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Abstract: Addressing the shortcomings of existing low-frequency oscillation research on electrified
railways, which has mainly focused on single-type trains and lacks the accurate modeling of traction
inverter systems, in this paper we modeled and analyzed low-frequency oscillations in an electrified
railway passenger and freight mixed-operation vehicle–grid system. First, an equivalent model of
the DC side of the traction inverter was established, with the inverter system being equivalent to
the parallel connection of the load resistance and the current source, and the specific mathemati-
cal expression was determined and verified by impedance measurement. Secondly, based on the
equivalent model of the DC side of the traction inverter, a small signal model of the vehicle–grid
system under the mixed operating conditions of CRH5 and HXD2B considering the inverter system
was established. The generalized Nyqusit criterion was used to study the low-frequency oscillation
characteristics under mixed transportation conditions. The accuracy of the established model and the
correctness of the theoretical analysis were verified based on Matlab/Simulink. Finally, using the
dominant pole theory to analyze the low-frequency stability conditions, the relationship between
the number of mixed trains and the minimum short-circuit ratio was obtained, and the simulation
verification was carried out.

Keywords: electrified railway; low-frequency oscillation; traction inverter system; mixed operation

1. Introduction

At present, the EMUs put into operation in China generally adopt the AC–DC–AC
traction drive mode. With the promotion of electrified railways under the support of na-
tional policies, more and more electric locomotives have been put into use. This also means
that more power electronics devices with nonlinear characteristics are connected to the
TN, which leads to frequent LFO and harmonic instability problems in the “multi-vehicle–
grid-connected” system, which brings a great threat to the VGS [1,2]. The trains currently
in operation are mainly passenger trains represented by CRH and freight locomotives
represented by HXD. Although these two types of trains represent AC–DC–AC loads, their
grid-side converters mainly adopt two different control strategies, namely DQDC and
TDCC. Studies have shown that when two trains with different control structures are put
into operation at the same time, their control parameters affect not only their impedance
characteristics but also the stability of other vehicles. Therefore, the LFO mechanism of the
VGS under different mixed running conditions is more complicated [3].

Generally speaking, research on LFO has mainly been carried out from two perspec-
tives: mechanism analysis and measures for suppressing LFO. In the study of the LFO
problem, the frequency domain impedance method is widely adopted, that is, the VGS is
regarded as the cascade of the TN subsystem and the train subsystem [4,5]; the impedance
models of the two subsystems are established separately; and the impedance ratio matrix
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is further obtained to analyze the system stability [6–8]. Since LFO usually occurs in low-
power conditions when multiple trains are hoisted at the same location, the single-phase
grid-side converter is mainly considered when establishing the train impedance model [9].
The research shows that the LFO phenomenon is mainly caused by the mismatch between
the parameters of the TN system and the controller parameters of the EMUs [10]. In [10],
the impedance model was used to draw a Nyquist curve and a Bode diagram, which better
reflected the dynamic interaction influence at the common connection points of the VGS
and clearly reflected the frequency band of the unstable region. However, this paper only
analyzed the current control of the locomotive and lacked an analysis of the entire loco-
motive control system. The dq decoupling small-signal impedance model of CRH5 EMUs
was established in [11,12], and the influence of the number of single CRH5 EMUs and the
load and control parameters on the LFO of the VGS was analyzed. The authors of [13]
established the locomotive harmonic state space (HSS) model and analyzed the harmonic
stability of the VGS. Since the HSS model contains multiple cross-coupled dynamics and
harmonic components of electricity, the derived model can accurately evaluate the LFO
problem of the VGS. In [14], the difference and applicability of the harmonic linearization
method and the HSS method were explained according to the harmonic characteristics of
the DC converter. The authors of [15,16] took the CRH3 as an example and analyzed the
influence of the number of trains and the control parameters on the low-frequency stability,
but the conclusions lacked a mechanism explanation. The authors of [17] proposed an
analysis method to judge the stability according to the open-loop pole, but compared with
the generalized Nyquist criterion [10], these methods have greater limitations in analyzing
the stability of the system. The authors of [5,6] established a small-signal impedance model
of a single rectifier based on the impedance analysis method and combined the generalized
Nyquist criterion and the dominant pole to analyze the influence of the proportional pa-
rameters of the voltage and current loop on the stability of the VGS. The authors of [18]
established a single-phase dq decoupling small-signal impedance model for CRH5 EMUs
and used the dominant pole to analyze the influence of the external parameters of the VGS
and the internal control parameters on the LFO.

Most studies on LFO in the above-mentioned literature were carried out under the
operating conditions of a single-control-type train, and the mechanism of the occurrence
of LFO was considered in terms of impedance. Few authors have considered the LFO
phenomenon of the VGS when different types of trains are mixed. In [19,20], different
kinds of locomotives were simulated under mixed running conditions, and the grid-side
current and voltage harmonics before and after mixed running were analyzed. However,
the mechanism of the influence of various parameters on the low-frequency stability was
not analyzed. In addition, the existing literature has not considered the structure of the
inverter and traction motor when modeling the vehicle-side impedance, and the inverter
and the traction motor have been replaced by the load resistance. To address the above
problems, in this paper we studied the LFO of the passenger and freight mixed-operation
VGS of electrified railways. The main aims and innovations were as follows.

(1) In this paper, a DC-side equivalent model of the traction inverter was first established,
with the inverter system being equivalent to the parallel connection of the load
resistance and the current source, and the specific mathematical expression was
determined and verified by impedance measurement.

(2) Based on the DC-side equivalent model of the traction inverter, a small-signal model
of the VGS under the mixed operating conditions of CRH5 and HXD2B considering
the inverter system was established. The generalized Nyqusit criterion was used to
study the LFO characteristics of the VGS under mixed transportation conditions, and
the validity of the established model and the correctness of the theoretical analysis
were verified through a time-domain simulation using Matlab/Simulink.

(3) Using the dominant pole theory to analyze the low-frequency stability conditions
of the VGS, the relationship between the number of mixed trains and the minimum
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short-circuit ratio of the system was obtained, and the simulation verification was
carried out.

2. Impedance Model of VGS under Mixed Operation of Passenger and Freight
Locomotives

This paper takes the CRH5 EMUs and the HXD2B locomotive as the study object to
investigate mixed operation. The CRH5 rectifier adopts the DQDC method, and the HXD2B
rectifier adopts the TDCC control method. A schematic diagram of the mixed operation
is shown in Figure 1. A corresponding control block diagram is shown in Figure 2. The
control strategy of DQDC takes the detected single-phase AC voltage and current as the
α system and constructs the β system component through the SOGI. After the PLL locks
the phase of the grid voltage, the voltage and current under the αβ system are converted
to the dq system by the Park transformation, which is controlled by the controller. The
control structure of an outer voltage loop and inner current loop is adopted. Finally, the
obtained control signal under the dq system is subjected to inverse Park transformation,
and the control signal under the α system is taken to send out PWM waves to control the
main circuit. The control strategy of TDCC is to orthogonalize the detected single-phase
AC voltage through the SOGI-PLL. The introduction of feedforward in the DC voltage
control loop improves the dynamic response of the PI controller. The reference current
amplitude obtained by the DC voltage loop and the grid voltage phase locked by PLL are
input into the current control loop to realize the phase synchronization of the current. The
reference modulation signal is obtained from the current loop to control the main circuit.
As shown in Figure 2, the SOGI-PLL takes the input voltage and inductor current en and in
as α-system components and obtains imaginary β-system components under the action
of SOGI. The semaphore under the αβ system is decomposed into the dq system through
Park transformation. The voltage and current under the dq system are used as control
variables to control the system under the action of the controller. The phase angle required
for the coordinate transformation is provided by the PLL.
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Figure 1. Schematic diagram of mixed operation of passenger and freight locomotives. Figure 1. Schematic diagram of mixed operation of passenger and freight locomotives.
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Figure 2. (a) Control structure of the rectifier in CRH5. (b) Control structure of the rectifier in HXD2B. 
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Figure 2. (a) Control structure of the rectifier in CRH5. (b) Control structure of the rectifier in HXD2B.

When studying the LFO problem, the distributed capacitance of the TN can be ignored.
The TN is equivalent to a series circuit containing resistance and inductance. The train
consists of several traction drive units in parallel. The traction drive unit contains on-board
transformers, grid-side rectifiers, intermediate DC links, traction inverters, and traction AC
motors. In this section, the inverter and traction motor are modeled as resistors and current
sources in parallel. Then, a unified impedance model considering the inverter for these
two types of models is established in the dq coordinate system, which provides a basis
for the subsequent theoretical analysis of stability. This paper will study a HXD2B electric
locomotive with a TDCC grid-side converter and a CRH5 train with a DQDC grid-side
converter. The main circuit and control parameters are shown in Table 1 [12,21].

Table 1. Parameters of VGS.

Parameter CRH5 HXD2B Parameter CRH5 HXD2B

Ed 1770 V 2100 V KiSOGI 1 1
f1 50 Hz 50 Hz KPpll 0.7 0.7
fp [1, 125] Hz [1, 125] Hz KIpll 25 25
Rn 0.145 Ω 0.15 Ω KPi 2 0.2
Ln 5.4 mH 4 mH KIi 50 0
Cd 9 mF 9 mF KPu 0.5 0.3
Udc 3600 V 3750 V KIu 5 15

KuSOGI 1 1 fs 250 Hz 800 Hz
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2.1. Equivalent Model of TN

In the low-frequency range, the distributed capacitance of the TN is negligible. There-
fore, this paper simplifies the TN as the series connection of resistance and inductance, and
its dq small-signal impedance model is shown in (1).

Zo =

[
Rs + sLs −ω1Ls

ω1Ls Rs + sLs

]
(1)

where Rs and Ls represent the grid-side equivalent resistance and equivalent inductance of the
traction power supply system, respectively, and ω1 is the fundamental angular frequency.

2.2. Equivalent Model of Traction Inverter System

At present, the electric locomotives running on electrified railways are generally
AC–DC–AC traction drive systems, which are mainly composed of onboard transformers,
four-quadrant rectifiers, intermediate DC links, inverters, and traction motors [22,23]. In the
AC–DC–AC variable-frequency speed regulation system, the AC side of the PWM inverter
can always be equivalent to the three-phase AC electromotive force and the resistance–
inductance series circuit [24]. LFO usually occurs in low-power conditions when multiple
trains are hoisted and prepared at the same location. At this time, the rectifier and inverter
are energized and start to work, and the motor also begins to be energized, but it does not
yet rotate. This state can be regarded as a motor stall or short-circuit state, and the induced
electromotive force of the motor can be ignored. Therefore, the motor can be equivalent
to the form of a resistance–inductance series circuit. The equivalent circuit model of the
two-level traction inverter is shown in Figure 3. In this figure, udc represents the DC-side
voltage; idc represents the DC-side current; uk (k = 1, 2, 3) represents the instantaneous
value of the inverter’s three-phase voltage; Re represents the total equivalent resistance of
each phase of the traction motor; and Le represents the total equivalent inductance of each
phase of the traction motor.
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According to Figure 3, the state space average model of the three-phase inverter circuit
can be obtained as shown in (2) [24]. Le

di1
dt

Le
di2
dt

Le
di3
dt

 =

−Re 0 0
0 −Re 0
0 0 −Re

 i1
i2
i3

−
 (dM − d1)udc

(dM − d2)udc
(dM − d3)udc

 (2)

In (2), ik (k = 1, 2, 3) represents the instantaneous value of the three-phase current;
d1, d2, and d3 are the duty cycles of the switches on the upper arms of the three-phase
half-bridge; and dM is the average value of the three-phase duty cycles.

Expanding and recombining the matrix in (2), (3) can be obtained.

Le
•
ik + ikRe = (dk − dM)udc (3)
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where

dM =
1
3

3

∑
k=1

dk =
1
2

(4)

In order to obtain the equivalent model of the DC side of the inverter, we solved
Formula (3), assuming

dk =
1
2
+

m
2

sin[ωet− (k− 1)120◦] (5)

where m is the modulation coefficient of the PWM inverter, and ωe is the three-phase current
frequency of the motor stator. Let αk = ωet− (k− 1)120◦, then (3) could be rewritten as (6):

Le
•
ik + ikRe =

mudc
2

sin αk (6)

Let {
uk =

mudc
2 sin αk

Uk =
mudc

2 (k = 1, 2, 3)
(7)

where Uk represents the three-phase voltage amplitude of the inverter.
Let the steady-state solution of Equation (6) be

ikp = I sin(αk − γ) (8)

where I is the amplitude of the three-phase current, and γ is the angle to be solved.
Substituting (8) into (6), the steady-state equation of (6) could be obtained as follows:

ωeLe I cos(αk − γ) + IRe sin(αk − γ) = Uk sin αk (9)

By making further adjustments, we obtained

(ωeLe I cos γ− IRe sin γ) cos αk + (IRe cos γ + ωeLe I sin γ) sin αk = Uk sin αk (10)

From (10), we determined:{
ωeLe I cos γ− IR sin γ = 0

ωeLe I sin γ + IR cos γ = Uk
(11)

Therefore, (12) could be obtained. I =
√

U2
k

R2
e+(ωeLe)

2

γ = arctan
(

ωeLe
Re

) (12)

Let the full solution to Equation (6) be

ik = Ake−t/τ + I sin(αk − γ) (13)

where Ak is the undetermined coefficient, τ is the time constant, and τ = Le/Re.
Substituting ik(0) = 0 into Equation (13), the expression of Ak could be obtained as

follows:
Ak = I sin[γ + (k− 1)120◦] (14)

The DC current and the three-phase stator current satisfy the relationship shown
in (15).

idc =
3

∑
k=1

dk ik (15)
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Substituting (13) and (14) into (15), the expression of idc could be obtained as follows:

idc =
3m
4

I
[
cos γ− cos(ωet + γ)e−t/τ

]
(16)

Since the value of the time constant τ is generally small, after ignoring the transient
process, the inverter circuit and the motor could be regarded as equivalent to a parallel
connection of a load resistor Rd and a current source I1, as shown in Figure 4.
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Considering that the active power consumed by the three resistors in Figure 3 was
equal to the active power consumed by the resistor Rd in Figure 4, the power balance
relationship shown in Equation (17) could be obtained.
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According to the current relationship in Figure 4, ignoring the transient process of idc,
the expression of the equivalent current source I1 could be obtained as follows:
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2.3. Dq Impedance Modeling of Locomotives Considering Traction Inverter and Motor

This section establishes the dq impedance model of CRH5 and HXD2B considering the
inverter model and based on the rectifier model of the VGS [3,11,12]. As for the two types
of vehicles, the main circuit structure of the traction drive units is the same, as shown in
Figure 4, and the main circuit state equation of the converter could be written as:{

Ln
din
dt = en − inRn − dnudc

Cd
dudc

dt = dnin − ( udc
Rd

+ I1)
(20)

In the above expression, when VD1 and VD4 are on while VD2 and VD3 are off, dn
is 1; when VD2 and VD3 are on while VD1 and VD4 are off, dn is 0. To construct the dq
impedance model, the state variable x needed to be decomposed into the dq axis through
the inverse Park transformation. The relationship is shown in (21).

xα = xd cos ωt− xq sin ωt (21)
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Based on the conversion relationship of (21), ignoring the secondary power frequency
ripple on the DC side, the state equation of the main circuit under the dq system was
written as follows: 

Ln
did
dt = ed − Rnid + ω1Lniq − ddudc

Ln
diq
dt = eq − Rniq −ω1Lnid − dqudc

Cd
dudc

dt = 1
2
(
ddid + dqiq

)
− ( udc

Rd
+ I1)

(22)

By solving and analyzing the static operating point of the average model under the dq
system, the values of the duty cycle, state variables, and output variables under steady-state
conditions could be obtained. When the circuit is stable, the phase locked by the PLL is the
same as the network voltage phase. At this time, the power factor is 1. Therefore, Eq and Iq
are 0, and the steady-state values of the other variables are shown in (23).

Id =
Ed−

√
E2

d−8RnUdc(
Udc
Rd

+I1)

2Rn

Dd =
Ed+

√
E2

d−8RnUdc(
Udc
Rd

+I1)

2Udc

Dq =
−ω1LnEd+ω1Ln

√
E2

d−8RnUdc(
Udc
Rd

+I1)

2RnUdc

(23)

Equation (22) was expanded with a steady-state value and small signal at the static
operating point [25]. Ignoring the steady-state component, we found that there are product
terms for small signals, namely d̂dûdc, d̂qûdc, d̂q îd, and d̂q îq. The presence of these terms
reflects the nonlinearity of the rectifier system. By ignoring these small-signal product terms,
the system could be linearized to obtain the small-signal model of the system, as shown in
Figure 5. The disturbance of the input voltage vector and the duty cycle vector were set to
zero to derive the corresponding transfer function matrix. That is, the mathematical model
of impedance under the dq system of the main circuit topology of CRH5 and HXD2B was
obtained as shown in (24).

ZRL =

[
Rn + sLn −ω1Ln

ω1Ln Rn + sLn

]
ZRC = Rd

sRdCd+1

Zin_ol = ZRL +
ZRC

2

[
Ds2

d Ds
dDs

q
Ds

dDs
q Ds2

q

]
Gid = −Z−1

in_ol

(
ZRC

2

[
Ds

d
Ds

q

][
Is
d Is

q

]
+

[
Udc 0

0 Udc

])
Gue =

ZRC
2

[
Ds

d Ds
q

]
Z−1

in_ol

Gud = ZRC
2

[
Ds

d Ds
q

]
Gid

(24)
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î

 
Figure 5. Small-signal matrix model of the main circuit. Figure 5. Small-signal matrix model of the main circuit.



Energies 2022, 15, 7544 9 of 20

As for HXD2B, shown in Figure 2, since its control system introduces a feedforward
amount i f f d

n = (
√

2idcudc)/Ud to improve the dynamic response of the PI controller, when

modeling considering the inverter, the steady-state value was written as Ire f
d =

√
2U2

dc
UdRd

+
√

2Udc I1
Ud

. Under the conditions of unity power factor, the voltage loop has the following
relationship: {

ire f
d = ire f

n = (Kpvc +
Kivc

s )(ure f
dc − udc) +

√
2idcudc
Ud

ire f
q = 0

(25)

By expanding (25) for small signals, (26) was obtained. The specific derivative process
is shown in Appendix A.[

∆ire f
d

∆ire f
q

]
=

[
−(Kpvc +

Kivc
s ) + 2

√
2Udc

UdRd
+
√

2I1
Ud

0
0 0

][
∆udc

0

]
(26)

In order to verify the accuracy of the model, a train time-domain simulation model
was built using the Matlab/Simulink platform, and the dq frequency sweep method based
on Hilbert transformation was adopted to measure the impedance. Taking CRH5 as an
example, the Bode curve of the impedance model considering the inverter was compared
with the impedance measurement values, and the results are shown in Figure 6. The
model impedance curve established in this paper was highly consistent with the impedance
measurement points obtained by the time-domain simulation scan. This showed the
effectiveness of the built model.
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CRH5.

For a single train, several same-grid-side converters can be connected in parallel.
For a CRH5 EMU, one power unit is a double rectifier, and there are five power units in
total. Assuming that the onboard transformer of the EMUs works in the linear region, the
impedance of the whole CRH5 EMUs could be converted to the model of the primary side:

ZinCRH5 =
1
5

Zi|0.5Cdc, 2RL

2k2
CRH5

(27)
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where kCRH5 is the transformation ratio of the onboard transformer of the CRH5 EMUs,
and kCRH5 = 1770/25,000.

The HXD2B electric locomotive has six single rectifiers in parallel. Assuming the
onboard transformer works in the linear region, the model for converting the impedance of
the HXD2B to the primary side is as follows:

ZinHXD2B =
1
6

Zi

k2
HXD2B

(28)

where kHXD2B is the transformation ratio of the onboard transformer of the HXD2B electric
locomotive, and kHXD2B = 2100/25,000.

2.4. Dq System Impedance Model of Mixed Passenger and Freight System

The passenger vehicle (CRH5) and the freight vehicle (HXD2B) run together in a mixed
operation on the same arm, as shown in Figure 1. Although the two trains may be on the
up and down lines, respectively, from the point of view of the electrical relationship, the
impedances of the two are regarded as equivalent parallel connections [25]. If the number
of CRH5 vehicles is a and the number of HXD2B vehicles is b, the schematic diagram of the
equivalent impedances of the whole VGS is shown in Figure 7.
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It can be seen from Figure 7 that when two vehicles are connected in parallel, the
overall impedance ZL of the load side in the VGS can be expressed as:

ZL = (a(ZinCRH5)
−1 + b(ZinHDX2B)

−1)
−1

(29)

3. Low-Frequency Oscillation Analysis of VGS with Mixed Passenger and Freight
Locomotives

It can be seen from Figure 7 that if the equivalent impedance of the TN is defined as
Zo(s), and the train-side impedance with the two types of vehicles connected in parallel
is defined as ZL(s), the equivalent control diagram of the cascade system based on the
impedance is as shown in Figure 5. Therefore, the system impedance return ratio matrix
Ldq(s) is as follows (30) [12]:

Ldq(s) = Zo(s)ZL(s)
−1 (30)

It is evident from (30) that the system impedance return ratio matrix Ldq(s) is a transfer
function matrix of 2× 2, with two eigenvalues (λ1(s) and λ2(s)). It can be seen from the
generalized Nyquist criterion that, on the premise that the source and load impedances
are both stable (that is, neither Zo(s) nor ZL(s) has a right-half-plane pole), the closed-loop
system is stable if and only if the two eigenvalues λ1(s) and λ2(s) of Ldq(s) do not enclose
the (−1, j0) point.

We used eight different CRH5 and HXD2B vehicles as simulation objects and built
a simulation model in MATLAB/Simulink. The schematic diagram of the simulation
structure is shown in Figure 8.
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3.1. Analysis of the Influence of Different Proportions of Passenger and Freight Locomotives

The electrical stability analysis detailed in this section was mainly based on the mixed
operation diagram shown in Figure 1. In order to visually show the influence of different
train numbers on the system stability under mixed operation conditions, the trend of
system stability changes was observed by altering the ratio of CRH5 trains and HXD2B
trains. In this section, mixed-operation configurations with a total of eight CRH5 and
HXD2B vehicles were analyzed, with the ratio of the two kinds of trains being changed. The
generalized Nyquist curve and simulation of the system under three different passenger
and freight mixed-operation ratios are shown in Figure 9. When other parameters in the
system were unchanged, the intersection points of the Nyquist curve and the X-axis were
−0.62, −0.82, and −1.01, respectively, when the ratio of CRH5 to HXD2B was 5:3, 6:2, and
7:1. That is, as the proportion of CRH5 vehicles increased, the Nyquist curve gradually
approached and surrounded (−1, j0). When the mixing ratio was 7:1, a 2.8 HZ oscillation
occurred. The simulation results of eight CRH5 vehicles from reference [11,12] are shown
in Figure 10. It can be seen that the system had an LFO of 2.5 Hz. The intersection point of
the Nyquist curve and the X-axis was −1.91, which was greater than that in Figure 9. This
indicates that the low-frequency stability of the system worsened.
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Therefore, we concluded that the greater the number of HXD2B vehicles in the mixed
VGS, the greater the stability margin of the whole system. Thus, avoiding a single train
type will improve the stability of the system.

3.2. Analysis of the Influence of Different Control Parameters

Adjusting the train control parameters changes the impedance characteristics of the
train and affects the system stability, so the LFO can be suppressed by adjusting these
parameters [18].

When one HXD2B and seven CRH5 were put into use, the proportional parameter
Kpvc of the voltage loop of the CRH5 was reduced from 0.6 to 0.4. The intersection of the
Nyquist curve and the X-axis changed from −1.01 to −0.8, and the system tended to be
stable from the original 2.8 Hz oscillation. When the Kpvc was further reduced to 0.2, the
intersection of the Nyquist curve and the X-axis became −0.74, and the system stability
was further improved. The corresponding simulation results are shown in Figure 11,
and the waveform tended to be stable. The simulation results were consistent with the
theoretical analysis results, indicating that reducing the proportional gain of the voltage
loop PI effectively improved the low-frequency stability of the VGS with mixed passenger
and freight operation.
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Similarly, the CRH5 train current loop proportional parameter Kpcc increased from
2 to 2.25. The intersection of the Nyquist curve and the X-axis changed from−1.01 to−0.84,
and the system changed from experiencing 2.8 Hz oscillation to becoming stable. Further
increasing the Kpcc to 2.7, the intersection of the Nyquist curve and the X-axis became
−0.66, and the system stability was further improved. The corresponding simulation results
are shown in Figure 12, and the waveform tended to be stable. The simulation results were
consistent with the theoretical analysis results, indicating that increasing the proportional
gain of the current loop PI effectively improved the low-frequency stability of the VGS with
mixed passenger and freight operation.
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4. Low-Frequency Stability Conditions Analysis of VGS Based on Dominant
Pole Theory
4.1. Frequency Analysis of VGS Based on Dominant Pole Theory

A block diagram of the VGS is shown in Figure 13. The VGS is actually a small-signal
multi-variable closed-loop feedback system. The input signal is the voltage ∆es(s) on the
high-voltage side of the on-board transformer, the output is the train’s input current ∆is(s),
and YL(s) is the train’s small-signal admittance model. Suppose there are trains of the
same kind running on the line, and the small-signal admittance model is expressed as
Yin(s). Then, YL(s) can be expressed as nYin(s). For example, when the trains are all CRH5
EMUs, YL(s) can be expressed as nYinCRH5(s). Similarly, when the trains are all HXD2B
electric locomotives, YL(s) is expressed as nYinHXD2B(s). Therefore, the closed-loop transfer
function matrix of the VGS in Figure 13 can also be expressed as follows:

Hei(s) =
∆is(s)
∆es(s)

=
nYin(s)

I + nYin(s) · Zo(s)
(31)

For an MIMO system with a transfer function Hei(s), the poles and zeros can be
obtained by solving the roots of the pole polynomial p(s) and zero polynomial z(s) equal
to 0, respectively [18]. For the 2× 2 square matrix analyzed in this paper, the zero-pole
polynomial could be directly obtained as follows:

z(s)
p(s)

= det(Hei) (32)
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To make the MIMO system stable, the following theorem can be referred to [18]:
Hei(s) is stable if and only if Hei(s) has no right-half-plane (RHP) poles.
When the above theorem is applied to the VGS, the stability conditions are as follows.
There is no RHP zero point in the switch transfer function matrix G = I + nYin(s) Zo(s)

of the VGS.
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If the dominant pole is used to analyze the VGS, the pole of the CLTF must be
calculated first. The CLTF poles are closest to the imaginary axis in the complex plane, and
the pole whose distance is more than 10 times smaller than those of the other poles is the
most likely to enter the right half plane and cause system instability. Therefore, the pair of
poles that can easily cause system instability is called the dominant pole, since the zeros of
the open-loop transfer function matrix correspond to the poles of the CLTF. Thus, in the
VGS, in order to simplify the calculation process, the pole calculation can be converted into
the zero calculation.

This pair of dominant poles can be expressed in the form of the damping ratio ζ and
the natural oscillation angular frequency ωn. In order to facilitate analysis together with
the unit Hz of the oscillation frequency in the previous sections, the calculated dominant
pole was reduced (divided by 2π), and the dominant pole was expressed as the damping
ratio ζ and the expression of the natural oscillation frequency f n in Hz, as shown in (33). In
the following analysis, the dominant pole defined by the following formula was used to
analyze the low-frequency stability of the VGS:

r1,2 = −ξ fn ± fn
√

ξ2 − 1
= −ξ fn ± j fn

√
1− ξ2 (33)

4.2. Low-Frequency Stability Conditions of VGS

In order to simplify the process of the low-frequency stability analysis in this section,
we analyzed the traction power supply system of the CZ Railway from the perspective of
power. First, it was assumed that only the reactance parameter XO existed in the equivalent
impedance of the grid side. All trains running on the line were thus equivalent to one load.
Then, a schematic diagram of the simplified VGS, as shown in Figure 14, could be obtained.
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dominant pole is in the 10−3 order of magnitude, the system has the possibility of entering 
a critically stable or even unstable state. In the following analysis, the standard of the 
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The SCR in the power system was defined as the reciprocal of the power reactance
XO per unit value. In the vehicle–grid cascade system, the per-unit voltage reference value
(U) was 25 kV. The power reference value took the rated capacity (S) of two single-phase
traction stations as 60 MVA, and the SCR could be expressed as follows:

SCR =
1

XO/X
=

1

XO/
(

U2

S

) =
U2

SXO
=

252

60× 2XO
(34)
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The authors of [18] mentioned that when the damping ratio corresponding to the
dominant pole is in the 10−3 order of magnitude, the system has the possibility of entering
a critically stable or even unstable state. In the following analysis, the standard of the
damping ratio corresponding to the dominant pole was greater than 0.01, and it was
determined that the VGS could ensure the low-frequency stable state. Therefore, in the
following work, for different ratios of CRH5 EMUs and HXD2B electric locomotives, we
adjusted the power supply reactance XO, so that the damping ratio corresponding to the
dominant pole was only greater than 0.01 when the two types of trains were running alone.
Then, this was substituted into (34) to calculate the minimum stable SCR when the VGS
remained stable.

According to the above theory of dominant poles and SCR, the relationship between
the number of trains and the minimum SCR was obtained as shown in Figure 15.
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It can be seen from Figure 15 that there was a linear relationship between the minimum
stable SCR and the number of vehicles of the two types of trains. The fitting results for the
relationship are shown in (35).{

SCR_CRH5 = 0.0582n + 0.3784 (n ≥ 1)
SCR_HXD2B = 0.1712n + 0.2896 (n ≥ 1)

(35)

When the SCR had a value in the area above the straight line, the VGS remained
stable. If the SCR was converted into the short-circuit capacity SSC, and the number of
running trains n was converted into the sum Psum of the rated power of all trains, the linear
proportional coefficient µ of the two could be defined as shown in (36). (The rated power
of the CRH5 vehicles is 5.5 MW, and the rated power of the HXD2B vehicles is 9.6 MW).{

µCRH5 = ∆SSC
∆Psum

= S
PCRH5

∆SCR_CRH5
∆n = 120

5.5
∆SCR_CRH5

∆n

µHXD2B = ∆SSC
∆Psum

= S
PHXD2B

∆SCR_CRH5
∆n = 120

9.6
∆SCR_HXD2B

∆n
(36)

In Figure 15, the slope of the straight line representing the CRH5 EMU was converted
to a ratio of ∆SSC to ∆Psum equal to 1.27, while the slope of the straight line represent-
ing the HXD2B was 2.14. For the VGS composed of CRH5 EMUs and the TN, when
µCRH5 ≥ 1.27, the VGS was in a stable state, and there was no low-frequency oscillation.
When µCRH5 < 1.27, the VGS may have experienced LFO or even lost stability. For the
VGS composed of HXD2B, when µHXD2B ≥ 2.14, the VGS was in a stable state, and there
was no low-frequency oscillation. When µHXD2B < 2.14, the VGS may have experienced
LFO or even lost stability. From the above analysis, the following conclusions could be
drawn: for any kind of running train, there is always a critical µ0, and when µ ≥ µ0, the
vehicle–grid cascade system can ensure its low-frequency stability. For the passenger and
freight mixed-car network system formed by the CRH5 EMUs and the HXD2B electric
locomotives studied in this paper, when µ ≥ 2.14, the vehicle-network cascade system can
maintain low-frequency stability.
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4.3. Simulation Verification

In order to verify the accuracy of the two curves obtained in Figure 15, a simulation
model was built using the MATLAB/Simulink platform, and simulation analysis was
carried out for n = 1 and 5. When only one CRH5 EMU was connected, according to the
relationship curve between the number of CRH5 vehicles and the minimum stable SCR in
Figure 15, the minimum stable SCR of the vehicle network system was 0.437, the XO was
11.93 Ω, and the maximum value of the grid-side inductance LO was 38 mH. Therefore, in
the simulation, when RO was set to 3.6 Ω and LO was set to 40 mH, the grid-side current
and voltage waveforms were obtained as shown in Figure 16. A low-frequency oscillation
of 3 Hz occurred in the VGS at this time.
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Figure 16. Grid-side voltage and current waveforms when a single CRH5 vehicle was connected.

In the same way, when only one HXD2B electric locomotive was connected, according
to the relationship curve between the number of HXD2B vehicles and the minimum stable
SCR in Figure 15, the minimum stable SCR value was 0.461, the XO was 11.3 Ω, and the
maximum value of the grid-side reactance LO was 36 mH. Therefore, in the simulation,
when RO was set to 3.6 Ω and LO was set to 37 mH, the grid-side current and voltage
waveforms were obtained as shown in Figure 17. A low-frequency oscillation of 3.5 Hz
occurred in the VGS at this time.
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When five CRH5 EMUs were connected at the same time, according to the relationship
curve in Figure 15, the minimum stable SCR value was 0.754, the XO was 6.9 Ω, and the
maximum value of the grid-side reactance LO was 22 mH. Therefore, in the simulation,
when RO was set to 2.2 Ω and LO was set to 25 mH, the grid-side current and voltage
waveforms were as shown in Figure 18. A low-frequency oscillation of 3 Hz occurred in
the VGS at this time.

When five HXD2B EMUs were connected at the same time, according to the relationship
curve in Figure 15, the minimum stable SCR value was 0.922, the XO was 5.65 Ω, and the
maximum value of the grid-side reactance LO was 18 mH. Therefore, in the simulation,
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when RO was set to 2.2 Ω and LO was set to 19 mH, the grid-side current and voltage
waveforms were obtained as shown in Figure 19. A low-frequency oscillation of 6.3 Hz
occurred in the VGS at this time.
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Due to the performance of the simulation equipment, only the simulation waveforms
for the connection of a single train and five trains (Figures 16–19) are provided, which verify
the validity of the curve obtained in Figure 15. Therefore, in order to keep the VGS stable,
the impedance of the TN and the train scheduling method must be designed according to
the curve requirements provided in Figure 15.

The above steps can also be followed for other types of trains running on the railway.,
The dominant pole of the CLTF matrix of the VGS is obtained according to the type and
number of locomotives, followed by the value of the maximum power source reactance XO
under critical conditions. Then, the minimum stable SCR value is calculated by Equation
(34), the relevant curve is obtained, and the TN is designed to reduce the possibility of LFO.

5. Conclusions

In this paper, a small-signal impedance model of a multi-vehicle mixed-operation
VGS considering the traction inverter system was established. The influence of different
passenger/cargo locomotive ratios and different locomotive control parameters on the LFO
was analyzed. In addition, using the dominant pole theory to analyze the low-frequency
stability conditions of the VGS, the relationship between the number of mixed trains and
the minimum short-circuit ratio of the system was obtained. Finally, the accuracy of the
model built by the simulation experiment and the correctness of the theoretical analysis
were verified, and the following conclusions were drawn.

(1) The measurement results of Figure 6 show the correctness of our established equiva-
lent model of the traction inverter system. Therefore, it provides a theoretical basis
for the selection of the DC-side load of the rectifier.

(2) The low-frequency oscillation analysis results of the VGS under the mixed operation of
passenger and freight trains showed that an increase in the number of HXD2B vehicles
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reduces the low-frequency oscillations. Therefore, compared with the operating
conditions of a single locomotive, the mixed operation system with multiple types of
locomotives is more stable.

(3) According to the analysis results of the LFO under the dominant pole theory, in order
to keep the system stable, it is necessary to design the train scheduling according to
the relationship between the SCR and the number of locomotives based on (35).
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Nomenclature

Abbreviation Meaning
EMUs Electric multiple units
LFO Low-frequency oscillation
CRH China Railway High-speed
HXD He xie dianli
DQDC D-q decoupling control
TDCC Transient direct current control
SOGI Second-order generalized integrator
PLL Phase-locked loop
TN Traction network
RHP Right half plane
Ed D-axis steady voltage
f1 Fundamental frequency
fp Disturbance frequency range
Rn Equivalent resistance of secondary side of vehicle transformer
Ln Equivalent inductance of secondary side of vehicle transformer
Cd DC-side support capacitor
Ud Steady DC-link voltage
fs Switch frequency
VGS Vehicle–grid system
Rd DC-side equivalent resistance
dn Duty cycle of upper bridge arm switch
ω1 Fundamental angular frequency
Rs Grid-side equivalent resistance
Ls Grid-side equivalent inductance
idc DC-side current
I1 Equivalent current source
en TN voltage
in Rectifier current
SCR Short-circuit ratio
KuSOGI Voltage SOGI module ratio
KiSOGI Current SOGI module ratio
KPpll Proportionality coefficient of PLL
KIpll Integral coefficient of PLL
KPi Proportionality coefficient of current loop
KIi Integral coefficient of current loop
KPu Proportionality coefficient of voltage loop
KIu Integral coefficient of voltage loop
CLTF Closed-loop transfer function
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Appendix A

Under the conditions of a unity power factor, the voltage loop has the relationship
based on (25).

According to Figure 4, on the DC-side resistance branch,

idc = I1 +
udc
Rd

(A1)

Substituting (A1) into (25), we obtained

ire f
d = (Kpvc +

Kivc
s

)(ure f
dc − udc) +

√
2udc(

udc
Rd

+ I1)

Ud
(A2)

Expanding the above formula for small signals produced the following:

udc = Udc + ∆udc (A3)

Substituting (A3) into (25), we obtained

ire f
d = (Kpvc +

Kivc
s )(ure f

dc − (Udc + ∆udc))

+

√
2U2

dc
+2
√

2Udc∆udc+
√

2∆u2
dc

RdUd
+
√

2I1
Ud

∆udc
(A4)

Ignoring the steady-state component and the small-signal product term ∆u2
dc, the

system could be linearized, and the following relationship was finally obtained:

∆ire f
d = (−(Kpvc +

Kivc
s

) +
2
√

2Udc
RdUd

+

√
2I1

Ud
)∆udc (A5)

Translating this into matrix form, Equation (26) was obtained.
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