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Abstract: Switched-mode power supplies (SMPSs) are an important component in many electrical
systems. As a highly non-linear device, an unavoidable side-effect of SMPS operation is its high
harmonics power. One of the ways to model the harmonic power consumption profile is in terms of a
random process. This paper addresses random process modeling with a corresponding probability
density function (PDF), auto-covariance function (ACF) and spectral coherence. The consumed
harmonics power was evaluated under different load conditions and is based on experimental results
of current consumption from SMPSs. The analysis shows that harmonics power may be modeled by
a lognormal distribution that is time-domain uncorrelated, and that has spectral-domain correlation
modeled by a Gaussian radial basis function. Extensive discussion on the modeling results is also
provided. Moreover, random simulation approach based on the modeling results was proposed.

Keywords: electical network; switched-mode power supply (SMPS); lognormal distribution;
auto-covariance function; spectral coherence

1. Introduction

The quality of electrical power supply is now a major issue worldwide, making
harmonic analysis an essential element in power system planning and design. Modern
electronic power equipment is a significant source of harmonic distortion that degrades
the power quality. Power system harmonic modeling and analysis is hence an important
prerequisite for providing high-quality operation of a power network [1–3]. Switched-
mode power supplies (SMPSs) are dominating modern devices for AC–DC conversion in
consumer electronics. In SMPSs, a control system drives analog energy switching. As a
result, even when a constant DC load current is sought, the consumed current amplitude
exhibits significant variability of tens of percents, as illustrated in Figure 1.

Numerous harmonics modeling techniques were proposed. For example, nonlinear
frequency domain characterization approach of harmonic behavior may be applied [4].
One of these techniques is the frequency transfer matrix technique (also termed as fre-
quency coupling matrix), in which non-linear relations are established [5]. Another is
the X-parameters technique, used split into “large” and “small” components [6]. Finally,
Volterra models extend a linear transfer function into nonlinear one [7]. A further modern
approach is based on self-regressive nonlinear artificial neural network with exogenous
input (NARX neural network) technique [8,9].

The main strength of the mentioned techniques is their repeatability of the harmonics
modeling in the same conditions. Nevertheless, these techniques do not cover the statistical
nature of harmonics signals. Moreover, modeling a single device can produce different
results than a group of devices due to statistical variability. To overcome this limitation,
the statistical harmonics analysis was proposed. In this approach, the statistical properties
of harmonics behavior are analyzed, either based on the theoretical analysis of electrical
circuit properties [10–12] or by experimental characterization. The experiment characteriza-
tion may be based on parametric probabilistic modeling, such as Gaussian mixture model
(GMM) [13], or non-parametric modeling, such as kernel density estimation (KDE) [14,15].
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The goal of this paper is to statistically characterize current variability based on
experimental measurements. The current signal is modeled by a random process that
is characterized by a corresponding metrics, such as probability density function (PDF),
auto-covariance function (ACF) and spectral coherence. The main contribution of the paper
is modeling PDF by multivariate lognormal distribution with the appropriate ACF and
spectral coherence modeling. The proposed statistical modeling provides broader signal
characterization that is possibly useful in the fields of the simulation of electrical network
loads [16], cyber-security [17], digital forensics [18], device identification [19], dynamic
behavior investigation [20], and others.
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Figure 1. Illustration of a random SMPS current for a constant load.

One of the challenges of experimental harmonics signal analysis is the issue of spectral
estimation. As fast Fourier transform (FFT) resolution is typically insufficient for this task, nu-
merous methods were proposed for enhanced spectral analysis of harmonics signals. Electrical
networks and power electronics systems are of particular interest. In [21,22], the applicability
of Prony and min-norm harmonic retrieval methods was evaluated. Chen et al. [23] applied
a Kalman filter for this task. Medina et al. [24] reviewed network-based approaches for
harmonic analysis. In [25], sparse signal decomposition is used to improve FFT perfor-
mance. Kabalci et al. [26] proposed harmonic analysis based on a modified artificial bee
colony (MABC) algorithm. In [27], an adaptive variational mode decomposition method is
used. Balouji et al. [28] applied deep learning (DL) techniques for harmonic analysis. These
methods reflect the trade-off between accuracy, required signal time-length and computa-
tional complexity. Though this paper, maximum likelihood harmonics estimation [29] was
applied. One of the main strengths of this method is its convenient reversibility between
spectral and time-domain presentations that makes performance validation and signal
modeling easier.

The rest of the paper is organized as follows. First, the essential theory is provided in
Section 2. The experimental setup is presented in Section 3. Analysis of the experimental
measurements is given in Section 4 followed by a discussion in Section 5. Section 6 concludes.

2. Theory
2.1. Analysis Approach

The goal of the analysis herein is to capture the changes in the harmonics signal
simultaneously in both the spectral- and the time-domain. The proposed approach for
this task is similar to the one applied for the short-time Fourier transform (also termed
spectrogram) [30]. In this approach, the sampled signal is divided into constant-length
frames of length Tf with each frame independently used for harmonic analysis.

In the following, the statistical analysis approach is summarized:

1. The power values of m-th harmonic at the frequency of fm = 50 ·m [Hz] of the l-th
frame, pm,l , were evaluated by the method outlined in Section 2.2 (Figure 2a).
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2. The statistics of m-th harmonics power values were evaluated across all the frames as
visualized in Figure 2b. The results for each harmonic were modeled by a lognormal
distribution that is outlined in Section 2.3.

3. The inter-harmonic relations between different frames for the same harmonics were
evaluated as visualized in (Figure 2c). The evaluation was performed by an auto-
covariance function (ACF), as outlined in Section 2.4.

4. The analysis of intra-harmonic relations between different harmonics in the same
frame were evaluated as visualized in (Figure 2c). The evaluation was based on a
coherence theory outlined in Section 2.5.

(a)
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Figure 2. The analysis of a harmonics signal is based on the spectrogram concept, with power pm,l of
l-th frame and m-th harmonic: (a) harmonics value for each time-frame; (b) statistics of m-th harmonic
for all frames; (c) inter-harmonics relation; (d) intra-harmonics relation.

2.2. Harmonics Model

In order to provide accurate spectrum estimation results, maximum likelihood harmon-
ics estimation [29] was applied (Section 2.2.1). The most essential details on the method are
provided below, and its reversibility and tractability are further discussed in Section 2.2.2.

2.2.1. Parameter Estimation

The sampled signal is divided into L frames with N samples in each frame. Each frame
of a signal is modeled by the harmonics model that is formulated by a Fourier series as

y[n] = bc0 +
M

∑
m=1

(bcm cos(ω0mn) + bsm sin(ω0mn)) + w[n], (1)

where the coefficients {bcm}M
m=0 and {bsm}M

m=1 carry information on the intensity and
phase of the first M harmonics of the signal, ω0 = 2π f0/ fs is the angular electrical network
frequency, fs is the sampling frequency, n = 0, . . . , N − 1 denotes time and w[n] is the
residual noise.

In order to simplify the presentation, Equation (1) may be rewritten as a linear relation
in matrix form as

y = A(ω0)b + w, (2)
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where

• y is an N × 1 vector of signal samples;
• A(ω0) is an N × (2M + 1) matrix whose n-th row is[

1, cos(ω0n), . . . , cos(ω0Mn), sin(ω0n), . . . , sin(ω0Mn)
]
;

• b is the corresponding coefficients vector of the form

b = [bc0, bc1, . . . , bcM, bs1, . . . , bsM]T ;

• w is the vector of noise samples.

Given the value of ω0, the estimation of b is given by a least-squares solution of the
form [29]:

b̂ =
[
AT(ω0)A(ω0)

]−1
AT(ω0)y. (3)

The corresponding estimated power value of the m-th harmonic of the l-th frame, p̂m,l ,
is straightforwardly found by

p̂m =

{
b̂2

c0 m = 0
b̂2

cm + â2
sm m 6= 0

, (4)

with the frame index omitted for brevity. This estimation procedure is repeated for each
frame. Note, the theoretical estimation accuracy as derived by the Cramer–Rao lower
bound (CRLB) under the assumption of white Gaussian noise is inverse proportional to the
frame length, ∼1/N [29].

In order to suppress side-lobe effects, a window of length N has to be applied on the
signal y. In this research, the Hann window [31] was chosen due to is reasonable main-lobe
width and steep side-band attenuation.

2.2.2. Estimation Accuracy Evaluation

The estimated signal ŷ may be reconstructed from the harmonics coefficients by
the relation

ŷ = A(ω0)b̂, (5)

and the estimated residual error signal is given by

ê = y− ŷ, (6)

with the resulting SNR defined as the ratio of signal power divided by the residual sig-
nal power,

SNR =
〈ŷ〉2

〈ê〉2
, (7)

which can be seen to be a measure of the estimation and/or reconstruction accuracy.

2.3. Lognormal Distribution

A lognormal distribution is often applied to model various natural phenomena, such
as the fading behavior of radio-frequency (RF) and optical channels [32,33]. In the context
of this paper, we apply the decibel-based parametrization following the convention in ([32],
Chapter 2). In this convention, a lognormal distribution is defined as the Gaussian distri-
bution of decibel values of interest (xdB = 20 log10(x) for amplitude, xdB = 10 log10(x) for
power), with the probability density function (PDF)

p(xdB) =
1

σdB
√

2π
exp

(
− [xdB − µdB]

2

2σ2
dB

)
, (8)
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where µdB and σ2
dB are the mean and variance of xdB, respectively. The multivariate lognor-

mal distribution is the extension of the univariate distribution with a covariance matrix Σ.
In this paper, a lognormal distribution is applied for modeling the distribution of the m-th
harmonics frequency slice (Figure 2).

2.4. Auto-Covariance Function (ACF)

The goal of the ACF is to quantify the linear dependency between time-domain
samples. The normalized ACF, Cx[k], is defined as the correlation coefficient between
two samples of a random signal separated by k samples. In the context of this paper,
the normalized ACF was applied to identify the statistical linear dependency of the same
harmonic m between k-spaced frames. The ACF of the m-th harmonic was evaluated by [34]

Cxm [k] =
∑l(pm,l+k − p̄m)(pm,l − p̄m)

∑l(pm,l − p̄m)
2 , (9)

where
p̄m =

1
L ∑

l
pm,l (10)

stands for power averaging of the m-th harmonic frequency slice over all frames.

2.5. Spectral Coherence

The spectral coherence describes the linear correlation coefficient between frequency
components of a signal. In the context of this paper, this principle was extended to
statistically characterize the correlation coefficient between different harmonics in the
same time frame. The coherence between two frames m1 and m2 for lth harmonic was
evaluated as a correlation coefficient between L-dimensional measurement vectors, pm1,l
and pm2,l , with l = 1, . . . , L [35]:

R[m1, m2] =
∑l
(

pm1,l − p̄m1

)(
pm1,2 − p̄m2

)
∑l
(

pm1,l − p̄m1

)2
∑l
(

pm2,l − p̄m2

)2 , (11)

where p̄m is defined in Equation (10). When all correlation coefficients are of interest, they
may be organized in a covariance matrix of size M×M.

3. Experiment
3.1. Electrical Setup

The electrical setup is presented in Figure 3. The SMPS to be tested was connected
to an electrical network with the consumed current measured by an ammeter (NI 9277),
sampled, and logged for further off-line analysis. The DC Load (Array 3710) provides a
different load current for the SMPS.

A

SMPS

DC
Load

+

−

Figure 3. Schematic presentation of the experimental setup.

During the experiments three power supplies were evaluated:

1. HP 0950-4082 with a nominal voltage of 32 V and maximum current of 940 mA;
2. DVE DSA-40CA-19 with a nominal voltage of 19 V and maximum current of 1.58 A;
3. SAKAL SAW012120100 with a nominal voltage of 12 V and maximum current of 1 A.

In the following, only the results for the first SMPS are presented. The results for the
two other SMPSs are quite similar and are presented in the Supplementary Material.
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3.2. Analysis Configuration

Each power supply was analyzed for 10 different levels of load current ranging be-
tween unloaded level and approximate maximal current level; these levels were controlled
by the DC Load. Sampling was performed at a 50 kHz frequency with 24-bit resolution.
Sampling frequency was arbitrarily set to the maximum value provided by the applied
equipment, as higher frequency results in higher accuracy, as outlined above in Section 2.2.
Sufficient sampling resolution is required to overcome the high dynamic range difference
between 50 Hz and higher frequency harmonics. The applied sampling resolution was
provided by the used equipment. The frame length was set to the single 20 ms period of a
50 Hz signal, that is, 1000 samples. The applied value was set to conveniently evaluate the
inter-period statistics.

4. Experimental Results
4.1. Distribution Modeling

The goal of this section is to validate the lognormal distribution assumption
(Section 2.3). The validation is based on the goodness-of-fit principle when the empir-
ical PDF is compared with the theoretical one. A histogram method is used as an empirical
density estimator. An example of a histogram with a Gaussian distribution fit is presented
in Figure 4 and illustrates the resemblance between the empirical results and the theory.

-38 -36 -34 -32
Current (dB)

 (a)

-38 -36 -34 -32
Current (dB)

 (b)

Figure 4. An example of the fluctuations of harmonics power (Equation (4)) at 800 mA load modeled
by a lognormal distribution; the distribution is in dB units fitted with the Gaussian PDF for (a) 750 Hz
harmonic and (b) 850Hz harmonic.

In order to demonstrate the relations between the empirical results and the theory for
different harmonics and different DC load levels, a collection of histogram fits for three
different load levels and four different harmonics is presented in Figure 5. Again, the results
show a significant resemblance between the empirical histograms result and the theoretic
PDF of lognormal distribution for all the presented harmonics and load levels.

The characterization parameters of the lognormal distribution are µdB and σdB that
are related to the average harmonics power and the power variability. An analysis of
µdB and σdB values as a function of frequency for different load levels is presented in
Figure 6. As expected, for higher frequencies, the average harmonics power is lower and
the variability is higher.
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Figure 5. Histogram fits of lognormal distribution for different harmonics and different DC load levels.
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Figure 6. Lognormal distribution parameters as a function of frequency for different load levels:
(a) µdB and (b) σdB.

The further load-dependence of the harmonics powers on the DC load current is
presented by a box-plot in Figure 7. While following the results in the Figure 6 above,
the results show that lower-frequency harmonics power tends to be significantly influenced
by DC load current. In contrast, higher-frequency harmonics show significantly lesser
consistent dependence on DC load current.
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Figure 7. Box-plot of the levels of the different harmonics power as a function of DC load current.

4.2. ACF Modeling

The goal of ACF evaluation is to quantify the linear statistical inter-frame relation
between harmonics as defined in Section 2.4 above. The numerical evaluation of the ACF
was performed as defined in Equation (9). The presented results (Figure 8) are for three
different harmonics frequencies fm = 50 ·m [Hz] with m = 1, 3, 5. Three different current
load levels (300 mA, 500 mA, and 700 mA) are presented.

It is common to use ACF level of 0.5 as a borderline limit between linearly dependent
and independent conditions [32]. Through the evaluation, for all of the measurements,
the ACF level is below 0.5. Moreover, this result holds even for consecutive frames.
Therefore, the harmonics powers may be modeled, as an approximation, to be linearly
independent (also termed as uncorrelated) between different frames.

-25 -20 -15 -10 -5 0 5 10 15 20 25
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0.5
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C
x
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50Hz
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-25 -20 -15 -10 -5 0 5 10 15 20 25
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0.5

1

C
x
[k

]

450Hz

300mA
500mA
700mA

Figure 8. ACF of harmonics power for different frequencies.
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4.3. Coherence Modeling

The correlation of intra-frame harmonics coefficients (Section 2.5) is visualized in
Figure 9. The covariance matrices are presented in Figure 9a and show that three to five of
the closest spaced harmonics are highly correlated with a significant drop-out for higher
frequency spacing. An illustration of a coherence function is presented in Figure 9b, where
the y-axis values are correlation coefficients as a function of a harmonics frequency. The
results show significant linear statistical dependence between closely-spaced harmonics
inside the same frame.

Following the presented experimental results, the proposed modeling of the coherence
function (Equation (11)) is based on the Gaussian radial basic function (RBF) of the form [36]

R[m1, m2] ≈ exp

[
−‖m1 −m2‖2

b

]
. (12)

This approximated modeling is suitable for a sufficiently small difference between har-
monics, ‖m1 −m2‖ . 15. The scale parameter b has to be evaluated from the measurements.
An illustration of the proposed approximation is presented in Figure 9b. The corresponding
b values for the presented plots are ≈83 for 50 Hz harmonic and ≈92 for 600 Hz harmonic.
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2
]
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600Hz - measured
600Hz - modeled

(b)

Figure 9. Correlation of harmonics coefficients. (a) Covariance matrix visualization. (b) Selected
harmonics with Gaussian radial function fit.

5. Discussion
5.1. Estimation Accuracy

The harmonics estimation accuracy was evaluated by a comparison between the signal
ŷ (Equation (5)) reconstructed from the harmonics coefficients and the original experimental
signal y. An example of such a comparison is presented in Figure 10 for a M = 100 harmon-
ics and shows significant resemblance between the signals. The corresponding accuracy
was quantified by SNR (Equation (7)) that measures 41.4 dB for the presented signals.

During the harmonics power evaluation, all of the resulting values were quantified by
SNR. The majority of the estimated SNR values were between 39 dB and 44 dB, with a few
outliers. Such values may be considered as a high outcome for an estimation procedure.
Moreover, this result also shows negligible influence of inter-harmonics modulation.
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Figure 10. An example of the reconstructed signal ŷ compared to the original signal.

5.2. Simulation

Following the assumption of time-domain independence (Section 4.2), the covari-
ance matrix approximation (Section 4.3) and the reconstruction accuracy presented in the
previous section, the harmonics signal may be modeled and simulated by a multivariate
lognormal distribution. The corresponding lognormal distribution parameters (Section 2.3)
are means of the distribution that are presented in Figure 6a, the values of the diagonal
of the covariance matrix are presented in Figure 6b and the remaining values may be
evaluated by Equation (12).

5.3. Limitations—High Load

An important applicability limitation aspect of this approach is shown for the particu-
lar modeling of even harmonics at high current load close to the upper limit current of the
SMPS. For instance, see the example (Figure 11) of even harmonics for a 900 mA (out of
maximum 940 mA) DC load current, where the proposed modeling is less accurate.

-18.5 -18 -17.5
Current (dB)

 (a)

-17.6 -17.4 -17.2 -17
Current (dB)

 (b)

Figure 11. Even harmonics at high load sometimes cannot be lognormal modeled. An example of
900 mA load: (a) 100 Hz harmonic; (b)150 Hz harmonic.

6. Summary and Conclusions

The main goal of this study was to model the harmonics power of a SMPS by a
stationary random process using experimental data. The modeling includes stationary
characterization by PDF and time-domain and frequency domain harmonics relations
characterization by ACF and coherence function. The main conclusion points are:
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• The lognormal distribution modeling may be applied for characterization and simula-
tion of SMPS harmonics current consumption.

• The time-domain harmonics relation may be assumed as linearly independent.
• The frequency domain modeling may be incorporated by applying the corresponding

covariance for multivariate lognormal distribution.
• The proposed method offers a new approach for random simulation the current

consumption of SMPSs based on statistical harmonics modeling.

The most important limitation of this study is the number of the experimentally
characterized devices. Further work is required to examine, characterize, and model the
transient changes in consumed current for deferent DC load levels.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15020653/s1, Figure S1: PS1: Power supply HP 0950-4082; Fig-
ure S2: PS2: Power supply DVE DSA-40CA-19; Figure S3: PS3: Power supply SAKAL SAW012120100;
Figure·S4: PS1: Illustration of the signal variability over multiple time-synchronized periods. Mul-
tiple overlapped single periods of the same signal are presented.; Figure S5: PS2: An example of
the fluctuations of harmonics power modeled by lognormal distribution (similar to Figure 4 in the
paper); Figure S6: PS2: Histogram fits of lognormal distribution for different harmonics and different
DC load levels (similar to Figure 5 in the paper); Figure S7: PS2: Box-plot of the levels of the different
harmonics power as a function of DC load current (similar to Figure 7 in the paper); Figure S8: PS2:
ACF of harmonics powers for different frequencies (similar to Figure 8 in the paper); Figure S9: PS2:
Even harmonics at high load can only barely be lognormal modeled (similar to Figure 11 in the paper);
Figure S10: PS2: Correlation of harmonics coefficients (similar to Figure 9 in paper); Figure S11: PS3:
An example of the fluctuations of harmonics power modeled by lognormal distribution (similar
to Figure 4 in the paper); Figure S12: PS3: Histogram fits of lognormal distribution for different
harmonics and different DC load levels (similar to Figure 5 in the paper); Figure S13: PS3: Box-plot of
the levels of the different harmonics power as a function of DC load current (similar to Figure 7 in
the paper); Figure S14: PS3: ACF of harmonics powers for different frequencies (similar to Figure 8
in the paper); Figure S15: PS3: Correlation of harmonics coefficients (similar to Figure 9 in paper);
Figure S16: PS3: In this case harmonics at high load are still close to the lognormal model (see
Figure 11 in the paper).
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