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Abstract: The rapid growths of power demand and renewable resources have led to numerous
challenges. Constructing more resilient microgrids (MGs) provides an opportunity to avoid depen-
dency on the main grid. This article proposes an innovative Energy Management Strategy (EMS)
for microgrids that uses non-conventional energy sources such as solar power, wind power, and the
storage of electric vehicles (EVs). Numerous studies have been published on MG EMSs using storage;
however, in real-time scenarios, predominant factors limit their straightforward implementation.
In this article, an attempt is made to address key aspects of EV storage exploitation to support
MGEMSs. Minimizing the total MG energy cost is the key objective, considering EV battery longevity
and technical limitations. The proposed EMS was implemented in three layers: Optimal Storage
Distribution (OSD), Optimal Power Usage (OPU), and EV Selection (EVS). A novel probabilistic
approach was implemented in the EVS process (using a Fuzzy Logic Controller (FLC)) to minimize
battery degradation. Various case studies were analyzed in a grid-connected MG by implementing
the proposed EMS.

Keywords: microgrids (MG); energy management strategy (EMS); renewable energy sources (RES);
electric vehicles (EV); optimal storage distribution (OSD); optimal power usage (OPU); EV selec-
tion (EVS); fuzzy logic controller (FLC)

1. Introduction

Microgrids are setting the trend for, and attracting attention to, constructing robust
energy systems. The stochastic nature of RES requires different strategies for dynamic
energy to make the grid stable. RES in conjunction with EV storage systems is becoming
the most economical approach that decreases the cost of additional energy storage. This
forces us to use intelligent EMSs to handle the uncertain environment [1]. As the threshold
limitations are already defined, crossing these values may collapse the grid stability [2].
EVs’ technical enhancements and storage units may help MGs through the V2G and G2V
functionalities. The control strategies of EV storage and the impacts associated with MG
stability must be included in the literature [3]. Exclusive articles and the literature have
been populated in recent decades with studies on ways to coordinate EV storage [4–7] with
grid dynamics related to frequency regulation [8–19]. They can be widely classified into
two categories, centralized [15–19] and decentralized [8–14]. Of these strategies, only a few
considered bi-directional power flow [15,18] and variable charge rates.

In one study, a two-stage EMS was developed in which EV fleets were scheduled in
stage 1, to diminish the energy cost, and in stage 2, available EVs were planned considering
technical limitations [20]. In another study, the EVs’ trip energy requirement was fulfilled
based on an EMS for an MG [21]. On the other hand, an MG EMS in another study was
implemented with the help of an EV battery for regulation services by employing the EV
charging criterion [22]. California University established an EMS using an EV battery as
an additional provision in the V2G scenario by considering uncertainties in EV owner
tendencies [23]. The highlighted studies mainly focused on reducing the energy cost of
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MGs [20,24], but the EV owner benefits were not considered. For example, an EV’s battery
is portable. EV charging costs negatively impact an owner’s interest in participating in MG
support activities.

On the other hand, few authors have included the benefits for EV owners and battery
degradation in their studies [25]. For example, the Energy Management Strategy for
a distinct house with an EV battery has reduced tariffs due to optimal charging and
discharging timings [26]. In addition, changing driving patterns reduces the MG operating
cost in a multi-level EMS [27].

EMSs with renewable energy resources have been implemented in intelligent homes
using multiple EV storage units using a linear programming approach [28], but these
strategies [26–28] have not included the effects of the implementations of G2V and V2G
scenarios on the lifetime of an EV battery. Exploiting EV storage with a degraded battery
disturbs effective energy management [29]. Maximizing EV battery longevity by scheduling
charging and discharging is considered intelligent energy management [30]. A multi-stage
EMS is proposed in [31] that benefits EV owners by minimizing the cost of charging
and maximizing the revenue for an EV owner during the V2G scenario with the help of
scheduled charging patterns. In [30,31], the EMSs were not incorporated with V2G; hence,
the degradations of the batteries were not considered. The EMS implemented in [32–35]
considered the lifetimes of the EV batteries while aiming to diminish the energy cost.
In [32,33], a strategy is proposed for MGs involving the integrations of RES and EVs to
suppress fluctuations in wind power. Finally, a multi-agent-based EMS was proposed
to reduce changes in the energy market by utilizing EV support [34]. Photo-Voltaic (PV)
generation and coordinated EVs are implemented in residential areas. Real-time pricing, the
lifetime of an EV battery, and forecasted solar power were considered while implementing
the EMS in [35]. In [36], the authors suggest an entirely distributed water-filling system
among networked locally interacting users, with no centralized decision maker. The authors
developed two distinct variants of a dynamic control method based on consensus, proximity,
and fixed-point mapping theory. This iteratively and diffusely drives consumers’ water
levels to a convergence value equivalent to the global optimum. The authors of [37] present
a novel mathematical model and a comprehensive RMPC methodology for optimally
controlling the energy exchange of a multi-carrier microgrid equipped with thermal and
electrical units, specifically, thermal loads, renewable energy sources, electrical loads,
energy storage systems, and combined heat and power units. The authors of [38] present a
multi-objective and collaborative approach for MMG energy management in distribution
networks. In this collaborative paradigm, the MMG attempts to reduce the total cost of
the MMG and its reliance on the upstream network. In this study, the uncertainties of
renewable energy sources are analyzed.

Furthermore, the effect of MMG independence from the main grid on reliability and
greenhouse gas emissions has been studied. The authors of [39] provide a unique approach
for determining a Nash equilibrium by concurrently updating each PEV’s optimum strategy
based on the average charging strategy of the whole population. This operation is proposed
to be carried out before the actual charging interval.

Extensive research has been conducted in the current literature on the feasibility
of using EV storage for MG auxiliary services. The importance of EV storage in V2G
applications has been studied in the existing literature. V2G deploys smaller quantities of
storage capacity at the demand point, directly serving the customer/industry/organization
and reducing the need for a future extension of a transmission and distribution grid that
must meet the peak load demand; hence, this offers a better provision at a reasonable
price and has the added benefits of being environmentally friendly. The interconnection
between EVs and the grid is sometimes referred to as distributed energy storage. However,
in real-time, simultaneous solutions with multiple constraints are becoming mandatory.
This article suggests an innovative EMS for EVs in a practical MG scenario with various
energy sources.
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The following are significant research gaps in existing studies on EV storage exploitation:

X Techno-economic factors have not been adequately addressed for when EVs partici-
pate in auxiliary services of MGs and other scenarios.

X With many MG objectives such as grid dependability, power quality, EV battery dete-
rioration, energy cost, and so on, comprehensive solutions have not been achieved.

X According to the literature, EV battery deterioration due to additional assistance
to MGs has not been explored, taking into account all of the variables affecting the
escalation of degradation.

X The maximization of EV storage utilization, taking into account all techno-economic
variables, has yet to be achieved in the current literature.

The following are some of the critical features of the proposed EMS:

� Setting the OSD limit using the Water-Filling Algorithm.
� Recognizing the possibility of EV exploitation for MG support in upcoming time zones.
� Assigning ranks (EVS) to EVs using an FLC for the intelligent selection of EVs.

The key novelty aspects of the proposed EMS are:

� An EV battery can be used at its highest level by considering the battery lifetime, and by
obeying the MG codes’ transformer burden, the energy cost is concurrently decreased.

� While exploiting the EV battery to a maximum extent, battery fading is possible and
expressed in terms of DoD (Depth of Discharge) and SoC (State of Charge).

� Voltage regulation, peak shaving, and valley filling are executed while diminishing
the energy cost of the organization.

� An optimal distribution of energy and power is achieved during the time scale.
� The charging station (CS) operator easily handles techno-economic objectives.
� An innovative EV prioritization model is established with the help of ANFIS with

several input parameters.
� An advanced probabilistic methodology is implemented to obtain the approximations

of EV exploitation for forthcoming zones, enhancing the process of EV ranking.

The categorization of the remaining article is as follows: In continuation to Section 1,
Section 2 describes the proposed scenario and EMS, Section 3 deals with EV modeling and
energy economics, and Section 4 explains optimal EV storage usage. Finally, this article
deals with prioritization strategies for EVs in Section 5.

2. Proposed Scenario and EMS
On-Grid MG Scenario

Electric vehicles (EVs) have the potential to become integral components of a smart
grid, as they are capable of performing valuable services for power systems in addition
to consuming energy. At the transmission system level, electric vehicles are critical for
balancing intermittent renewable energy sources, such as wind power. This is because
electric vehicles can absorb energy during periods of high electricity penetration and then
feed it back into the grid when demand is high or electricity generation is insufficient.
In addition, an EV is considered a portable load (grid-to-vehicle, or G2V) with storage
accessibilities (vehicle-to-grid, or V2G) in power distribution networks. RES penetration
is generally referred to as a microgrid’s energy contribution percentage. Higher levels of
penetration demand more intelligent management systems due to the stochasticity in the
amount of RES power generation. The proposed EMS is established in a grid-tied MG,
consisting of diesel generators (DG), an EVCS with V2G and G2V functionality, PV panels,
and load. It is proposed to accomplish MG functionality without needing additional energy
sources by using existing EV storage. Though the required SoC must be reached before
leaving the CS, it serves as a mobile load throughout the parking duration. The energy
transactions are conducted using G2V and V2G features according to the EMS specifications.

The proposed EMS is intended to enhance the following objectives, simultaneously:

� Peak shaving.
� EV battery durability.
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� Energy cost minimization.
� Utilization of EV storage to the maximum extent.

The MGEMS is depicted using a flowchart in Figure 1, which represents the EMS
implementation flow. The systematic order of the proposed EMS is:

1. The EV mobility data associated with Laxity and SoC for ancillary grid services are
collected.

2. The PV power, energy demand data, and tariff structure are collected.
3. The energy needs of different zones are estimated in order to achieve the required

load demand.

Figure 1. Cont.
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Figure 1. Proposed EMS for MG in flowchart illustration.

The aggregate energy availability of the respective zones is optimally distributed
using the WFEDA. The required number of EVs are chosen through EV prioritization
involving four decision variables. The EV Selection is executed with the help of ANFIS,
which was trained with the MG operator’s decision-making capabilities for ranking. A
novel probabilistic theory is proposed to estimate EUP. EUP further helps improve battery
life, irrespective of V2G and G2V transitions.
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3. EV Modelling and Energy Economics
3.1. EV Laxity

One of the critical decision variables in prioritization is Laxity (£). The term ‘Laxity’
indicates an EV’s feasible time duration for CS/MG support. The value of Laxity differs for
charging and discharging cases and is represented by Equation (1). Laxity is represented in
terms of time intervals [40]:

Li,t
ev = ti

d − t−

(
SoCi,t=td

ev − SoCi,t
ev

)
Ei,cap

ev

ηPi,t
rate

(1)

The relation between SoC and DoD is provided by Equation (2)

SoC = 1 − DoD (2)

3.2. EV Storage Availability

To maximize the use of EV batteries for the V2G scenario, assessing their accessibility
and SoC range is essential. In this article, the educational institution data were obtained
from the biometric information from which the entry time and leaving time of an EV were
extracted. Let pa

i,t and pd
i,t be the arrival and departure times of the ith EV at the tth interval

for a given day. The aggregated probabilities are denoted by pa,c
i,t and pd,c

i,t . The probability
of EV availability is denoted by Equation (3)

pj
i= pa,c

i,t − pd,c
i,t (3)

The vector representation of travel length/day is denoted by ‘L’, and ‘N’ indicates the
no. of EVs.

L = [ l1l2l3 . . . . . . . . . . lN] (4)

The SoC at the time of arrival is represented by Equation (5)

SoCarr
ev = γ/ Ecap

ev,i[ l1l2l3 . . . . . . . . . . lN] (5)

The SoC used during the trip schedule is represented by Equation (6)

SoCnew
i,ev = SoCold

i,ev −
(

Eold,i
ev − γl

)
/Ecap

ev,i (6)

Here, SoCnew
i,ev is nothing but SoCarr

i,ev.
The decrement in SoC due to V2G is denoted by Equation (7), and the increment in

SoC due to G2V is denoted by Equation (8):

SoCt+1
i,ev = SoCt

i,ev −
(

Et
ev,i − Et+1

ev,i

)
/Ecap

ev,i (7)

SoCt+1
i,ev = SoCt

i,ev +
(

Et+1
ev,i − Et

ev,i

)
/Ecap

ev,i (8)

pt
i∗E

cap
ev,i∗SoCt

i is the probability of the ith EV’s availability for V2G at the tth interval.
The storage space availability for G2V is denoted by Equation (9), and for V2G, the

accessible energy is denoted by Equation (10):

eg2v
i,j = pj

i ∗ Ecap
ev,i ∗

(
1− SoCj

i − 0.2
)

(9)

ev2g
i,j = pj

i ∗ Ecap
ev,i ∗

(
SoCj

i − 0.2
)

(10)
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The storage availabilities for G2V and V2G in vector form are represented by
Equations (12) and (14):

Eg2v
i =

[
e1,g2v

i e2,g2v
i e3,g2v

i . . . . . . . . . . . . .eN,g2v
i

]
(11)

Sg2v
i = A =

N

∑
j=1

ej,g2v
i (12)

Ev2g
i =

[
e1,v2g

i e2,v2g
i e3,v2g

i . . . . . . . . . . . . .eN,v2g
i

]
(13)

Sv2g
i = B =

N

∑
j=1

ej,v2g
i (14)

3.3. EV Battery Degradation

Three critical factors in EV battery degradation with day-to-day use are driving
patterns, charging methods, and V2G services. All previous investigations have focused on
one or two of these degradation factors, while an actual battery is subjected to a combination
of all. To prevent battery degradation, the amounts of DoD and SoC in an EV’s battery
are considered when determining the vehicle’s rank. These amounts are represented by
Equations (15) and (16), taken from [41]:

CDoD
bd =

Ci
b ∗ Ei

b ∗ ccs
d + Clbr

d

Clife
b ∗ Li

b ∗DoD
∗ Ei

dc (15)

CSoC
bd = Ci

b
ccs

d ∗ SoCi,d
avg − cci

d

8760 ∗Cf ∗ Li
b

(16)

3.4. Cost of Grid Power

The Indian tariff structure is used to evaluate the total energy cost, as shown in Table 1,
and the total cost of grid intake energy is represented by Equation (17):

Cg
T =

{
Pg,d

max ∗ 0.8 ∗ 475 + 7000 ∗Cg
e

}
+
{

Pg,l
max ∗ 475

}
+
{

Ug
e ∗Cg

e + Pg,l
max ∗ 475

}
+
{

Pg,l
extra ∗ 475

}
(17)

Table 1. Grid tariff structure.

Range Charge (Rs.) Type of Tariff

0 to 80% of Pg,d
max Pg,d

max ∗ 0.8 ∗ 475 Fixed Charges

80 to 100% of Pg,d
max Pg,l

max ∗ 475 Semi-Fixed Charges

>100% of Pg,d
max Pg,l

max ∗ 475 + Pg,l
extra ∗ 475 With Penalty Charges

0 to 7000 kWh 7000∗Cg
e Fixed Charges

>7000 kWh Ug
e∗C

g
e Variable Charges

Cost of grid power = FT + SFT + VT + PT; FC = fixed tariff; SFC = semi fixed tariff; VC = variable tariff; and PC =
penalty tariff.

3.5. Solar Power Cost

The cost of solar power is produced by Equation (18)

Cpv
T = Cpv

int + Cpv
opr (18)
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Here, Cpv
int = initial cost and Cpv

opr = maintenance cost. The Cpv
int per year is produced

by Equation (19)

Cpv
int/y = Cpv

int
(1 + q)Spvq

(1 + q)S − 1
(19)

Now, Equation (18) is modified to represent per annum by Equation (20) and per
month by Equation (21):

Cpv
/y = Cpv

int/y + Cpv
opr (20)

Cpv
/m = (Cpv

int/y + Cpv
opr)/30 (21)

3.6. DG Power Cost

The sum of initial cost and operational cost gives total DG power cost.

Aggregate DG power cost = operating cost + initial cost

Cdg
T = Cdg

opr + Cdg
int (22)

DG operating cost = startup cost + fuel cost

Cdg
opr = Cdg

stup+Cdg
f (23)

The total initial cost is represented by Equation (24), with a per year basis:

Cdg
int/y = Cdg

int
(q + 1)Sdgq

(q + 1)S − 1
(24)

The DG power tariff is rewritten as Equation (25) to denote the annum tariff. Equation (26)
represents the monthly tariff:

Cdg
/y = Cdg

int/y + Cdg
opr (25)

Cdg
/m = (Cdg

int/y + Cdg
opr)/30 (26)

The fuel consumption per kWh is produced by Equation (27) [42]

Fdg
opr =

48

∑
t=1

m

∑
j=1

48

∑
t=1

(αHdg
t,j + βPdg

t,j + γ
(

Pdg
t,j

)2
)∆t (27)

3.7. EV Charging Cost

The cost of charging for an EV is estimated using Equation (28), and the total charging
cost for all EVs is calculated by using Equation (29):

Cev
d,i =

(
SoCdep

i − SoCarr
i

)
∗Ei∗C

g
e −Cev

inc∗Qev
i (28)

Cev
C =

31

∑
d=1

n

∑
i=1

Cev
i,d (29)

Here, Qev
i is the transacted energy via V2G, for this fleet operator paid an incentive

(Cev
inc) to the EV owner:

Qev
i =

31

∑
d=1

48

∑
i=1
{Pev

i ∗ ∆t} −
{(

SoCdep
i − SoCarr

i

)
∗Ei

}
(30)

4. Optimal EV Storage Usage

The V2G/G2V scenarios enable EVs to deliver bi-directional flows of energy when
connected to the grid supply system. A V2G scenario is executed based on a power



Energies 2022, 15, 7739 9 of 23

connection and logical connection between the grid and an EV. The power connection
permits the power transmission from the V2G/G2V scenarios. The logical connection
provides communication between the EV and the grid to regulate when and in which
direction to send the power.

4.1. OSD Using WFEDA
4.1.1. Zones of Energy Need

The Water-Filling Energy Distribution Algorithm (WFEDA) is commonly used in
communication channels to optimally distribute power among sub-channels with varying
noise levels. The WFEDA is used for the optimal distribution of energy among all the
intervals of each zone. The main objective is to minimize the deviation in energy while
subjected to the constraint of the total energy distributed over a zone that should not be
exceeded by the energy available from the EVs. The 12 hrs. are partitioned into 48 intervals
each of 15 min. The zones of energy needed for load flattening are identified as charging and
discharging types, as shown in Figure 2. To attain the OED, the essential quantity of energy
from EV storage for load flattening in each interval t and in zone ‘Z’ has to be estimated.
The quantity of power that must be drawn from the grid is determined by Equation (31).
The case study presented in this article consists of six zones, out of which three are charging
zones, and the remaining three are discharging zones. The following equations represent
the forecasted values of the energy requirements based on the forecasted load and solar
power.

Pt,grid
need =

{
−Pt

solar + Pt
load + Pt,ch

ev

}
(31)

Et,grid
need =

t+15

∑
i=t

Pt,grid
need ∆t (32)

Et,ev
need = Et

need − Egrid
spec (33)

where Egrid
spec = ∑t+15

i=t Pgrid
spec∆t.

Ez
need =

M

∑
t=1

Eev,t
need (34)

Figure 2. Representation of WFEDA for the OED.

In this section, the OSD is presented. The energy requirements for each zone and each
interval were used to formulate the objectives and constraints. Here, the goal is to optimally
dispatch the available energy from the EVs for either the charging zone or discharging zone.
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Here, the OSD is presented for both the charging and discharging zones. The WFEDA was
used to achieve the OSD value for each interval of the given zone [43].

4.1.2. Problem Formulation

The minimization of deviation in power (∆P) is the objective considered. It is for-
mulated in terms of energy in Equation (36) and is transformed into a power format in
Equation (37). The power and energy usage limitations are produced by Equations (37)–(39):

min,
(

Preg
ev,t, z

)
= min,

M

∑
t=1

(
Pt,grid

need +
n

∑
i=1

Pcharge
ev,i,t ±

n

∑
i=1

Preg
ev,i,t − Pspec

grid

)2

(35)

min,
(

Ereg
ev,t, z

)
= min,

M

∑
t=1

(
Et,grid

need +
x

∑
i=1

Echarge
ev,i,t + Ereg

ev,t − Espec
grid

)2

(36)

y

∑
i=1

Preg
ev,t,i ≤

y

∑
i=1

Pavail,ch
ev,t,i (37)

The energy usage constraint in each t is represented in Equation (38)

M

∑
i=1

Eneed
i ≤ Eavail,z,ch

ev,t=1 (38)

For the charging zone,

If Eavail,z,ch
ev,t=1 ≥

y

∑
i=1

Pavail,ch
ev,t,i ∆t (39)

Then Eavail,z,ch
ev,t=1 =

y

∑
i=1

Pavail,ch
ev,t,i ∆t (40)

Equation (41) is derived from the Lagrange multiplier:

min, L
(

Ereg
ev,t, λ

)
=

M

∑
t=1

(
Et, grid

need +
x

∑
i=1

Echarge
ev,i,t + Ereg

ev,t − Espec
grid

)2

+ 2λ

(
M

∑
t=1

Ereg
ev,t − Eavail,z,ch

ev,t=1

)
(41)

Ei,t,grid
need +

x

∑
i=1

(
Ecap,i

ev − Ei,t
ev

)
+

y

∑
i=1

Ereg
ev,t − Espec

grid − λ = 0 (42)

By deriving the equation (42), Equation (43) is obtained:

y

∑
i=1

Ereg
ev,t − Espec

grid − λ + α = 0 (43)

y

∑
i=1

Ereg
ev,t + Et

other = Espec
grid + λ (44)

where Et
other = Et,grid

need +
x
∑

i=1

(
Ecap,1

ev − Ei,t
ev

)
. Here, Et

other represents the essential aggregate

energy and EV charge demand. In Equation (44), the RHS does not depend on time, and
hence Espec

grid + λ = µ:
y

∑
i=1

Ereg
ev,t + Et

other = µ (45)

y

∑
i=1

Ereg
ev,t = µ− Et

other (46)
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The quantity of energy required in each interval of time (µ) is attained using the
bisection strategy; here, the value of € is 0.01. At a particular instant in time t in any zone,
the ideal value of Ereg

ev,t is attained by the ideal value of µ [39]. A detailed step by step
procedure of WFED algorithm for energy distribution is given in Algorithm 1.

Algorithm 1. WFED Algorithm for energy distribution.

Input: Egrid
spec, €,Eavail,z,ch

pev,τ=1 , Echarge
pev,t,i for τ = (1, 2, 3, 4, 5 . . . , 47, 48) in ‘z’ zone.

Output: µ and Ereg
pev,t for τ = (1, 2, 3, 4, 5, . . . , 47,48) in ‘z’ zone

• Prepare variables: µmin = X = Espec
grid and µmax = Y = Espec

grid + Eavail,ch
pev,z1=t

• While (X − Y) > € then do . . .
• µnew = (X + Y)/2
• Calculate ∑

x+y
i=1 Ereq

ev = f
(
µ− Et

other
)
; τ = (1, 2, 3, 4, 5, ..., 47, 48)

• f(u(τ)) =


∑u

i=1 Pavail,ch
ev,i ∆t u(τ) ≥ Pavail,ch

ev,i,t ∆τ

u(τ) 0 ≤ u(τ) ≥ Pavail,ch
ev,i,t ∆τ

0 u(τ) < 0
• Calculate Ereg

ev,z = ∑M
t=1 u(τ)

• if Ereg
ev,z > Eavail,z,ch

ev,t=1
• X = µnew

• else if Ereg
ev,z < Eavail,z,ch

ev,t=1
• Y = µnew
• end
• end
• end

5. Prioritization Strategy for EVs

The prioritization of EVs is critical for extending battery life, and the maximum amount
of EV battery is utilized for V2G scenarios. Prioritization creates a win-win situation for
both MG operators and EV owners, resulting in a more significant number of EV owners
willing to participate in V2G. This section provides an in-depth demonstration of the
EV Selection process. The EV Selection was executed with the help of ANFIS, which
was trained with the MG operator’s decision-making capabilities for ranking. SoC, DoD,
Laxity, and EUP were the decision variables in the EV Selection process. Decision variable
mapping helps in the preparation of training data, and among all these variables, the usage
probability (EUP) of an EV was estimated with a probabilistic approach.

5.1. EUP, Probabilistic Approach

The most efficient way to maintain an EV battery is to keep its SoC range between 0.2
and 0.8, and it is advised to avoid deep discharge and overcharge to improve its lifetime.
Moreover, continuous changeovers between V2G and G2V are not recommended to prevent
EV battery degradation. Here, a battery with peak SoC was used first to serve as V2G
support to exploit maximum energy from the EV battery. From this point of view, this study
presents an innovative EV ranking system that considers the exploitation of an EV battery
and degradation factors concurrently, and this helps in the forecasting of EV battery usage
in the forthcoming time intervals in the G2V and V2G scenarios. With this perspective, a
new probability theory is presented to forecast the EV transition from G2V to V2G, and
vice-versa, with the help of the STP (pt+1

ij ).
The EVs are intended to participate in the V2G scenario with their probabilities of state

transitions (STPs) at various instants of time, as depicted in Figure 3, and the corresponding
likelihoods of zone transitions (ZTPs) are also presented in Table 2. The substantial ZTPs
are key terms for finding the corresponding STPs. Pt

z = [ p1
z p2

zp3
zp4

zp5
z . . . . . . . . . .p48

z ] is the
vector representation of the ZTPs, based on the estimated energy need for peak shaving
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and valley filling; these ZTPs are attained, as represented in Figure 4 and Table 3, and
formulated, as represented by Equation (47).

Pt+1
z =

(
1− τk

z
τmax

z

)
(47)

Figure 3. Possible transitions of an EV.

Table 2. Transition probabilities at a given time interval.

G2V/1 V2G/2 NoT/3

G2V/1 ZTP11 ZTP12 ZTP13

V2G/2 ZTP21 ZTP22 ZTP23

NoT/3 ZTP31 ZTP32 ZTP33

Table 3. Estimation of zone transition probabilities.

Ti P(Z.T.) Ti P(Z.T.) Ti P(Z.T.) Ti P(ZT)

1 0.91 13 0.85 25 0.61 37 0.80

2 0.82 14 0.93 26 0.57 38 0.78

3 0.73 15 0.96 27 0.54 39 0.76

4 0.64 16 0.93 28 0.50 40 0.74

5 0.55 17 0.89 29 0.98 41 0.72

6 0.45 18 0.86 30 0.96 42 0.70

7 0.36 19 0.82 31 0.93 43 0.67

8 0.27 20 0.79 32 0.91 44 0.65

9 0.18 21 0.75 33 0.89 45 0.63

10 0.09 22 0.71 34 0.87 46 0.61

11 0.00 23 0.68 35 0.85 47 0.98

12 0.92 24 0.64 36 0.83 48 0.96
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Figure 4. Estimation of zone transition probabilities of an EV.

Here, τk
z = kth interval from the RHS to LHS, and τT

z is the no. of intervals in zone Z.
The Laxity, Pt

z, and SoC of each of the available EVs help to determine the possible state
transition in zone ‘Z’. Equation (48) produces the chance of state transition from V2G to V2G
at an instant of pt+1

j,11 . The possible outcomes of STP are represented by Equations (49)–(53)
and shown in Figure 5:

pt+1
j,11 =

{
1− SoCt

j − ∆SoCt
j

}
∗pt+1

avl ∗
{

1− pt+1
z

}
(48)

where ∆SoCj is the change in SoC.

pt+1
j,12 =

{
1− SoCt

j + ∆SoCt
j

}
∗pt+1

avl ∗p
t+1
z (49)

pt+1,idl
j,13 =

{
SoCt

j + ∆SoCt
j

}
∗pt+1

avl ∗
{

1− pt+1
z

}
(50)

pt+1
j,21 =

{
1−

{
SoCt

j − ∆SoCt
j

}}
∗pt+1

avl ∗p
t+1
z (51)

pt+1
j,22 =

{
SoCt

j − ∆SoCt
j

}
∗pt+1

avl ∗
{

1− pt+1
z

}
(52)

pt+1,idl
j,23 =

{
1−

{
SoCt

j − ∆SoCt
j

}}
∗pt+1

avl ∗
{

1− pt+1
z

}
(53)

Figure 5. S.T.P.s of the EVs for the next possible intervals.

If the EV is in the G2V mode, which means the upcoming zone is V2G, then

pt+1
j,31 = 0 (54)
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If the EV is in the V2G mode,

pt+1
j,31 =

{
1− SoCt

j

}
∗pt+1

avl ∗p
t+1
z

}
(55)

If the EV is in the G2V mode,

pt+1
j,32 =

{
1− SoCt

j

}
∗pt+1

avl ∗p
t+1
z

}
(56)

If the EV is in the V2G mode,
pt+1,3

j,32 = 0 (57)

If the EV is in the V2G mode, (1 − SoC) is the key factor in the state transition and
is represented by Equation (58), and a contradiction to this is the situation represented in
Equation (59):

pt+1
j,33 =

(
1− pt+1

z

)
∗pt+1

avl ∗ (1− SoCt
j ) (58)

pt+1
j,33 =

(
1− pt+1

z

)
∗pt+1

avl ∗SoCt
j (59)

The possible zone transition (ZTP) of an EV in the forthcoming intervals from any of the
state transitions (STPs) is represented by Equations (60)–(62). Here, p

(
G2Vt+1

j /G2Vt
j

)
= pt+1

j,11 :

p
(

G2V∩G2Vt+1
j

)
= p

(
G2Vt

j

)
∗p
(

G2Vt+1
j /G2Vt

j

)
(60)

p
(

G2Vt
j ∩V2Gt+1

j

)
= p

(
G2Vt

j

)
∗p
(

V2Gt+1
j /G2Vt

j

)
(61)

p
(

G2Vt
j ∩G2Vt+1

j

)
= p

(
G2Vt

j

)
∗p
(

V2Gt+1
j /G2Vt

j

)
(62)

5.2. EV Selection Using Anfis

ANFIS was developed in 1990 by Jyh-Shing and Roger Jang (Jang et al., 1995) and is a
combination of an Artificial Neural Network (ANN) and Fuzzy Logic System [39]. ANFIS
utilizes the learning ability of ANN to achieve the desired output. Depending upon the
training data characteristics, ANN can assign a ranking. In this article, the data for training
were prepared by the manual mapping of the four decision variables. A Sugeno-Type
Fuzzy Inference System was used in this study, with five input and one output membership
functions. The i/p and o/p values were converted into p.u values.

5.3. Training Data and EV Ranking

As previously mentioned, a training data set was organized by mapping four i/p
parameters with the single o/p (rank). It was carried out by splitting the training data set
into two sets of data with two i/p and one o/p, as shown in Table 4. The final ranking
among the available EVs is obtained from the aggregate rank from the two stages of
selecting EVs. It includes all four decision variables simultaneously with equal weightage.
The training data fed to ANFIS is shown in Table 5. The performance of ANFIS can be
observed in Table 6, which shows the final ranking for 13 EVs. Table 6 presents the execution
of ANFIS (discharging case). The way mapping that was carried out can be understood in
Table 4. In this study, decision parameters were mapped together only for the discharging
scenarios, and the same technique can also be implemented for the charging cases. While
training and mapping four decision variables simultaneously, there may be a chance of
misinterpretation in the ranking system among the available EVs.
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Table 4. Decision parameters mapping (discharging case).

S.NO SOC £ RANK 1 DOD EUP RANK 2 RANK

1 0.3 0.3 16 0.7 0.4 16 16

2 0.4 0.2 14 0.6 0.4 14 14

3 0.5 0.2 12 0.5 0.3 12 12

4 0.6 0.3 9 0.4 0.9 10 10

5 0.7 0.5 5 0.3 0.4 6 6

6 0.8 0.5 2 0.2 0.6 5 4

7 0.8 0.4 3 0.2 0.8 4 4

8 0.6 0.6 7 0.4 0.5 9 8

9 0.3 0.7 15 0.7 0.6 15 15

10 0.4 0.4 13 0.6 0.8 13 13

11 0.5 0.6 10 0.5 0.7 10 10

12 0.6 0.5 8 0.4 0.8 8 8

13 0.7 0.7 4 0.3 0.6 7 6

14 0.8 0.6 1 0.2 0.5 6 4

15 0.7 0.3 6 0.3 0.6 7 7

16 0.5 0.5 11 0.5 0.5 11 11

Table 5. Training data for EV ranking.

SOC £ DOD EUP RANK

0.3 0.3 0.7 0.6 11.0

0.4 0.4 0.6 0.4 9.0

0.5 0.2 0.5 0.7 7.0

0.6 0.3 0.4 0.9 5.0

0.7 0.5 0.3 0.4 2.0

0.8 0.5 0.2 0.6 1.0

0.8 0.4 0.2 0.8 1.0

0.6 0.6 0.4 0.9 8.0

0.3 0.7 0.7 0.6 10.0

0.4 0.4 0.6 0.8 8.0

0.5 0.6 0.5 0.7 5.0

0.6 0.5 0.4 0.8 4.0

0.7 0.7 0.3 0.6 2.0

0.8 0.6 0.2 0.5 1.0

0.7 0.3 0.3 0.6 3.0

0.5 0.5 0.5 0.5 6.0
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Table 6. Actual ranking of EVs.

SOC £ DOD EUP RANK

0.6 0.6 0.4 0.9 8.0

0.3 0.7 0.7 0.6 10.0

0.8 0.6 0.2 0.5 1.0

0.7 0.3 0.3 0.6 3.0

0.5 0.5 0.5 0.5 6.0

0.6 0.5 0.4 0.8 4.0

0.7 0.3 0.3 0.6 3.0

0.3 0.3 0.7 0.6 11.0

0.4 0.4 0.6 0.4 9.0

0.5 0.2 0.5 0.7 7.0

0.6 0.3 0.4 0.9 5.0

0.7 0.5 0.3 0.4 2.0

0.5 0.5 0.5 0.5 6.0

Only two variables were considered while training to overcome this difficulty, and the
remaining parameters were considered in the next stage. In stage one, parameters favoring
the CS were considered, while in the second stage, parameters favoring the EV owner were
considered. The final rank of EVs was obtained from the aggregate of stages one and two.
In the V2G scenario, both the EV owner and CS benefitted equally from this prioritization
model’s help. Profits attained by EV owners through their contribution to grid support are
a key factor that encourages EV owners to participate in grid support. Because of customer
revenue maximization, it would be more economical for an EV to charge during time zones
with lower electricity prices. Prioritizing EVs while using them for grid support is an
important task to maximize the exploitation of an EV’s storage without inconveniencing
the customer. Therefore, the EV Selection was based on their final ranks while participating
in grid ancillary services.

6. Results and Discussions

The proposed MGEMS is implemented in a grid-tied MG (an educational organization),
accompanying the PV generation, DGs, EVs, CS, and load, as shown in Figure 6. The
simulation setup is taken from DiSC programming [44]. To investigate the benefits and
impacts due to the reduction in maximum grid power intake (maximum demand P.Dg,d

max),
three cases were considered:

Case A—450 kW Dmax,
Case B—400 kW Dmax,
Case C—350 kW Dmax.
The influence of the OPU, OSD, and ranking on the below-mentioned cases was

analyzed (with D max = 400 kW).
CASE 0—without proposed strategy,
CASE I—proposed scenario,
CASE II–excluding OSD,
CASE III—excluding EV ranking,
CASE IV—excluding Laxity and %SoC,
CASE V—excluding EUP and %DoD.
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Figure 6. DiSC simulation setup to implement the suggested EMS.

6.1. Energy Cost

The intelligent management of EV demand addresses an enhancement in the flexibility
of power systems and reduces the costs of power system investment. The optimal grid
authenticated power was not investigated; instead, random values were considered (450 kW,
400 kW, and 350 kW). For case B, the total energy cost was evaluated using Equation (17),
per month. The impact of the proposed EMS was compared with other cases: CASE (II) and
CASE (III). There is a chance of a significant increase in Cop

mg during load flattening due to
the absence of prioritization and OSD, which may cause additional power usage from the
grid, resulting in a penalty for the excess usage. This is shown in Figure 7, which compares
all four different scenarios. Cop

mg reduces significantly with the proposed scenario, and for
the three different cases, it is diminished by 12%, 14%, and 16%, respectively. Comparing
the functionalities of the OSD with EVS, both of them play almost similar roles in terms of
showing the impact on Cop

mg. EV storage exploitation to the maximum extent for ∆P and
the lifetime improvement of the battery were the objectives of the ANFIS prioritization.
OSD is not biased toward another object but aims to minimize ∆P. Consequently, there is a
slightly higher impact on ∆P minimization by the OSD compared with the EVS. Compared
with the ANFIS prioritization, the OSD is better at minimizing ∆P, since it is independent
of any other parameters.
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Figure 7. Comparison of operating cost of MG for different cases.

The role of a decision variable in the EV Selection process using ELC. is depicted
in Figure 8. The exploitation of EV batteries is at a maximum when Laxity and SoC
are considered decision parameters, which favors utility operators. DoD and EUP help
minimize battery degradation (EV favor). It can be observed from Figure 8 that the MG
perspective (CASE-V) may reduce the Cop

mg at maximum level, when compared with CASE-
I, the proposed EMS. The battery degradation was not considered due to the absence of
the decision variables DoD and EUP. The reduction in Cop

mg for CASE-V, compared with
CASE-IV, is 9%, 12%, and 13.5% in cases A, B, and C, respectively. However, the win-win
situation is always preferable (CASE-I), as it benefits EV owners while participating in grid
ancillary services, without losing the state of health (SoH). In addition, there is a remarkable
difference in Cop

mg between CASE-IV and CASE-V, with values estimated as 8.5%, 11.7%,
and 12.5% in cases A, B, and C, respectively. The FLC decision is biased with a one-sided
benefit, i.e., toward MG (CASE-V) or EV (CASE-IV).

Figure 8. Comparison of operating cost of MG based on EV Selection process.

6.2. Deviation in Power (∆P)

The recommended EMS efficacy was examined using Pg,d
max = 450 KW, which may not

be the ideal amount of grid power needed. The cases mentioned earlier, from CASE-I to -V,
are compared in Figure 9. The case without a proposed EMS is taken as the base case, and
the remaining cases are illustrated. CASE-V is potentially the best of all, when Cop

mg and ∆P
are taken into consideration. This is because this case is purely MG - favored, and it has
a clear negative impact on ∆SoC, as depicted in Figure 10. On the other hand, CASE-III
and IV have slight variations in their influence on the value of ∆P, as either of these studies
leads to an ineffective way of using an EV battery. The statistical comparison is depicted in
Figure 10 (comparison of mean and variability) and Figure 11 (standard deviation) for a
better understanding. It is desirable to retain the grid intake power to the greatest extent
feasible, to 450 kW or even less. Section 3 explains that exceeding the maximum demand
leads to additional charges. It should be noted that the over-reduction in maximum demand
from the grid (Pg,d

max) is not preferable as it demands numerous dedicated storage units
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apart from the EVs. In this article, the optimal value of Pg,d
max was not evaluated. Instead, it

was considered randomly, and the implications are studied as reported in cases A, B, and C.
From Figure 10, it can be observed that CASE-V is the best of all cases, with its mean value
near to 410 kW. CASE-I is the second-best, with a mean value of 425 kW. Finally, CASE-II is
the undesirable one, with a mean value of around 465 kW, after which CASE-III and -IV
follow, with 435 and 440 kW as their mean values. The same can be observed in Figure 11,
where the standard deviations are shown for all the cases.

Figure 9. Grid power deviation for different case studies.

Figure 10. Grid power deviations (mean and variability) for different cases.

Figure 11. Grid power deviations (standard deviations) for different cases.

6.3. Impact of EV Ranking

In this section, different aspects of the EVS are investigated in terms of ∆P, the energy
from each EV (SoC), and the power available from all EVs (APA). In addition, the individual
impacts of the decision variables during the EV ranking are presented by comparing
different cases. As mentioned in Section 2, SoC levels should be maintained within the
moderate range. Considering DoD and EUP as decision variables in the EV ranking process
helps achieve the desired SoC profile. However, CASE-IV is purely an EV perspective that
benefits battery longevity.

On the contrary, the same case works against the MG’s perspective, whereas CASE-V
favors fleet operators, and SoC values are not maintained as desirable. The SoC variations
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are depicted in Figure 12, where the proposed scenario CASE-I and the scenario that favors
EVs, i.e., CASE-IV, are compared, and in Figure 13 the proposed scenario and scenario
which favors fleet operators are compared. The statistical representation of the mean and
its variability of the SoC profile is presented in Figure 14. Here, CASE-II is not considered,
as the absence of OSD will not impact the SoC profile. The mean SoC is around 48%
for CASE-IV, with a variability between 40% and 60%, which dominates over CASE-I,
with a 47% SoC and a variability between 60% and 70%. CASE-III has a 60% mean SoC,
with a variability range between 40% and 80%. Since CASE-V ignores EUP and DoD as
decision parameters, it is the worst among all the cases, with a 37% SoC and a variability
between 28% and 65%. The APA shows a direct impact on valley filling/peak shaving at
any time interval. Maximum EV battery can be exploited while considering Laxity and
SoC as decision parameters in the ANFIS ranking system, i.e., CASE-V, which favors fleet
operators.

Figure 12. SoC statistics at various instants for cases (I) and (IV).

Figure 13. SoC statistics at various instants for cases (IV) and (V).

Figure 14. Statistics on the SoC outline for various cases.

On the contrary, CASE-IV leads to a lower APA, and a proportional impact on load
flattening (min, ∆P) can be observed in Figure 15. In contrast, Figure 14 contradicts
Figures 15 and 16, where CASE-I is exceptional and favors both EVs and utility. Transacted
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power between EVs and the CS creates a similar influence. Table 7 Demonstrates the
Comparative analysis of various cases of different parameters.

Figure 15. Microgrid power deviation for various cases.

Figure 16. Aggregate power availabilities of EVs in various cases.

Table 7. Comparative analysis of various cases of different parameters.

CASE Economical ∆P SoC Profile Mean and
Variability

Standard
Deviation

Aggregate
EV Power

CASE(I) Optimal Optimal Optimal Optimal Optimal Optimal

CASE (II) Best Moderate No Impact Worst Moderate Not
Applicable

CASE (III) Moderate Best Moderate Moderate Worst Moderate

CASE (IV) Moderate Moderate Best Moderate Moderate Worst

CASE(V) Best Best Low Best Best Best

7. Conclusions

The minimization of intake power from the grid and Cop
mg were the two objectives

achieved by the proposed strategy, which was conducted in two stages: the first was the
OED using the WFA, and the second was the EV ranking using the ANFIS controller. The
OED achieved a flat load via the optimal dispatch of available energy from the EVs in
respective time intervals. The utilization of EV storage in each zone was optimized by the
WFA, based on the energy needed and energy available to flatten the load. For the V2G and
G2V operations, the utilization probabilities of the EVs during upcoming time intervals was
estimated using the proposed probability technique. Proper EVs with sufficient SoC were
chosen via the proposed probability technique to ensure the long lives of the EV batteries.
The usefulness of the suggested strategy was studied in a grid-connected MG. The influence
of the EV ranking and OED was investigated, and their outcomes were studied for various
cases. The suggested strategy observed a significant reduction in the operating cost of
the MG and in the deviation in grid power. In this study, all the factors that influence EV
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battery life were not fully considered. Here, mainly SoC limits, the number of transitions
between V2G and G2V, and NoT conditions were considered. However, more sophisticated
and intelligent decision-making strategies can be developed for EVS.
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