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Abstract: Past studies of microgrids have been based on measurements of fuel consumption by
generators under static loads. There is little information on the fuel efficiency of generators under
time-varying loads. To help analyze the impact of time-varying loads on optimal generator operation
and fuel consumption, we formulate a mixed-integer linear optimization model to plan generator
and energy storage system (ESS) operation to satisfy known demands. Our model includes fuel
consumption penalty terms on time-varying loads. We exercise the model on various scenarios and
compare the resulting optimal fuel consumption and generator operation profiles. Our results show
that the change in fuel efficiency between scenarios with the integration of ESS is minimal regardless
of the imposed penalty placed on the generator. However, without the assistance of the ESS, the fuel
consumption increases dramatically with the penalty imposed on the generator. The integration of
an ESS improves fuel consumption because the ESS allows the generator to minimize power output
fluctuation. While the presence of a penalty term has a clear impact on generator operation and fuel
consumption, the exact type and weight of the penalty appears insignificant; this may provide useful
insight for future studies in developing a real-time controller.

Keywords: microgrid optimization; energy storage system; time-varying loads; fuel efficiency; energy
management; generator

1. Introduction

Demand for energy is increasing significantly worldwide. This is particularly true in
the United States Department of Defense (DoD), which is the largest consumer of energy in
the federal government [1]. As warfighting transitions into the cyber and space domains,
energy “has been and will remain a fundamental enabler of military capability” according
to the United States (US) Office of Assistant Secretary of Defense for Energy, Installations,
and Environment [2]. Military organizations need reliable and sustainable microgrid power
systems to effectively generate energy required for deployed military operating bases.

Microgrid Operations

When temporary military bases are built in forward operating areas such as the Middle
East, self-sustainability is one of the most important features to take into account, as one
cannot rely on local power grids. An islanded microgrid is formed when an electrical grid
is capable of operating in isolation from the main grid [3]. Islanded microgrid operations
are very common in military settings.

An islanded microgrid typically consists of generators, an energy storage system (ESS),
and loads that need to be met. A centralized controller calculates the optimal power flow
balance between the generators and the ESSs [4], as shown in Figure 1. This ensures that all
critical loads are met during all microgrid operating modes [5,6]. As a result, the controller
improves reliability, reduces cost, and diversifies power generation. As microgrids are
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intended to be self-sufficient, the ESS is one of the primary ways to ensure that the system
is stabilized against fluctuating loads and unmanaged energy sources [5].

Figure 1. Notional microgrid controller flowchart with power distribution and communication flow.
Adapted from Craparo and Sprague [7].

A key function of the controller is to determine the optimal power flow among the
generators, ESSs, and loads in such a way as to satisfy demand while minimizing fuel
consumption. To accomplish this, the controller must model fuel consumption as a function
of generator output. Existing studies primarily utilize fuel efficiency (or consumption)
profiles based on static generator output (e.g., [8–11]). To build these profiles, generator
manufacturers run generators at various constant loads for long periods of time and
measure the resulting fuel consumption [12]. In practice, loads encountered on islanded
microgrids are generally not constant but instead vary over time, often quite rapidly.
To our knowledge, no data exist quantifying generator efficiency under time-varying loads.
However, data from other settings (e.g., automotive fuel efficiency) suggest that fluctuating
loads may significantly degrade generator efficiency [13].

In this study, we develop an optimization-based approach to model loss of efficiency
with fluctuating generator output and to optimally plan generator and ESS operations in
such a way as to minimize fuel consumption while satisfying demand. To our knowledge,
this is the first work to consider efficiency losses due to fluctuating generator output. In
addition to potential fuel savings, reducing generator output fluctuations can improve
generator stability as well as operational lifetime [14,15]. Additionally, any potential fuel
savings at an islanded microgrid are generally magnified when one considers the fully
burdened cost of fuel, accounting for the monetary and energy costs associated with
transporting fuel to the location at which it will be consumed. Ref. [8] provides an overview
of this cost in military settings, including both the energy cost and cost in human life to
transport fuel to a forward operating theater.

2. Background and Literature Review

Previous studies explore different approaches to vary the architecture of microgrids,
find unique ways to optimally schedule energy distribution, and formulate optimization
models. It is imperative to optimize microgrids to be cost effective and reliable to deploy
based on measure of fuel consumption.

2.1. Microgrid Architecture Variation

The two main energy resources that make up an islanded microgrid architecture are
the generator(s) and the ESS. It is important to determine the correct size of these resources
in a microgrid to meet the power demand at any given time [16,17]. One way to prop-
erly size microgrid components is in accordance to the peak-load demand criteria [18].
In addition to using peak-load demand data, research has been conducted on integrating
an optimal hybrid photovoltaic (PV)/wind/diesel generating system combination identi-
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fied by a sizing algorithm based on power supply availability and power system design
specifications [19].

Building off of a rudimentary sizing algorithm using past daily and seasonal load
fluctuation, a more sophisticated dynamic energy flow model is used to determine the
appropriate size of the microgrid components [20]. Then, past weather information such as
solar and wind data are utilized to maximize the microgrid’s “islanding time”, which is
defined as the time the microgrid can operate in a self-sufficient manner without external
fuel supplies or connection to a main power grid [21].

An ESS sizing methodology uses a mixed-integer linear program (MILP) to choose
an optimal storage size by taking initial investment costs and microgrid operating costs
into account [22]. Similarly, some researchers have taken a more economic approach
by introducing a cost–benefit analysis using forecast data to minimize total microgrid
costs while maximizing the benefits from the respective storage size through an MILP
technique [23].

2.2. Optimal Energy Scheduling Techniques

Optimal energy scheduling improves energy utilization while minimizing generator
fuel consumption costs in a microgrid. An initial optimal energy scheduling technique was
used to show that microgrid with ESS saves a significant amount of fuel compared to a
microgrid without an energy storage unit [24]. Indeed, multiple studies have identified the
ESS as a key component to ensure cost reduction [24,25]. Energy scheduling is especially
important when ESSs are introduced into the microgrid architecture, as the system has the
ability to store additional power for future use [22,23]. To reduce fuel cost and increase fuel
efficiency, load scheduling becomes a crucial addition to the controller algorithm.

Another way to minimize fuel cost is to implement a day-ahead scheduling opti-
mization technique for various microgrid operation modes such as utility grid-connected
mode and off-grid operation mode [25]. Some work in day-ahead scheduling incorporates
weather forecast data and models its impact on renewable production [26,27].

Instead of modeling a microgrid as a single entity, the particle swarm optimization
(PSO) technique models the energy resources as individual particles that are parallel with
each other, which creates a large network made up of many entities [28,29]. The parallel
modeling technique enables shorter computation time when compared to a general MILP
approach. The PSO optimization approach reduces computation time while minimizing
energy production expense [29].

Ref. [30] considers the optimal scheduling of a diesel generator and an ESS, where
the ESS is modeled using a detailed nonlinear model. They address the resulting planning
problem with a combination of MILP and PSO. Ref. [31] models an islanded microgrid using
a Markov decision process framework and then uses approximate dynamic programming
to solve the resulting schedule optimization problem, while [32] considers the problem of
placing distributed generators in such a way as to maximize efficiency and reliability.

2.3. Fuel Consumption Minimization

The main goal in most islanded microgrid research is to minimize fuel consumption,
which often corresponds to maximizing generator efficiency. A common approach to
quantify fuel consumption is using a cost optimization scheme of various power-sharing
techniques to share the load between energy resources in a microgrid [33]. On highly
nonlinear power-sharing schemes, linear, nonlinear, and dynamic strategies have sought to
maximize microgrid efficiency [20,22,24,25,33].

Power-sharing techniques have been used to determine if additional electrical loads
with expensive operating costs would effect the generator fuel consumption [10]. Other
studies have minimized fuel consumption by integrating additional and various combina-
tions of energy resources such as PV cells, batteries, and generator cycling in a microgrid
architecture [34]. As fuel consumption is an important measure of performance, the goal
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of this paper is to minimize fuel consumption while ensuring that the power demand is
efficiently met.

Some researchers have considered microgrids in settings other than strictly land-
based. For instance, Ref. [35] considers shipboard microgrids and propose a hierarchical
coordinated control approach to effectively manage the distinct operating modes inherent
in these systems; Ref. [36] studies the hybridization of railway vehicles as a potential means
to improve efficiency while satisfying various operational constraints. They demonstrate
the potential for significant emmissions reduction by incorporating a properly sized ESS.

2.4. Novel Contribution and Organization

To our knowledge, all previous studies, including those in our literature review,
have modeled generator fuel efficiency based on fuel curves derived by measuring fuel
efficiency under static loading conditions (e.g., [12]). Experience from other domains
(e.g., automotive) suggests that generator efficiency may be significantly degraded under
dynamic load conditions such as those observed in microgrid operations [13]. To study
the potential impact of this degradation, we introduce a generator penalty term designed
to model a loss of efficiency as the generator output fluctuates. We include an ESS in
our notional microgrid to allow the generator to produce a more constant output, despite
fluctuating demand.

We first consider a linear approach where the fractional change in generator power
is multiplied by a predefined scalar penalty coefficient and added to the cumulative fuel
consumption. Second, we use a piecewise linear approach to vary the penalty coefficient
based on the fractional change in generator power.

This paper is organized as follows. Section 3 describes our microgrid architecture and
MILP optimization model. Section 4 exercises the model on a case study and highlights
important insights. Section 5 presents the conclusion and final thoughts from this study
as well as various recommendations for future research areas.

3. Methodology

This section describes our MILP optimization model of a forward operating base
(FOB) microgrid, where the primary objective is to minimize the overall generator fuel
consumption while satisfying a required power demand. Our microgrid equipment consists
of a fuel-based generator and an ESS, and we exercise our model using power demand
data collected from a US FOB located in the Middle East [37].

The MILP acts as a rudimentary power system controller which controls the power
flow between the generator and ESS to satisfy the demand. Figure 1 depicts our controller
architecture, including the power flow and communication flow. The controller maintains
communication between the three separate components; however, power is only produced
by the generator. This power may satisfy the demand directly or charge the ESS. The ESS
may discharge power to meet demand.

3.1. Microgrid Architecture

This section describes the components of our notional FOB microgrid, as shown
schematically in Figure 1.

3.1.1. Fuel-Based Generator

We model a 60 kilowatt (kW) Advanced Medium Mobile Power Sources (AMMPS)
generator. This is a US Army-authorized power-generating unit that replaces the second
generation Tactical Quiet Generator (TQG). We obtained steady-state generator fuel con-
sumption data for four power settings, shown in Figure 2, from the US Army Base Camp
Integration Lab [38].
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Figure 2. Steady-state fuel consumption data from a 60 kW AMMPS generator at four distinct
operating regions obtained from previous studies [38].

3.1.2. Energy Storage System

We model a 25 kilowatt-hours (kWh) ESS with a maximum charge rate and discharge
rate of 20 kW with 90% round-trip efficiency (RTE); these values approximate the character-
istics of a lithium-ion battery [39]. We constrain the ESS to maintain a state of charge (SOC)
between 20% and 80% in order to prolong the lifespan of the ESS [40,41]. We initialize
the ESS to an SOC of 50% in the first time period to simulate a continuously operating
power system.

3.2. Optimization Model

The overall objective of the MILP optimization model is to minimize generator fuel
consumption while satisfying demand demandt in each time period t in T. Demand may
be satisfied by the generator, the ESS, or some combination of the two. Additionally,
the generator can produce power exceeding the demand, and the additional power charges
the ESS. We denote the power produced by the generator in time step t as gent, the power
used to charge the ESS (battery) as cbattt, and the power discharged from the battery as
dbattt. Then, the power balance equation is

demandt = gent + effd · dbattt − cbattt ∀ t ∈ T (1)

where effd is the discharge efficiency of the battery. We express the battery SOC SOCt as a
percentage of the maximum charge battcap and calculate it as

SOCt = SOCt−1 − dbattt ·
dt

battcap
+ effc · cbattt ·

dt
battcap

∀ t ∈ T (2)

where effc represents the charging efficiency of the battery and dt represents the length of
our time step in hours.

We restrict our generator to operate between a minimum power output of minGen = 15 kW
and a maximum power output of maxGen = 60 kW:

minGen ≤ gent ≤ maxGen ∀ t ∈ T. (3)
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Similarly, we define maxCharge and maxDischarge as the maximum charge and dis-
charge rates of the battery, and we constrain the battery to maintain an SOC between
minSOC and maxSOC:

0 ≤ dbattt ≤ maxDischarge ∀ t ∈ T (4)

0 ≤ cbattt ≤ maxCharge ∀ t ∈ T (5)

minSOC ≤ SOCt ≤ maxSOC ∀ t ∈ T. (6)

To simulate ongoing operations and avoid end-of-horizon effects, we require that the
final SOC is equal to the initial SOC:

SOC1 = SOC|T|. (7)

The overall objective of the MILP optimization model is to minimize the fuel consumed
by the generator. As shown in Figure 3, we use a least-squares linear fit to represent steady-
state fuel consumption based on our data. The linear fit is defined by its slope and intercept,
where slb is the fuel consumption slope of 0.0113 and inb is the fuel consumption intercept
of 0.0933. This steady-state fuel consumption is typically the only fuel consumption term
accounted for in previous studies, as shown in Equation (8). Figure 4 shows the resulting
steady-state generator efficiency curve.

min ∑
t∈T

[
slbgent + inb] (8)

Figure 3. Fuel consumption of a 60 kW AMMPS generator with a linear fit based on generator
steady-state power output data.

To address our primary study objective, we include an additional “penalty term”
penaltyt to capture the efficiency loss incurred when the generator output power fluctuates
rapidly from time period to time period:

min ∑
t∈T

[
slbgent + inb + penaltyt

]
. (9)
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We now describe our methodology for calculating penaltyt.

Figure 4. Fuel efficiency curve of a 60 kW AMMPS generator based on generator steady-state power
output data.

3.3. Generator Penalty Concept

We consider two different approaches to calculate the “penalty term” penaltyt in
Equation (9). First, we calculate penaltyt as a linear function of the (approximate) fractional
change in generator output from time period to time period. Second, we calculate penaltyt
as a piecewise linear function of the fractional change in generator output.

3.3.1. Linear Penalty Approach

First, we express penaltyt as a linear function of the fractional change in generator
output from one time period to the next. Let f rac_chgt denote the fractional change
in generator output from time period t − 1 to time period t. Then, f rac_chgt is exactly
calculated as

f rac_chgt =
|gent − gent−1|

gent−1
∀ t ∈ T. (10)

In order to formulate a linear optimization model, we instead calculate an approximate
value for f rac_chgt. First, we calculate the absolute change in generator output abs_chgt =
|gent − gent−1| for all t in T using the linear constraints

abs_chg1 = 0 (11)

gent − gent−1 ≤ abs_chgt ∀ t ∈ [2, ..., T] (12)

gent−1 − gent ≤ abs_chgt ∀ t ∈ [2, ..., T] (13)

where we rely on the fact that fluctuations are penalized in our objective function, and thus,
the solver chooses the smallest feasible value for abs_chgt, given the values of gent−1
and gent.

After calculating the value of abs_chgt using Equations (12) and (13), we must address
the non-linearity caused by the gent−1 term in the denominator of Equation (10). We do
this by partitioning the generator’s operating range [minGen, maxGen] into a set of discrete
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operating regions i ∈ I. Each operating region i is defined by its lower bound li and upper
bound ui, where l1 = minGen, u|I| = maxGen, and li = ui−1 for i = 2, ..., |I|. We utilize
binary variable Yi,t to indicate that the generator is operating in region i at time t and
enforce this using the following constraints:

∑
i∈I

Yi,tli ≤ gent ≤∑
i∈I

Yi,tui ∀ t ∈ T (14)

∑
i∈I

Yi,t = 1 ∀ t ∈ T. (15)

To obtain our linear approximation to Equation (10), we replace the gent−1 term
in the denominator by the midpoint of the generator’s operating region at time t − 1,
i.e., ∑i∈I Yi,t−1

li+ui
2 . We include the binary variable Yi,t−1 in the numerator of our calculation

and obtain the following expression for f rac_chgt:

f rac_chgt = ∑
i∈I

Yi,t−1abs_chgt

(li + ui)/2
∀ t ∈ T. (16)

This expression is still nonlinear due to the product of a binary variable and a con-
tinuous variable in the numerator. However, we linearize this expression by defining
the continuous variable Pi,t and using the following system of constraints to ensure that
Pi,t = Yi,t−1abs_chgt:

0 ≤ Pi,t ≤ Yi,t−1(maxGen−minGen) ∀ i ∈ I, t ∈ T (17)

abs_chgt − (maxGen−minGen)
(
1−Yi,t−1

)
≤ Pi,t ≤ abs_chgt ∀ i ∈ I, t ∈ T. (18)

Our expression for f rac_chgt is then

f rac_chgt = ∑
i∈I

Pi,t

(li + ui)/2
∀ t ∈ T. (19)

Lastly, we define scalar penalty coefficient pcoe and express our objective function
with linear fluctuation penalty as

min ∑
t∈T

[
slbgent + inb + pcoe ∑

i∈I

2Pi,t

li + ui

]
. (20)

3.3.2. Piecewise Linear Penalty Approach

Next, we expand upon our linear penalty approach by constructing a piecewise
linear penalty term. This allows us to model more complex penalty functions, such as a
marginal penalty that increases with the fractional change in generator output f rac_chgt.
To construct our piecewise linear function, we first define a discrete set of regions for the
value of f rac_chgt for all t ∈ T, which is defined similarly to the generator operating regions
in Section 3.3.1. Denote the lower and upper bounds for fractional change region h ∈ H
as loh and uph, where lo1 = 0, up|H| =

maxGen−minGen
(l1+u1)/2 , and loh = uph−1 for h = 2, ..., |H|.

Then, let binary variable Wh,t indicate that f rac_chgt lies within region h, and enforce this
using the following constraints:

∑
h∈H

Wh,tloh ≤ f rac_chgt ≤ ∑
h∈H

Wh,tuph ∀ t ∈ T (21)

∑
h∈H

Wh,t = 1 ∀ t ∈ T. (22)

Let sloh and inth denote the slope and intercept, respectively, of the piecewise linear
penalty function in region h. Then, we wish to express penaltyt as
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penaltyt = ∑
h∈H

Wh,t(sloh f rac_chgt + inth) ∀ h ∈ H, t ∈ T (23)

where, again, we have a product of a binary variable and a continuous variable Wh,t f rac_chgt.
To linearize this term, we introduce the continuous decision variable Qh,t and use the fol-
lowing system of constraints to ensure that Qh,t = Wh,t f rac_chgt:

0 ≤ Qh,t ≤ up|H|Wh,t ∀ h ∈ H, t ∈ T (24)

f rac_chgt − up|H|
(
1−Wh,t

)
≤ Qh,t ≤ f rac_chgt ∀ h ∈ H, t ∈ T. (25)

Thus, our objective function is

min ∑
t∈T

[
slbgent + inb + ∑

h∈H

(
slohQh,t + inthWh,t

)]
. (26)

We experiment with four different piecewise linear penalty functions shown in Figure 5.
We calculate sloh = h · slo1 for each linearization region h = 1, ..., |H|. The intercept inth
of each segment in the piecewise linear curve is calculated so as to define a continuous
piecewise linear function. The four piecewise linear functions are defined by their initial
slopes (i.e., slo1), which vary from 0.1 to 0.4 as shown in the figure legend, with int1 = 0 for
each function.

Figure 5. Fuel consumption plots for piecewise linear penalty profiles with varying initial slopes.

Our model appears in its entirety in Appendix A, which is followed by a table contain-
ing our parameter values.

4. Results and Analysis

We now exercise our optimization model on various scenarios. We first study the
impact of including an ESS in our microgrid architecture by solving the model with and
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without an ESS; then, we quantify the impact that various penalty terms have on the
microgrid’s fuel consumption and the optimal generator and ESS usage.

We implement our model using Python’s Pyomo package and solve it using the
IBM ILOG CPLEX Interactive Optimizer 12.10.0.0 on a computer with 16 GB RAM and a
2.60 Ghertz (Hz) CPU [42]. The instances described in this section contain approximately
414–9501 constraints and 221–5761 decision variables, of which 60–2016 are binary. These
instances solve to a 0–1% optimality gap in approximately 1–20 s.

We consider demand data obtained during the summer months from a US FOB located
in Afghanistan and collected by the Army Logistics Innovation Agency (LIA) during the
Contingency Base–Demand Data Collection (CB-DDC) project. Figure 6 depicts the power
demand profile in a 48 h period, which we implement in the optimization model.

Figure 6. US FOB power demand scenario over a 48 h time frame during the summer season.

4.1. Linear Penalty

We first consider a linear penalty term with coefficients of 0.2 gallons (gal)/∆, 0.4 gal/∆,
0.6 gal/∆, and 0.8 gal/∆. Figure 7 shows the optimal power production for each of these
coefficients, which is solved to a 1% optimality gap. As the figure indicates, most of the
demand is satisfied by the generator. Rapid generator fluctuations decrease substantially
when any of the penalties is imposed, and the decrease is larger for a higher penalty
coefficient. Figure 8 shows the battery state of charge for these instances.

Mirroring Figure 7, Table 1 summarizes the results for each of the four penalty slope
coefficients. We observe that the presence of a penalty significantly impacts the overall
breakdown of power production, while the exact value of the penalty does not significantly
affect this breakdown for the penalty values we consider. However, as the rightmost
column indicates, an increasing penalty coefficient does increase fuel consumption when
no ESS is present.
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Figure 7. Power output plot based on linear penalty coefficients imposed on the generator for the
summer demand scenario.

Table 1. Optimal fuel consumption and power output with various linear penalties for the summer
demand scenario.

Penalty Cumulative Fuel
Consumption (gal)

Demand Met by
Generator (%)

Demand Met by
Energy Storage

System (%)

Generator Output
Used to Charge
Energy Storage

System (%)

Cumulative Fuel
Consumption w/o

Energy Storage
System (gal)

No Penalty 169.97 99.85 0.15 0 170.18
Linear 0.2 171.47 97.23 2.77 2.92 171.44
Linear 0.4 171.30 97.08 2.92 3.11 175.23
Linear 0.6 171.71 97.14 2.81 3.05 177.76
Linear 0.8 171.86 96.85 3.15 3.37 180.28
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Figure 8. Battery state of charge for the instances shown in Figure 7.

4.2. Piecewise Linear Penalty

Finally, we consider the four piecewise linear penalty functions shown in Figure 5
and display the optimal solution for each of these four cases in Figure 9. The changes in
generator and ESS optimal power production are minimal across the four piecewise linear
penalty variations. Most of the demand is satisfied by the generator, as the dark green
dominates the surface area of each plot. Additionally, the fluctuation in generator power
output and ESS discharge rate decreases when the piecewise linear initial slope increases
across the four penalties. When the generator exceeds the demand, the additional power
charges the ESS for future use. Figure 10 shows the corresponding battery SOC.

Mirroring the graphical results, Table 2 depicts the corresponding numerical results for
each of the different piecewise linear penalties. The results across the four piecewise linear
penalties indicate that about 3% of the demand is satisfied by the ESS. The results display a
consistent pattern of the generator supplying most of the demand. Again, the numerical
results from the table reveal that the weight of the piecewise linear penalty coefficient is
insignificant, as the generator and ESS scheduling power patterns are consistent across the
four penalty variations. With no ESS present, we observe increasing fuel consumption with
increased penalty coefficients, as expected.
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Figure 9. Power output plot based on piecewise linear penalty coefficients imposed on the generator
for the summer demand scenario.

Figure 11 reiterates the importance of imposing a penalty on the generator. When an
ESS is present but no penalty is imposed on generator fluctuations, the ESS is not utilized.
This is not unexpected due to the fact that the ESS has an RTE less than 100%. While the ESS
could, in principle, enable the generator to operate in a more efficient region of its produc-
tion curve for a greater proportion of time, this apparently does not occur for this instance.
The ESS is utilized more when a penalty is imposed on the generator, as optimization
smooths out the generator power output to minimize cumulative fuel consumption.
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Figure 10. Battery SOC for the instances shown in Figure 9.

Table 2. Optimal fuel consumption and power output with various piecewise linear penalties for the
summer demand scenario.

Penalty Cumulative Fuel
Consumption (gal)

Demand Met by
Generator (%)

Demand Met by
ESS (%)

Generator Output
Used to Charge ESS

(%)

Cumulative Fuel
Consumption w/o

ESS (gal)

No Penalty 169.97 99.85 0.15 0 170.18
Pi. Lin. 0.1 170.76 97.47 2.53 2.69 171.44
Pi. Lin. 0.2 171.06 97.21 2.79 2.93 172.71
Pi. Lin. 0.3 171.78 96.73 3.27 3.50 173.97
Pi. Lin. 0.4 171.69 97.12 2.88 3.07 175.24
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Figure 11. Optimal power distribution over various architectures for the summer demand scenario.

4.3. Impact of ESS Round-Trip Efficiency

The generator and ESS optimal power production vary drastically between the sce-
nario with a penalty imposed on the generator and a scenario without a penalty imposed
on the generator. In general, the activity of the ESS increases significantly when a penalty is
imposed on the generator. In all previous scenarios, the ESS is set to a 90% RTE, which is
consistent with the research outlined in Section 2. While technological advancement may
increase the ESS RTE above 90%, the price of the ESS increases rapidly as the RTE increases.
This is a very important factor in microgrid design.

We now study the impact of the ESS RTE on overall fuel consumption. We consider
six different ESS RTEs reflective of various ESS technologies, including future technologies
achieving high efficiencies: 70%, 75%, 80%, 85%, 90%, and 95%. For each ESS RTE, we
run the model using four different piecewise linear penalty functions for each of ten
different 24 h demand scenarios. The cumulative fuel consumption for each of these
240 configurations appears as a circular marker in Figure 12, where ESS RTE appears on
the horizontal axis and the generator penalty function is denoted by color. (For readability,
we introduce a small horizontal jitter at each ESS RTE.) Solid lines indicate the average fuel
consumption for each ESS RTE, broken down by penalty function. As the figure indicates,
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there is considerable variability among scenarios for a given ESS RTE, and the average fuel
consumption decreases only modestly with increasing ESS RTE. Since a lower RTE is often
cheaper to obtain, this study shows possible effects and tradeoffs that designers would
have to make when selecting an ESS for their respective microgrid architecture. Our results
indicate that the presence of an ESS in a microgrid is of much more importance than its
exact specifications for the configuration we consider.

Figure 12. Total fuel consumption for varying ESS RTE and penalty functions for ten different
summer demand scenarios. Circular markers indicate individual model runs, while lines indicate
average fuel consumption for each ESS RTE and penalty funtion.

5. Conclusions and Future Work

This paper formulates an MILP optimization model that prescribes optimal generator
and ESS usage to minimize fuel consumption while satisfying demand. A novel feature
of this model is that it includes a penalty on generator output fluctuations. This penalty
represents additional fuel that is consumed when the generator’s output varies over time,
and it has not been modeled in prior research. The inputs to the optimization model
include a power demand scenario as well as the relevant characteristics of the generator,
ESS, and penalty function.

We also exercise the MILP on a case study derived from actual FOB demand data. Our
results indicate that an ESS is critical to achieving a smooth generator operating profile.
When a penalty term is included in the objective function, we observe much smoother
generator output profiles, with peak loads satisfied by the ESS and excess generator power
used to charge the ESS during periods of low demand. This results in modest immediate
fuel savings and can be expected to lengthen the operational lifetime of the generator, which
is an important consideration in practice. We observe only minimal changes in our optimal
solutions as we vary the magnitude of the penalty term, indicating that the presence of a
penalty term is more important than its exact magnitude for the values we consider.
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Future Work

While our MILP provides important insights on the impact of the penalty term on the
optimal generator output profile and the resulting fuel consumption, it is not appropriate
for implementation in a microgrid. The primary reason for this is that the MILP requires a
complete demand profile as an input; it is thus “omniscient” and not suitable for real-time
operation, where future demands are unknown. Thus, a natural next step for future research
is to develop a real-time controller that attempts to replicate the smooth operating profiles
observed in our optimal solutions. Our results indicate that the optimal load profiles are
not sensitive to the exact form or magnitude of the penalty function. The implication of this
is that if researchers can develop a real-time controller that produces load profiles similar to
those obtained in our solutions, that controller can be expected to perform well in a variety
of settings.

Our model excursions consider a simple microgrid architecture and demand data
based on a US FOB in the Middle East. It is critical to explore multiple microgrid ar-
chitectures when varying locations have different resources and technologies available.
An appropriate next step is to alter the microgrid architectures by implementing different
generators of varying sizes or even modifying the discharging and charging rates of the
ESS as well as exploring additional demand scenarios.

With the initial exploration of generator penalty terms using a simple microgrid
optimization model, this paper shows that a simple penalty term imposed on the generator
has a significant influence on the optimal solution and overall fuel consumption. Due to
the lack of empirical real-world data, our penalty terms are only notional. Further studies
in the field are needed to examine the effect of time-varying loads on generator efficiency.
These studies will lead to more realistic penalty terms that can optimally distribute power
between the generator and ESS more accurately.
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Appendix A. FOB Model with Linear Piecewise Penalty
Sets and Indices:

t ∈ T = {0, 10, 20, 30, ..., T} Time periods
i ∈ I = {0, 1, 2, 3, 4} Generator operating region (for linearization purposes)
h ∈ H = {0, 1, 2, 3, 4} Generator fractional change regions (for linearization

purposes)
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Parameters:

slb Generator base fuel consumption slope (gal/kW)
inb Generator base fuel consumption intercept (gal)
demandt Load that is demanded in time step t (kW)
li Start of fractional change region i (kW)
ui End of fractional change region i (kW)
loh Lower boundary of penalty region h (∆)
uph Upper boundary of penalty region h (∆)
sloh Slope of penalty function in region h (gal/∆)
inth Intercept of penalty function in region h (gal)
dt Time step (hours)
battcap Battery capacity (kWh)
effd Discharge efficiency of battery
effc Charge efficiency of battery
maxCharge Maximum battery rate of charge (kW)
maxDischarge Maximum battery rate of discharge (kW)
minGen Minimum generator load (kW)
maxGen Maximum generator load (kW)
minSOC Minimum battery state of charge (%)
maxSOC Maximum battery state of charge (%)

Decision Variables:

gent Continuous (≥ 0) Generator power flow in time step t (kW)
cbattt Continuous (≥ 0) Power flow used to charge battery in time step

t (kW)
dbattt Continuous (≥ 0) Power flow out of battery in time step t (kW)
SOCt Continuous (≥ 0) Battery state of charge in time step t (%)
abs_chgt Continuous (≥ 0) Absolute difference in generator power flow be-

tween time step t− 1 and t (kW)
Yi,t Binary 1 if gent in region i in time step t and 0 otherwise
Pi,t Continuous (≥ 0) Auxiliary variable used for linearization:

Pi,t = Yi,tabs_chgt (kW)
f rac_chgt Continuous (≥ 0) Fractional [0-1] change in generator power flow

between time step t− 1 and t
Yi,t Binary 1 if f rac_chgt in region h in time step t and 0

otherwise
Qh,t Continuous (≥ 0) Auxiliary variable used for linearization:

Qh,t = Wh,t f rac_chgt

Objective Function:

min ∑t∈T

[
slbgent + inb + ∑h∈H

(
slohQh,t + inthWh,t

)]
Constraints:

demandt = gent + effd · dbattt − cbattt ∀ t ∈ T
minGen ≤ gent ≤ maxGen ∀ t ∈ T

SOCt = SOCt−1 − dbatt · dt
battcap

+ effc · cbattt ·
dt

battcap
∀ t > 1

0 ≤ dbattt ≤ maxDischarge ∀ t ∈ T
0 ≤ cbattt ≤ maxCharge ∀ t ∈ T
minSOC ≤ SOCt ≤ maxSOC ∀ t ∈ T
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SOC1 = SOCT

gent − gent−1 ≤ abs_chgt ∀ t ∈ T
gent−1 − gent ≤ abs_chgt ∀ t ∈ T
0 ≤ Pi,t ≤ Yi,t(maxGen−minGen) ∀ i ∈ I, t ∈ T
abs_chgt − (maxGen−minGen)(1−Yi,t) ≤ Pi,t ≤ abs_chgt ∀ i ∈ I, t ∈ T
∑i∈I Yi,tli ≤ gent ≤ ∑i∈I Yi,tui ∀ t ∈ T

∑i∈I
2Pi,t

li + ui
= f rac_chgt ∀ t ∈ T

∑h∈H Wh,tloh ≤ f rac_chgt ≤ ∑h∈H Wh,tuph ∀ t ∈ T
0 ≤ Qh,t ≤ up|H|Wh,t ∀ h ∈ H, t ∈ T
f rac_chgt − up|H|(1−Wh,t) ≤ Qh,t ≤ f rac_chgt ∀ h ∈ H, t ∈ T
∑i∈I Yi,t = 1 ∀ t ∈ T
∑h∈H Wh,t = 1 ∀ t ∈ T
Yi,t ∈ {0, 1} ∀ i ∈ I, t ∈ T
Wi,t ∈ {0, 1} ∀ h ∈ H, t ∈ T

Table A1. Parameter Values.

Parameter Value

slb 0.0113
inb 0.0933

dt 1
6

h

battcap 25 kWh
effd

√
0.9%

effc
√

0.9%
maxCharge 20 kW

maxDischarge 20 kW
minGen 15 kW
maxGen 60 kW
minSOC 20%
maxSOC 80%
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