 in DEGDME), SEI on graphite is
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formed during cathodic polarization and is destroyed during subsequent anodic polariza-
tion, i.e., shows signs of reversibility. Under the same conditions on disordered (hard or
soft) carbon, such reversibility is only partially revealed, and an appreciable part of SEI is
formed irreversibly during cathodic polarization and does not undergo transformations
during subsequent anodic polarization. In carbonate electrolytes, sodium is not reversibly
intercalated into graphite at all [142].

In the example of various carbon electrodes, a certain correlation was found between
the specific surface area (or dispersion), and the volume of SEIs formed, i.e., irreversible
capacity. For example, it was shown in [124] that when sodium is inserted into carbon
xerogels obtained from a resorcinol–formaldehyde mixture and having pores ranging in
size from 10 to 200 nm, the irreversible capacity in the first cycle is 85% for the finest and
67% for the largest pores samples. A similar conclusion was made in [125] for porous
carbon obtained by carbonization of polyethylene oxide and polystyrene, in [121] for a
material obtained by carbonization of peanut hulls, and in [126] for a nanoporous material
obtained by carbonization of ZIF-8 zeolite.

The authors of [119,144] describe a carbon material that is, in fact, highly porous (with
a specific surface area of more than 1000 m2/g and sizes of micropores from 0.5 to 2 nm
and mesopores from 2 to 100 nm) carbon impregnated with sodium. Sodium occupied only
part of the pore space. The rest was filled with an electrolyte so that the electrode worked
to the entire depth of the active layer. In this case, the layer of oxygen-doped carbon foam
was obtained from starch and deposited on a current copper collector. A dense thin SEI
containing NaCO3R, NaF, and Na2O was formed on such an electrode in a diglyme-based
electrolyte, which ensured stable cycling. The outer layer of SEI was enriched in organic
components, while the inner layer was enriched in inorganic ones, which is generally
typical of SEIs formed in electrolytes based on ethers [120].

The authors of [137] studied electrodes obtained from graphene, on which Al2O3
particles about 1 nm in size are fixed. The introduction of these nanoparticles led to a sharp
decrease in the defectiveness of graphene layers and the formation of thin homogeneous
SEI. Moreover, the presence of such nanoparticles protected the SEI from the harmful effects
of HF traces. This effect is similar to that described in [95] for hard carbon.

Of particular interest is the behavior of carbon electrodes in electrolytes based on ionic
liquids, i.e., electrolytes that do not contain traditional aprotic solvents [265]. It has been
found in many studies that even in electrolytes based on ionic liquids, SEIs are formed
on the electrode surface during the first cathodic polarization, the characteristics of which
differ from those of “ordinary” SEIs. In particular, the insertion of sodium into electrodes,
which are a composite of graphene nanosheets and carbon microspheres in 1 M NaFSI in
N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (PMP–FSI) and in 1 M NaTFSI
in N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMP-TFSI) was
studied in [145]. On the voltammograms recorded in 1 M NaFSI in PMP-FSI, a large
cathode peak was noted at potentials of about 0.6 V during the first cycle, which the authors
identified with the SEI formation due to anion reduction. This peak did not appear in
subsequent cycles. According to the XPS analysis, the composition of the SEIs formed in the
ionic liquid electrolyte differed from the composition of the SEIs formed in the traditional
EC-DEC electrolyte. In the former case, SEIs were enriched in polyolefins ((CH2)n) and
compounds with S=C=O groups; in the latter case, they had a high content of sodium
carbonates and alkyl carbonates and compounds with C–O and C=O groups. It is worth
noting that SEIs formed in 1 M NaTFSI in PMP-FSI had a much higher Ohmic resistance
and did not provide reliable cycling. A similar conclusion about the composition of SEIs
formed in an electrolyte based on PMP–FSI was made in [266].

Antimony has a specific capacity of about 600 mAh/g, is an attractive anode material
for sodium-ion batteries. True enough, the working discharge potential of antimony
electrodes is noticeably more positive than that of carbon-based electrodes and amounts
to 0.7–1.2 V. Even with such positive potentials, SEI is formed on the Sb electrodes, the
composition, and properties of which being depended on the nature of the electrolyte.
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Noteworthy is that it was shown in [157] that thinner and more reliable SEIs are formed
on antimony powder electrodes made using carboxymethyl cellulose as a binder in 1 V
NaClO4 in PC with the addition of FEC than on electrodes made with polyvinylidene
fluoride binder (in the first case, the irreversible capacity of the first cycle was half that of
the second case).

The properties of SEI on antimony powder electrodes with carboxymethyl cellulose
binder were studied in [146] using three electrolytes: 1 M NaClO4 in PC, 1 M NaPF6 in
PC, and 1 M NaPF6 in an EC:DMC mixture. All electrolytes were supplemented with 5%
FEC. The irreversible capacity of the first cycle was minimal in an electrolyte based on an
EC:DMC mixture and maximal in a sodium perchlorate solution.

In the example of antimony electrodes, the conclusion made in the study of carbon
electrodes was confirmed that an increase in dispersion is accompanied by an increase in
the irreversible capacity of the first cycle [148].

An interesting observation is reported in [152]. Here, cathodic deposition was per-
formed from a solution containing nickel chloride (NiCl2), L-antimony potassium tartrate
(C8H4K2O12Sb2), boric acid (H3BO3), and sodium hypophosphite (NaH2PO2). The result-
ing precipitate was cauliflower-like antimony particles and some (up to 12%) SnNi alloy
particles. According to the authors, it was the presence of this alloy that provided dense,
high-quality SEIs and high cyclability. In [154], it was found that a change in temperature
in the range from 5 to 50 ◦C leads not so much to a change in the SEI Ohmic resistance on
nanocrystalline antimony but to a change in the charge transfer resistance at the interface
between the SEI and the electrode. The paper [155] describes an original material that
has a garnet structure and consists of secondary spherical particles ranging in size from
2 to 10 microns, each of which contains many yolk-shell particles (antimony core, carbon
shell). On such a structure, relatively thick but sufficiently conductive SEIs are formed,
which provide damping of volumetric changes during sodium insertion and extraction.
A composite consisting of antimony nanoparticles in a porous carbon matrix turned out
to be an effective material for the negative electrode of sodium-ion batteries [159]. SEI
on such a composite in a carbonate electrolyte with the addition of FEC is formed in a
wide range of potentials and ensures stable cycling. Other antimony composites with
different carbon materials [160,161] form similar SEIs. Another interesting example of an
antimony-containing material is given in [156]. Here, thin plates consisted of antimony
nanoparticles with shells of amorphous TiO2−x. We deem it possible to assume that TiO2−x
stabilizes the SEI on such electrodes.

The properties of SEIs on tin formed in electrolytes based on alkyl carbonates and based
on diglyme were investigated in [162] using cryogenic transmission electron microscopy
and XPS. It was shown that in the first case, thick loose SEIs are formed, while in the second
case, ultrathin dense SEIs are formed, consisting of a polymer matrix in which amorphous
inorganic nanoparticles are dispersed. It is confirmed in [166] that SEIs on tin formed in
1 M NaClO4 in PC are enriched mainly in sodium carbonate and alkyl carbonates and are
partially destroyed by anodic polarization.

The additives of FEC have a significant effect on the properties of SEI. Figure 8a shows
the discharge curves on an SnSb-carbon nanotube composite electrode in solutions of
NaPF6 in EC:DEC containing and not containing FEC additives. This Figure also shows
the effect of FEC on Coulombic efficiency. With regard to tin electrodes, glyme-based
electrolytes also have advantages over carbonate-based ones (Figure 8b).
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Figure 8. (a) Cycling performance (a, b) and Coulombic efficiency (c, d) at a cycling rate of 0.2 C in
FEC-containing (a, c) and FEC-free (b, d) NaPF6/EC/DEC electrolytes NaPF6/EC/DEC electrolyte of
porous CNF-SnSb electrodes. (Reprinted with permission from [151]. Copyright 2014, Wiley Online
Library). (b) Performance of Sn electrode in 1 M NaPF6/DGME electrolyte: voltage profiles with
their rate capability (inset), where 1 C equal to 847 mA/g. (Reprinted with permission from [165].
Copyright 2016, Wiley Online Library).

The features of SEI on bismuth have been studied mainly on samples of various
composites of bismuth with carbon. In [169], a composite obtained by carbonization
of bismuth citrate and containing 83% bismuth was studied. It is also shown here that
loose SEIs with a thickness of about 15 nm containing ester polymerization products
are formed in the carbonate electrolyte. Dense SEIs about 3 nm thick was deposited in
an electrolyte based on ethylene glycol dimethyl ether. Similar results were obtained
in [172,173]. The authors of [170] describe a composite in which bismuth nanospheres are
encapsulated in porous carbon doped with nitrogen. On such a composite in 1 M NaPF6
in DME, stable SEIs are realized, which ensure the reversible sodium insertion at currents
up to 100 A/g. However, without some special measures, such electrodes demonstrate
rather high irreversible capacity at the first cycle (Figure 9a). Almost the same material is
described in [175]. A peculiar composite of bismuth with carbon is described in [171,174].
Here, bismuth nanorods are enclosed in carbon nanotubes doped with nitrogen. On such
a composite, SEIs at cathodic polarization appeared at potentials of about 0.64 V (which
was noted by a rather narrow peak in the voltammogram) and ensured stable cycling
(2600 cycles at a current of 1 A/g). In [176], copper was used as a model material for
studying the mechanical properties of SEIs formed in 1 M NaPF6 in an EC–DEC mixture. It
is unclear, however, to what extent the conclusions of this work can be extended to other
substrates and other electrolytes.

It is known that sodium (unlike lithium) practically does not insert into crystalline
silicon [267,268]. However, there are indications of the possibility of reversible insertion of
sodium into amorphous silicon [178] from an electrolyte based on an EC-PC mixture with
the consumption of a noticeable irreversible capacity for the formation of SEI at potentials
about 1.1 V (Figure 9b). In [177], the process of sodium insertion into clathrate (openwork)
structures of type II silicon (type II clathrates have the formula NaxSi136, where 0 < x < 24),
and it was found that in this case, the formation potential and some properties of SEI
depend on temperature, since side processes are accelerated with increasing temperature,
leading to irreversible capacity.
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Figure 9. (a) Galvanostatic charge/discharge curves of Bi@N-C for first three cycles at 1 A/g.
(Reprinted with permission from [170]. Copyright 2019, Wiley Online Library). (b) Rate capability at
different current rates of Si NP electrodes. (Reprinted with permission from [178]. Copyright 2016,
Wiley Online Library).

The closest analog of silicon, germanium, on the contrary, is capable of reversible
sodium incorporation [179]. In this case, side processes of electrolyte reduction also occur,
accompanied by irreversible capacity, but we are unaware of research on the composition
and structure of the resulting SEI. It is worth mentioning that the irreversible capacity
of germanium (in contrast to carbon materials) is noticeably reduced by the addition of
VC [180]. The effect of VC is vividly shown in Figure 10.
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Many oxides, including Fe3O4, are used as anode materials in the form of composites
with carbon or in the form of carbon-coated nanoparticles. One can venture a guess
that it is the presence of carbon components that determines the nature of SEI on such
materials. In [181], on an electrode of Fe3O4 nanoparticles with a thin carbon coating in an
electrolyte consisting of 1 M NaClO4 in ethyl methanesulfonate with the addition of FEC,
the formation of SEI was recorded at potentials of about 1.3 V. In [188], Fe3O4 nanorods
with a thin carbon coating in an electrolyte, consisting of 1 M NaClO4 in the usual EC:PC
mixture were studied, and the formation of SEI was found only at potentials of about
0.4 V. This difference is undoubtedly due to the difference in the nature of the electrolyte.
In [190], as well as in [189,191], nanostructured Fe2O3 electrodes without carbon coating
on individual particles are described (however, using 20% carbon black as an electrically
conductive additive in the active mass of electrodes). On such electrodes in 1 M NaClO4 in
an EC:DEC mixture, the formation of SEI occurred in the potentials about 0.4 V, i.e., in the
same way as on Fe3O4 nanorods with a carbon coating.
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Titania is one of the popular candidates for the negative electrode material of sodium-
ion batteries. As a rule, it is used in the modification of anatase, and both carbon-coated and
uncoated materials are described. Already in the first publications [196–198], the existence
of an appreciable irreversible capacitance on such electrodes associated with the formation
of SEI was noted. In [196], the irreversible capacity appeared only in the first cycle, while
in [197,198], it gradually decreased from the first to the tenth cycle. As a rule, in solutions
based on an EC:PC mixture, SEIs are formed at potentials of 1.1–1.2 V [199,200], although
in [196], a potential of about 0.8 V is indicated, and in [201], about 0.4 V for NaClO4 solution
in pure PC. In [200], the influence of the nature of the electrolyte on the formation of SEI
was studied in more detail, and the effect of the solvent was shown to be stronger than that
of the salt anion. Thus, in a solution of NaTFSI in PC, the irreversible capacity in the first
10–15 cycles were significantly greater than in solutions of NaPF6 and NaClO4 in the same
solvent. For NaClO4 solutions, the irreversible capacity decreased in the series of solvents
(EC:DMC)-PC-(EC:PC). In the same work, the practical absence of the effect of the addition
of 2% FEC on the electrochemical behavior of TiO2 in 1 M NaClO4 solutions in an EC:PC
mixture was noted (which contradicts the results of many other studies, for example, [205]).
The works [192,202] show the effect of pre-sodiation of electrodes based on TiO2 on the
reduction in the irreversible capacity.

An original approach for reducing the irreversible capacitance on titania-based elec-
trodes is described in [185]. Here, an array of anatase nanotubes is proposed to be prelimi-
narily lithiated in a LiClO4 solution in PC, and then Li-containing SEIs are converted into
Na-containing SEIs in a NaClO4 solution.

Tin oxides and their composites with carbon have also been considered promising
materials for the negative electrodes of sodium-ion batteries. The processes of SEI formation
on such materials were studied in [219–228]. It was found in [219] that the composition
of SEI on the SnO2–reduced graphene oxide composite formed in an electrolyte based on
EC:DEC with the addition of FEC includes NaF, Na2CO3, and sodium alkyl carbonates.
On a SnO2 composite with multiwalled carbon nanotubes in a NaClO4 solution in EC:PC,
SEI was formed at potentials in the range from 0.5 to 0.2 V [220]. A somewhat unusual
composition of SEI on the SnO2 nanocomposite with carbon Super P is presented in [228].
Here, in a 1 M solution of NaClO4 in an EC:DEC mixture with the addition of FEC, SEIs
were formed containing, in addition to the usual sodium fluoride, carbonate, and alkyl
carbonates, also sodium chloride, and chlorate. In [262], the behavior of electrodes made of
a SnO2 composite with graphene in an electrolyte based on an ionic liquid (1 M NaFSI in
PMP:FSI) was studied, and a cathode peak was recorded on voltammograms at potentials
of about 0.6 V, associated with the formation of SEI, which turned out to be thinner and
more homogeneous than the SEI formed in the PC-EC electrolyte.

When analyzing the processes of sodium insertion into materials based on oxides,
it should be taken into account that, in these cases, there are at least two mechanisms
for the appearance of the irreversible capacity of the initial cycles. First, these are the
processes of reduction in electrolyte components, leading, in particular, to the formation
of SEI. Secondly, these are the processes of reduction in oxides themselves. For example,
for electrodes based on SnO2, during the first charge at potentials of 3–0.8 V, sodium ions
are introduced into the structure of tin dioxide. At potentials more negative than 0.8 V,
the sodium ion interacts with tin dioxide to form tin and Na2O nanoparticles. Finally, at
potentials more negative than 0.1 V, the formation of the NaxSn alloy is observed. The
authors of [269] have shown that during the electrochemical reduction in thin layers of
highly porous SnO2 on a copper substrate, firstly, Na2O and tin are formed according to
the equation, and then a series of intermetallic compounds NaSn3, α-NaSn, Na9Sn4 and
Na15Sn4 appear. During the discharge process, the latter again turns into the tin. The same
remark applies to the insertion of sodium into materials based on chalcogenides.

SnO2 + 4Na+ + 4e→ Sn + 2Na2O (2)
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Among other oxide materials on which SEI formation processes were studied, mention
should be made of oxides of cobalt [186,207–212], antimony [214–217], niobium [218], and
nickel [184,213]. According to the data of [214], SEI on Sb2O4 in an electrolyte based on
EC-DMC are formed at potentials of about 0.43 V. The authors of [215] report that on a
SbOx composite with reduced graphene oxide in an EC-PC-based electrolyte, SEI at the
first cycle is formed at potentials of about 0.46 V.

Of the chalcogenides proposed as active anode materials in sodium-ion batteries, sulfides
(FeS [230], Fe3S4 [237], Bi2S3 [229], MoS2 [231,241], WS2 [234], SnS2 [235,243], Sb2S3 [242],
Ni3S2 [236]) and selenides (SnSe2 [232], CoSe [238], ZnSe [239], MoSe0.85S0.15 [240], FeSe2 [270])
arouse keen interest.

The work [229] confirmed the sodium insertion mechanism described above, including
the stage of bismuth sulfide reduction with the formation of bismuth metal and Na2S.
This work and [231] also confirmed the trivial conclusion that on electrodes based on
Bi2S3 nanorods in an electrolyte based on EC:DEC loose unstable SEIs are formed, which
are the main reason for capacity fading, while thin dense SEIs are obtained in a DME-
based electrolyte (Figure 11a). In addition, the cycling of Bi2S3 nanorods in a DME-based
electrolyte was found to result in surface coarsening, which increases the irreversible
capacity. Doping Bi2S3 with iron and depositing a thin carbon coating on the nanorods
prevent etching and radically change the character of SEIs, enriching them with sodium
fluoride and reducing their impedance.
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Wiley Online Library).

In [230], an unusual binder, specifically sodium polyacrylate, was used for FeS-based
electrodes. In this case, in a solution of 1 M NaCF3SO3 in diethylene glycol dimethyl ether
as an electrolyte, ductile SEIs were formed at potentials of about 0.8 V. Some amounts of
sodium polyacrylate were found in the organic components of SEI, and here the organic
components were localized in surface layers of the SEI, and mineral ones in the inner
layers, too.

The example of chalcogenide-based electrodes shows the influence of the structure of
electrodes on the properties of SEI. For instance, composite electrodes with a sandwich-like
structure consisting of SnSe2 and reduced graphene oxide layers were studied in [232],
with the content of reduced graphene oxide being as low as 7.3%. According to the authors,
it was this electrode structure that ensured the formation of thin reliable SEIs as a result of
the abundance of Sn–O–C bonds. It was shown in [233] that for Sb2Te3 composites with
carbon nanotubes, the thickness and continuity of the SEI depend on the ratio of these
components, and, in the optimal case (10% carbon nanotubes), the thickness of the SEI
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formed in 1 M EC:PC with the addition of FEC is 19 nm. For plain Sb2Te3 (without carbon
nanotubes), the SEI thickness was 67 nm. [234] states that it is the thin carbon coating on
the tungsten disulfide particles that ensures the formation of thin, high-quality SEIs. The
original globule-like FeSe2/graphene structure (B-FeSe2/G) is described in [270]. Here
graphene layers wrap the surfaces of FeSe2 particles and stretch into the interior of these
particles. Such structures display higher electrochemical performance than particulate
P-FeSe2 (Figure 11b).

An interesting example of the use of tin sulfides is the work [139]. Here, the active
material of the negative electrode is activated carbon, on the surface of which particles
the thinnest layer of SnS and SnS2 nanosheets, which play the role of an artificial SEI,
are deposited.

In [263], data are presented on the formation of reliable SEIs on electrodes made
of Sb2S composite with graphene in an electrolyte based on an ionic liquid (1 M NaFSI
in PMP:FSI).

Phosphorus and some phosphides are promising materials for the negative electrode
of sodium-ion batteries [271]. As a rule, phosphorus is used as composites with various
forms of carbon. SEIs are also formed on such electrodes during cathodic polarization, and
the mechanism of this process does not have any specific features; however, the properties
of SEIs depend on the composition of the composite, i.e., from the ratio P:C [247]. In [250],
a “core-shell” structure was proposed, where the core was composed of a composite of
red phosphorus with ball-milled carbon nanotubes, and the shell was a thin (less than
10 nm) polydopamine film playing the role of SEI. In [249], it is proposed to deposit a
thin coating of amorphous TiO2 on particles of a red phosphorus composite with milled
carbon nanotubes. The presence of such a coating, according to the authors, provides the
formation of thin continuous ductile SEI enriched with NaF and has a reduced resistance.
In [251], it is proposed to apply a thin coating of nickel to red phosphorus particles.

Of the phosphides proposed as negative electrodes, the most popular are Sn4P3 [244,245,272],
as well as VP2 [248], CoSi3P3, and FeSi4P4 [246]. It was shown in [244] that the combined addition
of FEC + TMSP provides the same reliable SEI on the surface of the phosphide as on the surface
of hard carbon. In [248], high-quality SEIs were obtained on a VP2 electrode in an ionic liquid-
based electrolyte.

The properties of SEIs formed on such negative electrodes as sodium titanate have been
studied in [252–255,273]. In addition, information is provided on SEI on Na3(TiOPO4)2F [256],
NaTiOPO4 [182], ZnSnO3 composite with carbon [257], Bi2MoO6 [259], and CuCrP2S6 [260].

5. CEI on Cathode Materials

Passive films on the materials of positive electrodes of sodium-ion batteries have
been studied much less than SEI on negative electrodes. Moreover, since a wide variety of
materials have been proposed as functional cathode materials, the characteristics of CEI on
each specific material have been studied at best in one or two papers. The very existence
of passive films as products of electrolyte oxidation was confirmed by direct electron
microscopic studies in [274] for Na0.70Mn0.80Co0.15Zr0.05O2 (it is noted that it was zirconium
doping that ensured the formation of dense thin CEI), in [275] for (Ni0.4Co0.4Mn0.2)3O4
and in [276] for Na0.67Mn0.625Fe0.25Ni0.125O2.

In [277], reliable conclusions about the properties of CEIs formed on Na2FexFe1−x(SO4)2(OH)x
during the first anodic polarization in 1 M NaClO4 in an EC:DMC:EMC mixture were made
based on the results of electrochemical impedance spectroscopy. In an equivalent circuit, CEI is
described by a parallel combination of a constant phase element QCEI and resistance RCEI. The last
element depends on the potential and, at potentials from 1.5 to 3.9 V, is approximately 1.5 Ohm
(for a particular cell), and as the potential increases to 4.5 V, it increases almost linearly to 7 Ohm
as a result of an increase in the CEI thickness.

It was shown in [278] that stable, reliable CEIs are formed on NaNi0.68Mn0.22Co0.1O2
in an electrolyte consisting of 1.5 M NaFSI in a mixture of DEC with tris (2,2,2-trifluoroethyl)
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phosphate (TFP). We deem it possible to assume that the stability of such CEIs is determined
by the optimum solvating capacity of said solvent.

Like SEI, the properties of CEI depend on the presence of an FEC additive in the
electrolyte. According to [279], the addition of FEC to a solution of NaClO4 in PC inhibits
the oxidation of PC on the surface of NaCo0.7Mn0.3O2 and promotes the formation of CEI
enriched in NaF.

The authors of [280] found that the behavior of Prussian blue cathodes depends on the
content of uncoordinated water molecules (so-called zeolite water). The content of zeolite
water, in turn, depends on the Prussian blue synthesis temperature, the optimal temperature
being 80 ◦C. CEI enriched with Na2CO3 are deposited on the material synthesized in this
mode, which ensures stable cycling of the positive electrodes.

It was shown in [281,282] that the addition of ionic liquids to PC-based electrolytes
leads to a noticeable improvement in CEI on Na3V2(PO4)3–carbon composites.

6. Conclusions

Characteristics of sodium-ion batteries largely depend on the presence and properties
of passive films formed on the surface of active materials of negative and positive electrodes.
Passive films on negative electrodes result from the reduction in electrolyte components
(solvent and salt anion). They have the properties of a solid electrolyte with sodium ion
conductivity and are insulators in terms of electronic conductivity. Their thickness is a
few (or dozen) nanometers. Usually, they are called SEI—solid electrolyte interphase.
The formation of SEI is associated with the consumption of a certain charge, which is an
irreversible capacity. Passive films on the surface of positive electrodes (CEI—cathode
electrolyte interphase) arise as a result of electrolyte oxidation.

The formation process and properties of SEI depend both on the nature of the electrode
material and on the nature of the electrolyte and the conditions for its reduction (including
temperature, current density, etc.). In some cases, thin dense SEIs of uniform thickness with
high ionic conductivity are formed, which provide long-term efficient cycling of negative
electrodes with low-capacity fading. In other cases, SEIs are thick, unevenly distributed
over the surface, and have high Ohmic resistance, resulting in poor cyclability. In many
cases, electrolyte additives have a beneficial effect on SEI properties. The most effective
and popular additive is fluoroethylene carbonate. The most studied are SEI on electrodes
based on hard carbon, other carbon materials, some metals, oxides, chalcogenides, and
phosphides. In Table 1, some information on SEI composition on various electrodes in
various electrolytes, as well as on irreversible capacity at initial cycles, is summarized.

Table 1. SEI composition and irreversible capacity at the first cycle.

Electrode Material Electrolyte SEI Composition Qc/Qa
1st Cycle Ref.

HC 1 M NaClO4 in EC:DEC (3:7) - 350/300 [60]

HC

1 M NaPF6 in DEC:EC (1:1) NaF, Na2CO3, NaxPFy, ROCO2Na -

[69]

1 M NaClO4 in DEC:EC (1:1) NaCl, Na2CO3, NaxPFy, ROCO2Na, PEO -

1 M NaTFSI in DEC:EC (1:1) NaF, ROCO3Na, RONa, PEO -

1 M NaFTFSI in DEC:EC (1:1) NaF, ROCO3Na, RONa, PEO -

1 M NaFSI in DEC:EC (1:1) NaF, Na2SO4, Na2S, ROCO3Na,
RONa, PEO -

HC
1 M NaPF6 in EC:DMC (1:1) + 3% FEC NaF, Na2CO3, R–COONa,

NaO2CO-C2H4-OCO2Na 320/220
[70]

1 M NaTFSI in EC:DMC (1:1) +3% FEC Na2CO3, NaF, NaO2CO-C2H4-OCO2Na 275/175
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Table 1. Cont.

Electrode Material Electrolyte SEI Composition Qc/Qa
1st Cycle Ref.

HC

0.5 M NaBPh4 in DME NaF 275/261

[71]

0.5 M NaPF6 in DME NaF 276/261

0.5 M NaFSA in DME Na2S 270/244

0.5 M NaTFSA in DME NaF 234/207

1 M NaPF6 in EC:DEC (1:1) NaF 271/251

HC

1M NaClO4 PC:EC (1:1) Na2CO3, (CH2OCO2Na)2, Na2CO3,
R–OCO2Na 275/190

[74]
1 M NaBF4 in tetraglyme R–ONa, -C-O-C-, CH3OCH2CH2O-,

O–CH2– 320/278

HC
1 M NaODFB in DME RCH2ONa; groups C=O/B–O, groups

B–F; B–O, Na2CO3
290/175

[75]
1 M NaPF6 in DME NaF; Na2CO3; RCH2ONa 265/250

HC 1 M NaClO4 in EC:PC:DMC
(0.45:0.45:0.1)

Na2CO3, ROCO2Na,
R–CH2–OCO2Na, PEO 560/360 [77,79]

HC 1 M NaTFSI in PC + 3% FEC Na2CO3, NaF, sodium organic salts 570/220 [78]

HC
1M NaClO4 in EC:PC (1:1) + 5% FEC PEO; Na2CO3; NaF; groups C–F 910/301

[80]
1M NaClO4 in TEGDME Sodium alkoxides; Na2CO3; Na2CH2R 1050/363

HC

1 M NaPF6 in PC + 0.5% FEC Na2CO3, NaF, Na-O-(C=O)-O-CH2-R,
Na-O-(C=O)-O-R, Na2CO3, NaF 280/240

1 M NaPF6 in PC:EC + 0.5% FEC Na-O-(C=O)-O-CH2-R,
Na-O-(C=O)-O-R, NaxPFy, NaxPOyFz

280/240

HC
1 M NaPF6 in DME + 0.5% VC Na2CO3, RCO3Na, NaF,

-OCO2CH=CH)n- 210/200

1 M NaPF6 in DEGDME + 0.5% VC

HC 1 M NaClO4 in EC:DEC (1:1) Na2CO3, RONa, ROCO2Na,
(CH2–CH2–O–)n

400/325 [101]

HC 1 M NaPF6 in EC:DEC (1:2) NaF, Na2CO3, NaxPFyOz 335/235 [109]

Graphite
1 M NaPF6 in EC:DEC (1:1) CH3CH2OCO2Na, (CH2OCO2Na)2),

Na2CO3, NaF 120/30

[120]
1 M NaPF6 in diglyme CH3OCH2CH2ONa,

CH3CH2OCH2CH2ONa, Na2CO3, NaF 260/160

Sb

1 M NaClO4 in PC Na2CO3, NaF, alkylcarbonates 714/550

[146]1 M NaPF6 in EC:DMC Na2CO3, NaF, alkylcarbonates 740/620

1 M NaPF6 in PC + 5% FEC Na2CO3, NaF, alkylcarbonates 735/580

Sn4P3

1 M NaClO4 in EC:PC (1:1) + 5% FEC Na2CO3, NaF 720/560

[244]1 M NaClO4 in EC:PC (1:1) + 5% FEC
+ 0.5% in TMSP Na2CO3, NaF, SiF 880/680

Na2Ti3O7 1 M NaClO4) in EC:PC (1:1) Na2CO3, NaCO3R, NaF, NaCl, NaOR,
PEO, poly(ethylene oxide)s 385/170 [252]

FeS 1 M NaCF3SO3 in diglyme Na2CO3, Na2CO2R, NaF 600/500 [230]

MoS2@C 1 M NaPF6 in EC:DEC (1:1) RONa, Na2CO3, ROCOONa, RCH2ONa 500/450 [231]

Na2Ti3O7 1 NaClO4 in EC:PC + 1 % FEC NaF, Na2O, Na2CO3,
NaHCO3, ROCO2Na 250/200 [253]



Energies 2022, 15, 8615 20 of 32

Table 1. Cont.

Electrode Material Electrolyte SEI Composition Qc/Qa
1st Cycle Ref.

SnSe2 1 M LiPF6 in EC:DMC (1: 1) NaF, Na2CO3, polyethers, Se-O 750/525 [235]

TiO2 1 M NaClO4 in EC:PC (1:1) Na2CO3, ROCO2Na -/200 [185]

Ni3S2@NS-CNTs 1.0 M NaSO3CF3 in diglyme
NaF, Na2CO3, Na2SO3,
organic polyethers,
C-Fx components

470/435 [236]

TiO2
1 M NaPF6 EC:DEC (1:1) + 3% VC Polycarbonates, Alkyl carbonates 350/160

[187]
1 M NaPF6 in diglyme Polyethers 320/150

Fe3S4 1.0 M NaClO4 in DMC:EC (1:1) RCH2ONa, Na2CO3, NaOH 600/530 [237]

NaTiOPO4 1 M NaClO4 in EC:PC (1:1) Hydrocarbons, alkyl-carbonates,
carbonates, NaF, ethers 110/80 [258]

Li4Ti5O12
1 M NaPF6 in diglyme RCH2ONa, ROCO3Na, NaF,

Na2CO3, R–CO3
300/160

[254]
1 M NaPF6 in EC:DMC (3:7) NaF, CFx, Li2CO3 275/140

Sn 1 M NaPF6 in diglyme RCH2ONa, Na2CO3, NaOH, Na2O, NaF 850/780 [165]

Sn films 1 M NaClO4 in PC Na2CO3, NaCl 900/800 [166]

Graphite 1 M NaFSI in TEGDME NaF, polyethers 160/110 [141]

Fe2O3 NaClO4 in EC:DEC (2:1) NaOH, Na2CO3, alkyl carbonates
ROCO2Li - [189]

Sb 1 M NaClO4 in PC + 5% FEC NaOH, Na2O, NaF, NaCl 770/600 [157]

rGO

1 M sodium triflate (NaOTf) in
(EC-DEC (1:1))

Na2CO3, Na2CO2R, polyesters, RSO3Na,
NaF 1200/500

[143]
1 M sodium triflate (NaOTf) in diglym CF3, Na2CO3, Na2CO2R, polyesters,

RSO3Na, NaF 700/650

Bi 1M NaPF6 in diglyme R-COO-Na, RCH2ONa, Na2CO3, sodium
alkycarbonates, polyesters 420/400 [261]

meso-porous
Co3O4

1 M NaPF6 in EC:DEC + 5% FEC R-CH2-OCO2Na, R-CH2-OCO2Na,
Na2CO3, NaOH, NaF 790/750

[212]
1 M NaPF6 in FEC:DEC R-CH2-OCO2Na, R-CH2-OCO2Na,

Na2CO3, NaOH, NaF 820/750

Na3V2(PO4)3

0.25 M NaPF6-incorporated in
1-butyl-3-methylimidazolium
bis(trifluoromethanesulfonyl) imide
(BMITFSI IL)

NaF, NaOH, Na2SO4, Na2S2O7 108/135 [282]

The analysis of Table 1 shows that SEI principal composition on various electrodes is,
by and large, almost the same. The main variations in SEI composition, e.g., the presence
of Na2SO4, Na2S, and SiF, are associated with features of special electrolytes. It is clear
that the composition of inorganic components of SEIs is determined by the nature of the
salt’s anion, whereas the composition of organic components is associated mainly with the
nature of solvents.

CEI studies are few and far between. However, the very existence of CEI has been
proven by electron microscopy studies, and the beneficial effect of fluoroethylene carbonate
additives on the characteristics of CEI has also been confirmed.
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Abbreviations

SEI solid electrolyte interphase
CEI cathode electrolyte interphase
EC ethylene carbonate
PC propylene carbonate
DEC diethyl carbonate
DMC dimethyl carbonate
RCH2ONa, RONa sodium alkoxides
NaFSI sodium bisfluorosulfonylimide
DME 1,2-dimethoxyethane
BTFE bis(2,2,2-trifluoroethyl) ether
FEC fluoroethylene carbonate
PVdF–HFP polyvinylidene fluoride with hexafluoropropylene
Qrev reversible capacity
Qirr irreversible capacity
NaTFSI sodium bis(trifluoromethanesulfonyl)imide
NaFTFSI sodium fluorosulfonyl-(trifluoromethanesulfonyl)imide
XPS photoelectron spectroscopy
ROCO3Na sodium alkyl carbonates
VC vinylene carbonate
DFT density functional theory
TMSP tris(trimethylsilyl)phosphite
NaODFB sodium-difluoro(oxalate)borate
ROSO2Na sodium alkyl sulfates
RSO3Na sodium alkyl and sulfites
DEGDME diethylene glycol dimethyl ether, diglyme
TEGDME tetraethylene glycol dimethyl ether
PMP–FSI N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide
PMP-TFSI N-propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide
TFP tris (2,2,2-trifluoroethyl) phosphate
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