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Abstract: This paper introduces a novel, transfer-learning-based approach to include physics into
data-driven normal behavior monitoring models which are used for detecting turbine anomalies.
For this purpose, a normal behavior model is pretrained on a large simulation database and is
recalibrated on the available SCADA data via transfer learning. For two methods, a feed-forward
artificial neural network (ANN) and an autoencoder, it is investigated under which conditions it can
be helpful to include simulations into SCADA-based monitoring systems. The results show that when
only one month of SCADA data is available, both the prediction accuracy as well as the prediction
robustness of an ANN are significantly improved by adding physics constraints from a pretrained
model. As the autoencoder reconstructs the power from itself, it is already able to accurately model
the normal behavior power. Therefore, including simulations into the model does not improve its
prediction performance and robustness significantly. The validation of the physics-informed ANN
on one month of raw SCADA data shows that it is able to successfully detect a recorded blade angle
anomaly with an improved precision due to fewer false positives compared to its purely SCADA
data-based counterpart.

Keywords: transfer learning; informed machine learning; performance monitoring; simulation-based
neural networks

1. Introduction

Wind power remains one of the fastest growing renewable energy sources with a
global installed wind power capacity of 744 GW by the end of 2020 [1]. With the continued
trend of the growing wind turbine (WT) size and their deployment in offshore environ-
ments, it becomes increasingly important to reduce the operation and maintenance (O&M)
costs by optimizing O&M activities. In this context, monitoring and predicting the turbine
performance plays an important role for enabling the implementation of predictive mainte-
nance strategies. Studies have shown that underperformance, e.g., due to pitch faults or
gearbox faults, can lead to significant losses in the revenues [2]. It is therefore important for
the operators to deploy intelligent monitoring of the wind turbines health state, termed
condition monitoring (CM), to reduce unscheduled downtime and thus operational costs
of wind energy [3]. The aim of CM is to detect deviations from the normal operational
behavior indicating a developing fault. This requires detailed knowledge of the system,
which is often not available. Traditional dedicated condition monitoring systems (CMS) are
mostly based on extra measurements (e.g., vibration measurements, strain measurements,
thermography and acoustic emissions) which makes them costly since they require the
installation of extra sensors.

However, utility-scale turbines are typically equipped with a standard supervisory
control and data acquisition (SCADA) system. Using the SCADA data for condition moni-
toring purposes has become more and more popular as it presents a low-cost alternative
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to the CMS solutions. An extensive review of the various approaches which have already
proved successful in detecting anomalies using the turbine data can be found in [4].

Most of recent research focuses on normal behavior modeling (NBM) in which a model
is trained to predict a specific output signal using historic SCADA data from periods where
the turbine is considered to operate under healthy conditions. After the training phase, the
model can be applied to estimate the output signal. The residual of the modeled minus
the measured variable serves as indicator for an anomaly from normal operation. The
important advantages of the purely data-driven NBM method are that no prior knowledge
about the signal behavior is needed [3] and monitoring the residual for anomaly detection
is mostly decoupled from the turbines operational mode [5].

Models based on machine learning methods, especially artificial neural networks
(ANN) have shown good anomaly detection abilities [4]. However, the disadvantage of
such black-box models is that they are difficult to interpret and require a large amount of
data. Furthermore, the training of purely data-driven models can be affected by noise of
measurements, and although it seems to perform well on training and test data, it might
lead to poor generalization outside the available data. With the recent trend of increased
computing power, it becomes feasible to combine physics with ML in different ways, which
is recognized as the term “theory-guided data science”, “physics-guided machine learning”
or also “physics-informed machine learning”. Including physics information into ML
detection models may enable learning generalizable patterns without overfitting.

In [6], the authors present an extensive taxonomy overview of the different ways
knowledge can be included in a machine learning system. Due to the reasons mentioned
above, there is a lot of interest by both research and industry in the wind sector to build
more robust models by leveraging physics-informed machine learning. However, there
is only little research on such physics-informed ML techniques applied to wind turbine
CM: For an automatic diagnosis of the observed residual patterns in the NBM procedure,
expert knowledge can be incorporated by using fuzzy inference systems based on a set of
if-then rules, as shown in [3,7,8]. In [9], a physics-informed Gaussian process approach is
developed that can be used for detecting power grid faults. For the application of damage
modeling, a physics-informed neural network is built based on repeating cells of recurrent
neural networks (RNNs) in [10,11].

1.1. Objective

However, these approaches have not been applied to the commonly used NBM.
Especially, in situations where SCADA data are scarce or noisy, it might not be enough to
build a well-performing NBM based solely on measurement data. Therefore, this study
investigates the potential of augmenting SCADA data with aeroelastic simulations for
building NBM models of wind turbines in a wind farm by means of a knowledge transfer
technique called transfer learning. The hypothesis to be tested is on whether including
physics constraints in this way improve the performance of the normal behavior model
and its corresponding anomaly detection when having a limited amount of SCADA data.
The model improvement is measured by the following performance metrics:

• Sample efficiency (i.e., how much data are needed to reach a certain prediction accuracy)
• Robustness (i.e., how much the prediction error varies)
• Ability to detect anomalies (i.e., precision and recall)

1.2. Paper Outline

The remainder of the article is structured as follows: In Section 2, the concept of the
proposed method for including physics knowledge into a deep-learning-based normal
behavior model is described. Two different methods for augmenting SCADA data with
simulations, as well as their usage for anomaly detection, are explained. In Section 3, the
described concept is applied to the SCADA data from an offshore wind farm. The resulting
model performances are shown for different amounts of SCADA data used and different
amounts of knowledge transferred. These results are compared against their purely data-



Energies 2022, 15, 558 3 of 21

driven counterparts. Moreover, the residual analysis of the models applied to raw SCADA
data for anomaly detection is presented. Section 4 compares the presented methods and
discusses its limitations, i.e., under which specific conditions is augmenting data-driven
monitoring models with simulations beneficial for a turbine operator. Furthermore, the
impact on the suggested approach on the anomaly detection ability is discussed. In
Section 5, the conclusions of this study are drawn, and future work is suggested.

2. Materials and Methods

The normal behavior model monitors the SCADA data via a set of input signals and
is built using the following steps: (1) data preparation, (2) model training and model
evaluation and (3) residual analysis. In the first step, the SCADA data are preprocessed and
filtered to select a subset which represents normal WT operations without faults. If alarm
logs of the SCADA system are available, they can be used for flagging any observation
deviating from normal operation, i.e., faulty, transient, curtailed, etc. A regression model is
then trained and evaluated on the normal behavior SCADA data. After the training phase,
the evaluated model is applied to new raw SCADA data to estimate the to-be-monitored
output signal. The estimated output is compared against the actual measured signal, and
the residual pattern is analyzed in order to detect anomalies. Typically, this involves setting
a threshold which, if exceeded, would indicate an anomaly.

2.1. Transfer Learning for NBM

The aim of transfer learning is to improve the performance of a target learner on a
target domain DT by transferring knowledge contained in a different but related source
domain Ds [12,13] (see Figure 1). A recent comprehensive review on transfer learning can
be found in [13].

Figure 1. Schematic illustration of knowledge transfer for monitoring wind turbines using simulations
and measured SCADA data.

The SCADA database used for building the normal behavior monitoring model rep-
resents our target domain data DT = {XT , PT(XT)} with a feature space XT and a dis-
tribution PT(XT), whereas a large simulation database serves as the source domain data
DS = {Xs, PS(XS)} with a corresponding feature space XS and distribution PS(XS).

A source model trained on a large number of aeroelastic simulations is assumed to cap-
ture the main physics behavior of the turbine operation under the simulated conditions. As
the turbines’ measurement data are limited, the idea is to introduce physics constraints by
using the knowledge obtained in the pretrained source model to improve the performance
of the target model.
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2.2. Feature Selection

This study focuses on a turbine which is located in an offshore wind farm. Since the
turbine operates under the influence from the wakes of neighboring turbines, features
capturing these influences need to be used in the model. As the electrical power P is the
main characteristic for describing the overall operation of a WT, it is used as output of the
normal behavior model in this study. Only inputs that are available in both measurement
and simulation data are used for modeling the power of a turbine in a wind farm. Based
on a previous study [14], the selected input variables are the wind speed u, the wind
speed standard deviation σu, the row spacing RD, wake incidence angle γ and number of
disturbing turbines Nrows:

Xmodel = [u, σu, RD, γ, Nrows] (1)

The wake experienced by the monitored turbine can be characterized by the latter
three variables (RD, γ, Nrows). This is based on its relative position towards the other wake
sources within the wind farm. More details on the input selection can be read in [14].

2.3. Creation of Source Data (Simulation)

The simulation database is created by carrying out a 30,000 point Monte Carlo (MC)
simulation with samples drawn from the joint probability distribution of the defined input
variable space Xsim. Selecting this input variable space is an important step in the creation
of the simulation data. The choice of input variables and their probability distributions
is based on the intention to cover a wide range of environmental conditions that are
representative for the wind farm used in this study. Further details about the input variable
distributions and their boundary functions can be found in a previous study by the authors
in which the database has been created [15].

Figure 2 presents the set of models that are required to run aeroelastic time series
simulations St(X) on the 30,000 input samples. In order to model the turbine response to
the wind inflow conditions, a structural, aerodynamic, and controller model is required.
For offshore turbines, additional models accounting for the hydrodynamic and soil forces
are to be considered as well. In this study, the aeroelastic tool HAWC2 [16,17] is used to
simulate a turbine under normal operating conditions. This means that the simulations are
carried out for normal power production (i.e., not for start-up or shutdown behavior and
without faults) for wind speeds in the entire operational range of the turbine. The stochastic
part of the wind is modeled using the Mann spectral turbulence generator [18]. In this way,
time series that are generated for the same conditions are different for each realization. This
variability causes uncertainty in the turbine performance. However, the uncertainty for
the performance estimation through the variability of the wind is reduced by using a large
Monte Carlo sample [15]. The dynamic wake meandering (DWM) model [19] is used for
simulating the wake effects from multiple wake sources Nrows.

Finally, the time series simulations St(X) are postprocessed in order to calculate the
10 min statistics. The interested reader can find further details about the method and
specific simulation set up in [15]. The database is openly available in https://doi.org/10.1
1583/DTU.12245978 (accessed on 10 January 2022).

https://doi.org/10.11583/DTU.12245978
https://doi.org/10.11583/DTU.12245978
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Figure 2. Process of aero-servo-hydro-elastic simulations using sampled input variables. The figure
is taken from [15] which is distributed under CC BY 4.0 License. Details of the license are available at
https://creativecommons.org/licenses/by/4.0/ (8 July 2021).

2.4. Method 1: Artificial Neural Network (Parameter Transfer)

The first method used for training a normal behavior regression model is an artificial
neural network (ANN). The ANN is selected due to its high potential for delivering fast
and accurate predictions for a variety of applications, such as demonstrated in previous
studies [5,20,21]. As illustrated in Figure 3, an ANN consists of a number of neurons which
are organized in layers L. Its simplest form is a multilayer perceptron (MLP), in which
the input vector x is processed forward through the hidden layers to calculate and output
vector y. Figure 3 shows a network with three hidden layers and input and output vectors
as used in this study.

Figure 3. Schematic illustration of ANN architecture with parameter transfer. Parameters from the
first two layers are fixed (red), while last two layers are retrained on the target data (green).

At each neuron j, the n-dimensional input is processed with a linear transfer function:

aj =
n

∑
i=1

wjixi + wj0 (2)

with the weight parameter wi and the bias parameter w0. The result aj is then passed
through a nonlinear activation function:

zj = h(aj) (3)

https://creativecommons.org/licenses/by/4.0/
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The output zj of neuron j then serves as input to the neurons of the following layer
until the output layer is reached. The parameters of the network are trained using a back-
propagation algorithm and an optimization algorithm that minimizes a loss function. In
this case, a least-squares cost function is used to minimize the loss:

Loss(w) =
1
2
‖ f (x, W)− y(x) ‖2 (4)

In order to add physics constraints into the training of a normal behavior network,
a network that is pretrained on the source data (simulations) is used as a starting point
for the new training task on the SCADA data. For the latter, the weight parameters of the
first n f ixed layers are kept constant such that only parameters of the remaining layers are
adjusted during the retraining phase on the SCADA data.

2.5. Method 2: Stacked Denoising Autoencoder (Subspace Transfer)

Secondly, an autoencoder (AE) is used as an alternative method for building a normal
behavior model of the power. Previous studies have highlighted the promising use of
denoising autoencoders for fault detection purposes with its advantages of strong learning
abilities together with the decreased risk of overfitting [22,23]. A basic AE is a feed-forward
neural network with one hidden layer, also called code layer, and the output vector being
equal to the input vector. An AE is composed of an encoder function h = f (x), which
maps the input vector x to the code, and a decoder function x̂ = g(h), mapping the code
back to a reconstruction of the input x̂. When multiple AE layers are stacked to form a deep
learning network it is called a stacked auto encoder (SAE). Figure 4 shows an example of
such a stacked autoencoder with the code layer L3 and the remaining hidden layers L1 and
L2. By setting the size of the code layer to be smaller than the input dimension, the network
is forced to model a compressed, lower-dimensional latent subspace Z. To make sure that
the network does not simply reproduce the input signal, Gaussian noise is added to the
input. This modified version of the AE is called a stacked denoising autoencoder (SDAE).
Several studies used AEs as a regression model for WT monitoring [22,23].

Figure 4. Schematic illustration of architecture of an autoencoder with subspace transfer. Parameters
from the first two layers are fixed (red), while last two layers are retrained on the target data (green).

Similarly to the above-described ANN knowledge transfer, a SDAE network is trained
on the simulation data and retrained on SCADA data while keeping the parameters of the
first n f ixed layers constant. When keeping all layers up to the code layer fixed (see Figure 4),
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the hypothesis is that the subspace Z learned on the simulations helps the model to better
learn the target task on the SCADA data.

2.6. Anomaly Detection

After training and evaluating the normal behavior models, they are applied to the raw
SCADA data to estimate the power output. As presented in Figure 5, the power estimation
ŷ is compared with the actual measured power y by calculating the residual ε:

ε = ŷ− y (5)

Figure 5. Schematic illustration of anomaly detection. Reproduced from [4] which is distributed
under CC BY-NC-ND 4.0 Licence. Details of the license are available at https://creativecommons.
org/licenses/by-nc-nd/4.0/ 8 July 2021.

Large deviations between the measured and the modeled signal indicate abnormal
behavior. When analyzing the residual for the detection, it is crucial to consider information
about the uncertainty of the model estimates. The underlying assumption of anomaly
detection is that normal observations are present in high probability regions and anomalies
in low-probability regions of a stochastic model [3]. Therefore, the distribution of the power
residuals during the testing phase of the normal behavior model are used for setting normal
thresholds. Assuming that the testing residuals εtest are normally distributed, the upper
and lower control limits (CL) are calculated using the following equation based on [24]:

CL = µtest ± η
σtest√

n
(6)

with the average prediction error µtest, the standard deviation of prediction errors σtest, and
the number of observations n used for testing. The constant η is manually tuned in order to
attain the confidence interval that avoids sensitivity toward data variations. A residual of
the predictions on new SCADA observations that surpasses the control limits is assumed to
have low probability based on the trained normal behavior model and is therefore detected
as an abnormal observation.

The detection ability of the normal behavior models was tested on one month of raw
SCADA data (1 May to 31 May 2016). During this period, the SCADA system recorded
an implausible blade angle on 21 May 2016 for a duration of 31 min. Figure 6 shows the
power curve and time-series measurements of power, wind speed, pitch angle and rotor
speed for the time window in which the alarm occurred. The signals are normalized by
their maximum value.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 6. Power curve (a) and time series of power, wind speed, pitch angle and yaw angle (b) from
SCADA measurements for a time period where a problem with blade angle has occurred.

To evaluate the performance of the anomaly detection system, the precision and recall
are calculated. The precision of a binary classifier measures the probability that the detected
anomaly is an actual anomaly and is defined as follows:

Precision =
#TruePositives

#TruePositives + #FalsePositives
(7)

The recall on the other hand, also known as sensitivity, indicates how well the system
is able to find anomalies:

Recall =
#TruePositives

#TruePositives + #FalseNegatives
(8)

These performance metrics depend on how the normal threshold is defined. A low
threshold results in a high recall where a large fraction of anomalies are detected; however,
with a lower precision, more normal observations are flagged as an anomaly. A too high
threshold gives the opposite result [22]. Therefore, setting a suitable threshold is a crucial
task for building an anomaly detection system.

3. Results
3.1. Data Preparation

The SCADA data from an offshore wind farm with 305 MW turbines are available for
the period from July 2011 to May 2017 with a sampling rate of 10 min. Furthermore, alarm
logs of the SCADA system are available for the period from June 2012 to June 2017. The
results are presented for a turbine located at the eastern border of the wind farm. With
southwestern prevailing wind direction, the WT is mainly exposed to wake effects from
three to four upstream turbines. This turbine is selected since it has one of the lowest
downtime and lowest fault frequency within the wind farm and therefore contains a large
amount of SCADA data for building a normal behavior model. Nevertheless, visualizations
of the SCADA data and alarm logs show indications of underperformance issues for testing
the monitoring models.

The alarms are processed and categorized into the component related subsystem
following the reviewed taxonomy of modernized WT [25]. Only alarms that the authors
consider as indications of a fault or problem are considered. The majority of the critical
alarms are related to the rotor and blade subsystem. To the authors knowledge, the turbine
did not experience any main bearing or gearbox failure for the recorded time.
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3.2. SCADA Data (Target Domain)

The SCADA signals are synchronized and filtered to normal behavior. Firstly, all
observations that are flagged as curtailed, not operating, transient or faulty by the SCADA
system are discarded. Secondly, the OpenOA toolkit developed at NREL [26] is applied.

3.3. Simulation Data (Source Domain)

The source data are simulated as described in Section 2.3. The simulations are carried
out using the NREL offshore 5MW reference turbine with a jacket structure model [27].
Figure 7 shows a comparison of the simulation results against the SCADA signals power,
pitch angle and rotor speed with respect to the wind speed.

(a) (b)

(c)
Figure 7. Comparison of measured and simulated data used for building a normal behavior model
including (a) power, (b) pitch angle and (c) rotor speed with respect to the wind speed.

3.4. Model Performance Evaluation

In order to analyze the impact of augmenting simulations into the SCADA data under
different data availabilities, the target normal behavior models were trained and tested
using 1, 3, 6, 9 and 12 months of data, respectively. The available data were shuffled, and
each model was trained on 80% of the data, whereas its prediction performance was tested
on the remaining 20% of the data to avoid overfitting. Firstly, the data was shuffled, and
each model was trained on 80% of the data and tested on the remaining 20% of data to
avoid overfitting. This was performed within a five-fold crossvalidation for estimating the
generalization error such that all of the available data points have been used for training
once. The variation of the generalization error is an indicator for how robust the model
performance with different training/test splits. Secondly, in order to properly compare
the model performances with different amounts of training sizes, a model was trained
completely on 1, 3, 6, 9 and 12 months of data and tested on the same subsequent 3 month
period. Here, the prediction performance of each model set up was evaluated on three
iterations in order to account for the performance variations due to randomness in the
ANN (i.e., initialization).
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For the performance evaluation, the coefficient of determination (R2) and the per-
centage of normalized root mean squared error (NRMSE) were calculated using the
following equations:

R2 = 1− SSres

SStot
= 1− ∑n

i=1(y− ŷ)2

∑n
i=1(y− y)2 (9)

NRMSE[%] =
1

Prated

√
∑n

i=1(ŷ− y)2

n
· 100 (10)

with the mean of measured power y, rated power of the turbine Prated and number of test
observations n. The R2 value represents how much variability of the output has been
accounted for with the sum of squares of residuals SSres and the total sum of squares SStot,
which is proportional to the variance of the data.

Both ANN and SDAE methods are implemented using the Sequential class of the
Python deep-learning-library Keras, since the Sequential class allows one to keep selected
parameters fixed during the retraining of the network.

3.5. Artificial Neural Network (Parameter Transfer)

After hyperparameter tuning, the most suitable network architecture for a SCADA-
based ANN consists of three hidden layers with 25 neurons in each layer. The network is
trained using the Adam optimization algorithm with a learning rate of 0.7 and a batch size
of 400. A regularization factor of 0.001 is used to avoiding overfitting.

The source model is trained with 400 epochs on the complete simulation database.
Figures 8 and 9 show the model performance of the source model on the test data. The
coefficient of determination of the predictions from the source model is 0.995, and the
NRMSE is 2.35%.
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Figure 8. Normalized power estimated by ANN on test set of source data with respect to normalized
power simulations.
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Figure 9. Normalized power estimated by ANN on test set with respect to normalized power simulations.
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The target model is trained for five different data scales (1, 3, 6, 9 and 12 months) and
four different parameter transfer scales (no parameter transfer, from one to three layers
transferred from source model) resulting in 20 different model set ups. The resulting
prediction accuracy of these models on the test set are presented in Figure 10. Each boxplot
presents the distribution of R2 values of the five model iterations within the five-fold
crossvalidation. For the transfer learning (4− n f ixed) layers of the source model were
retrained on the SCADA data with 100 epochs. The NRMSE distributions of the models
are not shown since they follow a similar pattern as the R2 values. The mean and standard
deviation of the prediction accuracy of each model is shown with respect to the amount of
SCADA data used for the training in Figures 11 and 12 and Table 1. Finally, a comparison
of the model performances tested on the same 3 months period is shown in Figure 13.
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Figure 10. ANN target model performance on different amounts of normal SCADA data and
knowledge transfers. Each boxplot represents the R2 distribution of the models trained within the
five-fold crossvalidation. The target models are trained using 1 month (a), 3 months (b), 6 months (c),
9 months (d), and 12 months (e) of normal SCADA data.
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Figure 11. Average R2 value for ANN for different amounts of training data and knowledge transfers.
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Figure 12. Standard deviation of R2 value for ANN for different amounts of training data and
knowledge transfers.

Table 1. Prediction performance of ANN for different amounts of training data and knowledge transfers.

Mean R2 Mean NRMSE (%)

1 3 6 9 12 1 3 6 9 12
SCADA 0.901 0.958 0.956 0.958 0.959 11.06 7.58 7.44 7.57 7.45
n f ixed = 1 0.927 0.958 0.956 0.958 0.958 9.53 7.56 7.47 7.61 7.51
n f ixed = 2 0.929 0.958 0.957 0.958 0.958 9.42 7.53 7.40 7.55 7.50
n f ixed = 3 0.913 0.950 0.951 0.954 0.953 10.43 8.25 7.89 7.95 7.96
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Figure 13. R2 value for ANN for different amounts of training data and knowledge transfers tested
on same 3 months test data.
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3.6. Autoencoder (Subspace Transfer)

The hyperparameter tuning of the autoencoder requires more effort compared to
the previous ANN since we need to make sure that autoencoder also works on detecting
anomalies and does not simply reconstruct power by using the power solely. Therefore, its
ability to detect anomalies on a validation data set with artificially introduced anomalies
was also considered during the tuning process. An artificial validation data set was
constructed based on 3 months of normal filtered SCADA data Pnormal , by including 43% of
abnormal observations Pabnormal , of which 10% represent an abnormal increase in power
between 100 and 300 kW, and the remaining 90% represent a 300–500 kW increase in power
(see Figure 14). These power differences were created by randomly sampling from an
uniform distribution.

The fine-tuned model consists of three mirrored hidden layers with 25, 15 and 5
neurons in layer L1, L2 and L3 respectively. As a result of the hyperparameter tuning, the
input was standardized and a Gaussian noise with a standard deviation of 0.1, and a noise
factor of 0.5 was added. The training was conducted with the AdaDelta optimizer using
a learning rate of 0.001, 600 epochs and a batch size of 400. The weights were initialized
using a glorot uniform distribution, and a relu function was used as activation function
for the hidden layers, and a linear function was used as activation function for the output
layer.

Figures 15 and 16 show the prediction performance of the source model. The source
model reconstructs the simulations of the test set with a R2 value of 0.997 and NRMSE of
0.012‱. Figure 17 shows the reconstruction error of the source model when it is applied
to the SCADA data with artificially introduced anomalies. In Figure 18, the reconstruction
error is presented with respect to the abnormal power difference.
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Figure 14. Data set with artificially introduced anomalies for hyperparameter tuning of autoencoder model.
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Figure 15. Standardized power estimated by SDAE on test set with respect to normalized
power simulations.
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Figure 16. Normalized power estimated by SDAE on test set with respect to normalized power simulations.
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Figure 17. Reconstruction error of SDAE on normal operating data (blue) and artificially introduced
anomalies (orange).
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Figure 18. Reconstruction error of SDAE with respect to normalized power deviation
Pabnormal − Pnormal .

For the transfer learning, the last one and up to five layers of the source model were
retrained on the SCADA data using 100 epochs. The prediction accuracy of the autoencoder
on the test set is presented in Figure 19 with each boxplot presenting the distribution of
R2 values of each five-fold crossvalidation. Furthermore, the average accuracy metrics
of the models are shown in Table 2. Figures 20 and 21 illustrate the mean and standard
deviation of the models for different amounts of SCADA data with respect to the amount
of SCADA data used for the training. Similar as for the ANN, Figure 22 shows the model
performances using the same 3 months test data.
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Figure 19. Autoencoder target model performance on different amounts of normal SCADA data and
knowledge transfers. Each boxplot represents the R2 distribution of the models trained within the
five-fold crossvalidation. The target models are trained using 1 month (a), 3 months (b), 6 months (c),
9 months (d) and 12 months (e) of normal SCADA data.

Table 2. Prediction performance of SDAE for different amounts of training data and knowledge transfers.

R2 NRMSE (‱)

1 3 6 9 12 1 3 6 9 12

standalone 0.988 0.990 0.992 0.994 0.996 0.02 0.02 0.02 0.02 0.01
n f ixed = 1 0.995 0.995 0.994 0.996 0.997 0.02 0.02 0.02 0.01 0.01
n f ixed = 2 0.992 0.995 0.995 0.996 0.997 0.02 0.02 0.02 0.01 0.01
n f ixed = 3 0.993 0.995 0.995 0.997 0.996 0.02 0.02 0.02 0.01 0.01
n f ixed = 4 0.993 0.996 0.995 0.996 0.995 0.02 0.02 0.02 0.02 0.02
n f ixed = 5 0.994 0.995 0.995 0.995 0.995 0.02 0.02 0.02 0.02 0.02
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Figure 20. Average R2 value for SDAE for different amounts of training data and knowledge transfers.
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Figure 21. Standard deviation of R2 value for SDAE for different amounts of training data and
knowledge transfers.
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Figure 22. R2 value for SDAE for different amounts of training data and knowledge transfers tested
on same 3 months test data.

3.7. Anomaly Detection

The ANN shows the largest increase in prediction performance when physics con-
straints are added to its training. Therefore, the comparison of the detection ability between
a standalone SCADA model and physics-informed model is presented in this section for
the ANN model. The results are demonstrated for the specific use case when having one
month of SCADA data available, as this shows the biggest potential for augmenting the
model with aeroelastic simulations. The models with the highest prediction accuracy on
the training set were selected. For the transfer learning model, this means an ANN that is
pretrained on simulations and recalibrated using one month of SCADA data with keeping
the first two hidden layers fixed.
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The power measurements and estimates were scaled using a min-max normalization,
and the prediction residuals and corresponding control limits for each model were calcu-
lated using Equations (5) and (6). Figures 23 and 24 show the distributions of the testing
residuals ε on the normal SCADA data, including a fitted normal distribution. The selected
model trained purely on SCADA data predicts the power with a R2 value of 0.924, and
the physics-informed model with a R2 value of 0.933. Finally, Figures 25 and 26 show the
residuals of the model predictions on raw SCADA data for the selected period of May 2016.
The time frame in which a known case of ’implausible blade angle’ was recorded by the
SCADA system is marked red. The implemented monitoring system indicated several
potential issues (red circles); however, the SCADA-based model without transfer learning
also results in false positives. The calculated performance metrics for the precision and
recall of both detection models are presented in Table 3. A precision of 100% in this case
means that all observations that are classified as potential issue by the model are indeed
faulty observations.
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Figure 23. Probability density function of testing residuals including normal distribution fit for
standalone SCADA model.
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Figure 24. Probability density function of testing residuals including normal distribution fit for
transfer learning model.

Figure 25. Power residuals of standalone SCADA model applied to raw SCADA data of May 2016.
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Figure 26. Power residuals of transfer learning model applied to raw SCADA data of May 2016.

Table 3. Detection performance of standalone SCADA-based ANN and transfer learning ANN on
one month of raw SCADA data.

SCADA Stanrdalone ANN Transfer Learning ANN

Precision 50% 100%
Recall 100% 100%

4. Discussion

The results show that the sample efficiency of a SCADA-based ANN can be signifi-
cantly improved by pretraining it on a large aeroelastic simulation database. In the case
when only one month of measurement data are available, the model prediction error is
reduced by a NRMSE reduction of 1.64% (see Figure 11). Furthermore, the decreased stan-
dard deviation of the model accuracy for repeated model calibrations from σ(R2) = 0.02
to σ(R2) = 0.003 (see Figure 12) shows that the predictions become more robust when
the suggested transfer learning method is applied. However, both in terms of the model
accuracy as well as its robustness, it can be seen that the more SCADA data available for
building a monitoring model, the less improvement can be achieved. The optimal learning
transfer of the ANN with three hidden layers is to keep the first two layers from the source
model fixed. Keeping all hidden layers fixed and only retraining the output layer on the
SCADA data, on the other hand, results in a negative learning transfer, i.e., a decreased
model performance compared to the standalone SCADA-based ANN. In this case the
physics constraints seem to be to large for improving the target learning task of the normal
power estimation. The prediction accuracy of the models compared on the same 3 months
test period in Figure 10 shows slightly different results since only one fixed training period
is used as compared the crossvalidation method mentioned above. However, the results
confirm as well an increased accuracy when keeping up to two layers fixed and decreased
performance when all hidden layers are fixed.

The model evaluation of the SDAE on the other hand shows that it already is able to
accurately reconstruct the power with a R2 value of 0.99 when only using the SCADA data
for its training even for small amounts of available SCADA data (see Figure 19). The likely
reason for this high accuracy is that by definition, the autoencoder uses the power signal as
input to reconstruct itself. Due to this high accuracy, the application of transfer learning
only improves the prediction accuracy and the model robustness on an insignificantly small
scale, as it can be seen in Figures 20–22. The validation of the SDAE on the data set with
artificially introduced anomalies shows that it is possible to differentiate between abnormal
and normal data with the help of the reconstruction error. However, a good prediction
performance of the normal power does not inherently result in a better anomaly detection.
The anomaly detection was only tested for the ANN-based model, since the ANN shows
the largest improvements when physics constraints are added to the training.

Figures 25 and 26 show that the recorded blade angle anomaly can successfully be
detected by both the SCADA standalone ANN as well as the physics-informed ANN. As
mentioned in Section 2, it is crucial for a good monitoring system to reduce the number of
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false positives. By including simulations into the model, the number of false positives could
be reduced, and with it, the precision of the system improved from 50% to 100%. It should
be noted that this validation study solely serves as a simple illustration to show what impact
the suggested physics-informed ML approach could have on the anomaly detection ability
of the monitoring system. The calculated precision and recall values, however, should be
interpreted with caution since they are demonstrated only on a one month period and are
strongly dependent on the threshold settings, which are defined during the model training
based on the residual distributions. Furthermore, the classification of the raw SCADA
observations to normal and abnormal operation is based on the limited information of the
turbines system that the authors obtained from the SCADA alarms.

In general, the implications of augmenting SCADA-based monitoring models with
the simulated data depends on various factors during the modeling process: Firstly, the
simulation settings should be selected in order to model the turbine as representative as
possible under the given environmental conditions. Here, uncertainties of the simulations
might arise from the variable space definitions, environmental input selection and the wake
model used [15]. Secondly, the aeroelastic model itself inhibits strengths and weaknesses
in modeling the physical system of the turbine physics. One strength is its capability in
modeling the rotor dynamics. Hence, adding aeroelastic simulations into SCADA-based
monitoring systems can be especially beneficial for detecting anomalies related to the rotor.
Another advantage of using aeroelastic simulations is that additional outputs, which are
not available in the SCADA data, can be added to a multioutput model. However, this
would require adjustments to the transfer learning method and is not the scope of this
paper, since the authors do not have access to data for testing the results. A disadvantage
of using simulations is that temperatures are not modeled in HAWC2; hence, for detecting
anomalies that are detectable by rising temperatures, such as gearbox or bearing failures,
the suggested procedure might not improve the monitoring system. Despite these above-
described uncertainties and data limitations, the comparison of the simulations with the
SCADA measurements Figure 7 shows that the simulations capture the measured behavior
relatively well. A smaller rated wind speed and slightly different rotor speed curve can be
noted. The reason for this deviation is that the actual industrial controller of the turbine
is not available for this study. Finally, the performance of the normal behavior model is
largely dependent on the filtering of the data to normal behavior as well as how an anomaly
is defined, i.e., on the threshold setting.

5. Conclusions and Future Work

This paper introduces a novel approach to include physics into data-driven normal
behavior monitoring models for detecting turbine anomalies by means of transfer learning.
For this purpose, a normal behavior model was pretrained on a large simulation database
and recalibrated on the available SCADA data via transfer learning. For two methods, an
ANN and an autencoder, it was investigated under which conditions it can be helpful to
include simulations into SCADA-based monitoring systems. The results show that when
only one month of SCADA data is available, both the model accuracy as well as the model
robustness of an ANN is significantly improved by adding physics constraints from a
pretrained model. The model prediction error NRMSE is reduced by 1.64%, while the
standard deviation of the model accuracy for repeated model calibrations is reduced from
σ(R2) = 0.02 to σ(R2) = 0.003. The optimal amount of knowledge transfer in this set up is
to keep two of the three hidden layers from the pretrained model fixed and recalibrate the
third hidden and the output layer on the SCADA data. Keeping all hidden layers fixed
would result in a negative learning transfer. As the autoencoder reconstructs the power
from itself, it is already able to accurately model the normal behavior power. Therefore,
including simulations into the model does not improve its prediction performance and
robustness significantly. The validation of the physics-informed ANN on one month of raw
SCADA data shows that it is able to successfully detect the recorded blade angle anomaly



Energies 2022, 15, 558 20 of 21

with an precision improvement from 50% to 100%, i.e., less false positives compared to its
purely SCADA data-based counterpart.

In order to analyze the full implications of augmenting simulations into the data-driven
model, future work should focus on a full validation study including further different
anomaly cases as well as to test whether the autoencoder has improved its detection ability.
Furthermore, since building an accurate aeroelastic model of a specific turbine requires
the effort and expertise of the system, it would be interesting to investigate how the level
of accuracy of the aeroelastic model influences the final monitoring performance. Finally,
for detecting anomalies, a constant residual distribution with respect to the wind speed is
assumed for calculating the normal threshold. However, more advanced techniques for
calculating confidence intervals that take into account the heteroscedasticity of the residuals
and for interpreting the residual patterns can be used. In the end, for the continuation of
the research, the effectiveness of the proposed method can be compared against other data
enrichment techniques which are based only on measured data.
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