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Abstract: The essential prerequisites for secure customer service are power system stability and
reliability. This work shows how to construct a robust switching control for studying power system
load changes using an invariant ellipsoid method. Furthermore, the suggested control ensures
stability when the system is subjected to random stochastic external disturbances, and functions
randomly in two conditions: normal and contingency. The extreme (least) reliability state is chosen
as the most severe scenario (corresponding to a transmission line outage). As a two-state Markov
random chain, the transition probabilities are utilized to simulate the switching between normal
and contingency modes (or processes). To characterize the dynamics of the studied system, a
stochastic mathematical model is developed. The effect of stochastic disturbances and random
normal/contingency operations is taken into account during the design stage. For a stochastic power
system, a novel excitation control is designed. The attractive ellipsoid approach and linear matrix
inequalities (LMIs) optimization are used to build the best two-controller gains. Therefore, the
proposed modeling/design technique can be employed for the power system under load changes,
stochastic topological changes, and random disturbances. Finally, the system’s random dynamics
simulation indicates the effectiveness of the designed control law.

Keywords: stochastic stability in power systems; Markov model; switched control; reliability

1. Introduction

For economic reasons, modern power systems operate close to their stability limits
which are rotor angle stability, frequency stability, and voltage stability [1]. Angle instability
is concerned with the loss of synchronism in generators. Power systems are complex
nonlinear systems that are subjected to low-frequency natural oscillations that can cause
generators to lose synchronism and system separation. The large loop gain of the fast-acting
automated voltage regulator (AVR) is responsible for inadequate oscillation damping [1].
Excitation control and power system stabilizers (PSSs) are commonly used to ensure system
stability and dampen oscillations [2–4]. Operating point changes, topological changes
(e.g., transmission line failure/repair), and other factors can all contribute to parametric
uncertainty. Random wind speed fluctuations, for example, create changes in phase
conductor separation. As a result, there is a random variation in line reactance (which
enters the state-space model).

There are different ways to tackle load and transmission line uncertainty. For ex-
ample, Ref. [4] devised a robust fuzzy-based PSS method, Ref. [5] used particle swarm
optimization (PSO) to design robust PSS, and Ref. [6] utilized an improved nature-inspired
technique called sunflower optimization algorithm (SFO) to design robust multi-machine
PSSs optimally. Furthermore, Ref. [7] used the resilient decentralized control technique to
address the PSS design scheme for parameter uncertainty in both the plant and controller.
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The reliable control refers to stabilizers that tackle more severe cases, such as component
failure. Ref. [8] describes the PSS/governor control of a reliable power system. Stability is
maintained whether one or both controllers are sound.

To examine the load–frequency control for frequency stability, many control strategies
have been employed (see refs. [9–12] and the references therein). A reliable load–frequency
control with parameter uncertainty was examined in [9]. For connected power systems that
take time delays into account, the H∞ load–frequency control has been investigated in [12].
Additionally, a sliding-mode control has been developed [13]. Through the event-triggered
data transmission technique, an H∞ memory-based load–frequency control for deception
attacks on power grids is examined [14].

In reality, the dynamical system model may undergo abrupt changes as a result of
component failure or repair, environmental disturbances, abrupt changes in subsystem
linkages, and other reasons [15,16]. These variations can be modeled using a Markov
random chain or process because they are stochastic. Markov jump systems are base
systems with these jumping properties [17]. These features cause the topology of power
systems to rapidly change, and it has been said that this topology flips between finite modes
modeled as a Markov process [18]. Markov jump-based power systems (MJPSs) have been
thoroughly investigated in the past as they offer a better description of systems with random
fluctuations or structural changes [18–20]. For instance, sudden and unpredictable changes
in power grid stabilization are discussed in [19]. Additionally, Ref. [20] used actuator
failures and rapid changes to show how MJPSs’ fault-tolerant control architecture works.
A series of lightning strikes and the robust control of power systems under stochastic
external disturbances are presented in [21], along with circuit breaker open/auto-reclose.
The stability of discrete-time power systems vulnerable to arbitrary rapid changes in power
systems is examined in [22]. Notably, only roughly 7% of faults are permanent, whereas 80%
of faults are transient. Refer to [21,22] for more information on transient faults connected
to the circuit breaker protection system’s auto-reclosure. Unlike [21,22], the last problem is
solved using the asynchronous control, as given in [23].

The power system must be stable under diverse operating situations to ensure supply
security. It should also be safeguarded in the event of any likely contingency. Contin-
gency analysis examines the consequences of a single power system component failure on
power system operating conditions when the single component (e.g., transmission line,
power transformer, generating unit) is withdrawn from the system. It is worth noting
that transmission lines are the most vulnerable to lightning strikes, which could result
in faults and subsequent circuit breaker (on/off) switching. This condition necessitates a
line failure/repair reliability assessment. The rotor angle stabilization of a multi-machine
test system during normal operation and one-line outage corresponding to the least reli-
able condition is considered in this manuscript. Unlike [21,22], which address transient
faults caused by the on/off switch of protection circuit breakers, this study considers
extreme system reliability when it is vulnerable to permanent line faults/maintenance
(failure/repair). Note that according to the newest research, the phasor measurement units
(PMUs, also termed synchrophasor) can accurately specify the location of faults in wide-
area monitoring [24]. The power system must be stable under single-component failure on
power system operating conditions; this contingency is studied using synchrophasors [25].
Another useful benefit of PMUs is that it can monitor system stability [26]. Note that
PMUs cannot replace circuit breakers; the former measures voltage and current phasors at
a busbar, whereas the latter clears the short-circuit faults.

Because two or more outages are unlikely to occur at the same time, a single-line
outage is considered. Furthermore, the suggested control takes into account changes in the
power system load as well as random external disturbances.

The following are the key contributions of this manuscript:

(1) The two transmission line fails/fixed modes are described as a discrete-time Markov chain.
(2) The attracting ellipsoid approach [27], a powerful method in robust control theory, is

used to offer a new optimal excitation control design.
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(3) The stochastically mean-square stability and solvability of control gains in power systems
vulnerable to random topological changes are investigated using the Lyapunov function.

(4) The proposed control can be easily applied using simple logic to select the relevant
controller according to the mode of operation.

The overall structure of this work proceeds as follows: in Section 2, the MJPSs are
formulated; in Section 3, the control is designed for a study power system; in Section 4, a
numerical example is included; and in Section 5 the conclusion is given.

Notations: Rn×m denotes the set of all n × m real matrices. The expectation of x is
denoted by E{x}. A block diagonal matrix is denoted by diag{· · · }. The superscripts “(.)”
and “−1” denote the transpose, and inverse of a matrix, respectively. The occurrence
probability of the event y is denoted by Pr{y}. The identity matrix is represented by “I”.
A symmetric positive (negative) definite matrix P is denoted by P > 0 (<0). * denotes an
ellipsis for terms in matrix expressions that are induced by symmetry, that is:[

L + (W + M + ∗) Z
∗ R

]
=

[
L + (W + M + M′ + N′) Z

Z′ R

]
Fact 1: For matrices W1, W2, the norm-bounded uncertainty ‖∆(k)‖ < 1 at time instant

k can be eliminated using the fact [23]:

(W1.∆(k).W2 + ∗) ≤ εW1.W ′1 + ε−1W ′2.W2 , ε > 0

Fact 2: The nonlinear matrix equation can be linearized using the Schur complement:

W1 + W ′3.W−1
2 .W3 < 0↔

[
W1 ∗
W3 −W2

]
< 0

2. Stochastic Modeling and Problem Formulation

Consider a multi-machine power system with m + 1 generators and the i-th generator
connected to the other m generators. With some fundamental assumptions, the dynamics
of m interconnected generators through a transmission network can be classically modeled
with flux decay dynamics [1]. The voltage behind the direct-axis transient reactance is used
to represent the generator in this model, with the voltage angle equal to the mechanical
angle relative to the synchronously spinning reference frame. The network is reduced to an
internal bus model, with the loads modeled by constant impedances. The dynamic model
of the i-th machine is represented by the standard third-order model [1]:

.
δi = w0(wi − w0),.

wi =
1

2Hi
(Pmi − Pei),

.
E
′
qi =

1
T′d0

(
E f i − Eqi

)
 (1)

where
Eqi = E′qi +

(
xdi − x′di

)
Idi

E f i = ui
Pei = ∑m

j=1 E′qiE
′
qjBij sin

(
δi − δj

)
Qei = −∑m

j=1 E′qiE
′
qjBij cos

(
δi − δj

)
Idi = −∑m

j=1 E′qjBij cos
(
δi − δj

)
Iqi = ∑m

j=1 E′qjBij sin
(
δi − δj

)
Eqi = Vti +

Qeixdi
Vti


(2)

The nomenclature provides the symbols for the multi-machine power system model.
Let the generator i be working at an operating point δi0, wi0, Pei0. Assume Pmi = constant,
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and define ∆δi = δi − δi0, ∆wi = wi − wi0, . . . The linearized state equation is used in
continuous time, for small oscillations around the operating point, as:

.
x(t) = Ax(t) + Bu(t) (3)

where xi =
[
∆δi, ∆wi, ∆E′qi

]′
, ui =

[
∆E f i

]
, i = 1, . . . , m.

Note that linearization can be carried out numerically using the Matlab command
linmod or analytically, as given in Appendix A. A deterministic differential equation is
used in the mathematical dynamic model (3). Because the power system is susceptible
to stochastic external disturbances, model (3) must be changed to a stochastic differential
equation, as shown below. Consider the following case study of a multi-machine power
system, as shown in Figure 1 [28]. It operates in two random transmission line modes:
(1) normal (line fixed) and (2) line fails. An N-mode discrete-time Markov jump linear
system (MJLS) can be used to model the dynamics of the study system. In other words, the
system flips between the N modes at random.
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Figure 1. Single-line diagram, 6 buses, 3 machine systems under failure/repair of, e.g., line 1–5 (L4).

Table 1 shows the corresponding system data and nominal loading conditions;
Table 2 shows the electrical parameters [28].

Table 1. Nominal loading conditions and system data.

Bus # 1 2 3 4 5 6

Gen-(MW) - 150 100 - - -
Load-(MW) - - - 100 90 160

Load-(MVAr) - - - 70 30 110
xd 0.80 1.30 0.90 - - -
xq 0.80 1.30 0.90 - - -
x′d 0.20 0.15 0.25 - - -
T′d0 9 5.80 6 - - -
H 20 4 5 - - -

AVR
parameters

Ka 25 25 25 - -
Ta 0.05 0.05 0.05 -
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Table 2. The electrical parameters of the power system.

From Bus # To Bus # R(p.u) X(p.u) 0.5B(p.u)

1 4 0.035 0.225 0.0065
1 5 0.025 0.105 0.0045
1 6 0.04 0.215 0.0055
2 4 0.0 0.035 0.0
3 5 0.0 0.042 0.0
4 6 0.028 0.125 0.0035
5 6 0.026 0.175 0.03

Discretizing the continuous-time model (3), the resultant power systems under N
Markov jumps (MJPS) can be described as follows (N = 2 in our case corresponds to the
transmission line with two operations): (1) normal, line fixed, and (2) line fails.

x(k + 1) = A(ρ(k))x(k) + B(ρ(k))u(k) + ξ(k), k = 0, 1, 2, 3, . . . (4)

Here, ξ(k) is a random sequence representing the external disturbances (or noise). The
disturbance is assumed to be white, Gaussian noise with 0 mean and bounded covariations
E{ξ(k)ξ(k)′} ≤ Ξ, Ξ > 0. The stochastic variable ρ(k) represents the Markov chain and its
transition probability matrix Π =

{
πij
}

NxN is modeled by Pr{ρ(k + 1) = j|ρ(k) = i} = πij,,

where
N
∑

j=1
πij = 1, and 0 ≤ πij ≤ 1, for all i, j = 1, 2, . . . , N in Figure 2. The random

signal ρ(k) is subjected to jumping according to a stationary Markov chain [29,30]. Since
all elements of the matrix Π are positive, the probability vector p =

[
p1 p2

]
of the line

fixed/fails modes can be found for any arbitrary initial p(0), using p(k) = p(0)Πk, k→ ∞ .
In other words, the stationary Markov settles to a steady-state value [29,30]. The study of the
stochastic process under discussion is frequently intractable unless stationarity is established.
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The word “state” used in the Markov chain should not be confused with the “state”
in (3). For presentation convenience, let us take ρ(k) = ρ, A(ρ(k)) = Aρ, B(ρ(k)) = Bρ. The
following equation is obtained from (4):

x(k + 1) = Aρx(k) + Bρu(k) + ξ(k) (5)

The state feedback control that must be developed is

u(k) = −Kρx(k) (6)

which achieves stochastic mean-square stability for the study system subject to random
topological changes, load variations, and external disturbances.

The closed-loop stochastic system of (4), (5) is

x(k + 1) = (Aρ − BρKρ)x(k) + ξ(k) (7)



Energies 2022, 15, 7249 6 of 16

If the following inequality holds

limk→∞E
{
‖x(k)‖2

}
= 0

then (7) is stochastically mean-square-stable, where E(.) is the expected (mean) value of (.),
and ‖(.)‖ is any norm of (.). Since systems are under stochastic inputs, their outputs will
also be stochastic, meaning the above mean-square stability definition is appropriate to use.

3. Ellipsoidal Controller Design for MJPS

If the following theorem is satisfied for a Lyapunov function V = x(k)′Px(k),
P = P′ > 0, then the state trajectories of the stochastic system (7) are attracted to the ellipsoid

limk→∞E
{

x(k)′Px(k)
}
≤ 1 (8)

Moreover, (7) is asymptotically stabilizable in the mean-square sense and its trajectories
will not leave the attracting ellipsoid for future time (thus, the ellipsoid is also time-
invariant) [31].

Theorem 1 ([22]). If there is a feasible solution to the following LMI optimization problem
(for scalars α ∈ (0, 1), β > 0, and matrices X > 0, Qj > 0, Yj, j = 1, . . . , N)

minimizeα∈(0,1),β>0, X>0,Qj>0,Yj ,j=1,...,N
β·trΞ
1− α

trX (9)

subject to the constraints[
X √pj

{
AjX− BjYj

}
∗ Qj

]
> 0,

X− β−1 Inxn > 0,
Qj > 0,(

αX−∑N
j=1 Qj

)
> 0


j = 1, . . . , N (10)

then the controller is given by
Kj = YjX−1

j , j = 1, . . . , N (11)

where Xj = Pj
−1.

The above convex optimization problem is solved iteratively with the scalars α, β until
a feasible solution is obtained. Note that minimizing the linear function trX aims to reduce
the volume of the ellipsoid. This brings the state trajectories as close as possible to the
origin. Consequently, the best performance can be achieved.

Note that the above theorem does not consider the power system’s load changes which
affect the parameters of the state equation and result in parameter uncertainties. A robust
version of Theorem 1 is given below.

Theorem 2. If there is a feasible solution to the following LMI optimization problem (for scalars
α ∈ (0, 1), β > 0, and matrices X > 0, Qj > 0, Yj, j = 1, . . . , N)

minimizeα∈(0,1),β>0, X>0,Qj>0,Yj ,j=1,...,N
β·trΞ
1− α

trX (12)
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subject to the constraintsX √pj
{

AjX + εjFjFj
′ − BjYj

}
0

∗ Qj −XHj
′

∗ ∗ −εj I

 > 0,

εj > 0,
X− β−1 Inxn > 0,

Qj > 0,
(αX−∑N

j=1 Qj) > 0


j = 1, . . . , N (13)

then the controller is given by
Kj = YjXj

−1, j = 1,..., N

Proof. Replacing Aj by Aj + ∆Aj in Theorem 1, we obtain

−
[

X √pj
{
(Aj + ∆Aj)X− BjYj

}
∗ Qj

]
< 0 (14)

the uncertainty can be represented in the norm-bounded form, ∆Aj = Fj∆‖(k)‖Hj, ∆‖(k)‖ ≤ 1.
Hence, (14) becomes[

−X √pj
{

BjYj − (Aj + ∆Aj)X
}

∗ −Qj

]
−√pj

{[
Fj
0

]
∆(k)

[
0 Hj

]
X + ∗

}
< 0 (15)

using Fact 1 to eliminate the uncertainty, (15) converts to[
−X √pj

{
BjYj − AjX

}
∗ −Qj

]
−√pj

{
εj

[
Fj
0

][
Fj
0

]′
+ ε−1

j X
[

0
Hj
′

][
0 Hj

]
X

}
< 0, εj >0

or −X √pj
{

BjYj − AjX− εjFjFj
′} 0

∗ −Qj XHj
′

∗ ∗ εj I

 < 0 (16)

Theorem 2 can then be obtained. �

4. Reliability Analysis

Reliability is based on the probability that a product, system, or service will perform
satisfactorily for a particular period or in a specific environment without failure [29,32].
Detailed system reliability studies have been conducted on the six-bus power system,
shown in Figure 2, to determine the maximum and minimum system reliability conditions.
System reliability studies take the locations of both power generation plants and the system
loads in the system proceed into consideration, as follows.

Assume that all transmission lines in the system have the same failure rate (λ), repair
rate (µ), and repair time (r). Therefore, all transmission lines have the same reliability (R)
and the same unreliability (Q). This means that Ri and Qi are the reliability and unreliability
of the transmission line (i), respectively.

In practice, we can easily calculate the exact values of reliability and unreliability in
any transmission line by referring to the operating and repair times.

System reliability Rsys is evaluated for the entire system first and then, after taking
each transmission line out from the system, one at a time (since simultaneous outages of more
than one line are very rare), because of its forced outage due to any type of fault or lightning.
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Reliability of the Study System

The reliability evaluation of the study system shown in Figure 1 is conducted using the
conditional probability approach [32,33]. System reliability with all lines operating is as follows:

Rsys = R2 × R3 × R5 + R1 × R2 × R4 × Q5 + R1 × R3 × R4 × Q2 × Q5 + R1 × R2 × R3 × Q4 × Q5 + R2 × R3 × R4 × Q1 × Q5 (17)

If Transmission line 1 is out of service:

Rsys = R3 × R2 × R5 + R4 × R3 × R2 × Q5 (18)

If Transmission line 2 is out of service:

Rsys = R3 × R1 × R5 + R4 × R3 × R1 × Q5 (19)

If Transmission line 3 is out of service:

Rsys = R1 × R2 × R4 × R5 + R1 × R2 × R4 × Q5 (20)

If Transmission line 4 is out of service:

Rsys = R3 × R2 × R5 + R1 × R2 × R3 × Q5 (21)

If Transmission line 5 is out of service:

Rsys = R1 × R2 × R3 × R4 + R1 × R2 × R3 × Q4 + R2 × R3 × R4 × Q1 (22)

Let transmission line failure rate λ = 5 failures/year and repair time r = 15 h [30].
Then, the transmission line failure rate λ = 5/8760 = 0.00057 failures/hour, and the

average annual outage time is equal to λ × r = 0.00057 × 15 = 0.00855, which represents
the transmission line unreliability.

Then, transmission line reliability is equal to 1− 0.00855 = 0.99145 and the transmission
line repair rate, µ = 1/r = 1/15 = 0.067 repair/hour.

Then, the overall system reliability with all lines in service using Equation (17) is:

Rsys = 0.991453 + 0.991453 × 0.00855 + 3 × 0.991453 × 0.008552 = 0.974569 + 0.008333 + 0.000214 = 0.983116

If line 1 is on the forced outage using Equation (18), the system reliability is:

Rsys = 0.991453 + 0.991453 × 0.00855 = 0.974569 + 0.008333 = 0.982902

A similar calculation is performed for the outage of lines 2, 3, 4, and 5 (Figure 1) to
give system reliability, Rsys, respectively, as 0.982902, 0.974569, 0.982902, and 0.982902.

The system reliability for different cases is summarized in Table 3.

Table 3. System reliability for different scenarios.

All Lines Are
Available

Line 1 Is on
Outage

Line 2 Is on
Outage

Line 3 Is on
Outage

Line 4 Is on
Outage

Line 5 Is on
Outage

0.983116 0.982902 0.982902 0.974569 0.982902 0.982902

From the above calculation, the least significant system reliability (the extreme contin-
gency) is obtained when transmission line 3 is on a forced outage.

The Markov model for the highest reliability state (State 1) and the lowest reliability
state (State 2) is depicted in Figure 3.
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Where, U = up, D = down, TL = the transmission line, λ3 = the failure rate of the
transmission line 3, µ3 = the repair rate of transmission line 3.

The transition probability matrix is tabulated in Table 4.

Table 4. Transition probability matrix.

System Reliability Condition State 1 State 2

Highest 0.99943 0.00057
Lowest 0.067 0.933

5. Results: Simulation Validation
5.1. Testing the Proposed Controller at Nominal Loads with Line Fixed/Fails Modes

Since a small oscillation in the power systems is 1–3 Hz, system (3) is discretized
at 10 fmax or a sampling period Ts = 0.03 s, as shown in the format (10). The numerical
simulations were carried out using the following system parameters (see Figure 3):

N(#normal and failure/repair modes) = 2

Using Table 4, the transition probability matrix is as follows:

Π =

[
0.99943 0.00057

0.067 0.933

]
The stationary state distribution:

p = [p1 = 0.99156 p2 = 0.0084361]

where p1, p2 represent the probabilities of line L3 fixed and fails modes, respectively.

I. Mode 1, normal operation (no failure, line L3 fixed)

A1 =



0.944 11.1 −0.05787
−0.00979 0.944 −0.01009
−0.01347 −0.07725 0.9745

0.001922 0.007303 0.0007488
0.0003337 0.001922 0.0001276
0.0005888 0.003392 0.0008

0.001416 0.005376 0.0006038
0.000246 0.001416 0.0001028

0.0003515 0.002025 0.0004876

0.9677 11.19 −0.0308
−0.00568 0.9677 −0.005405
−0.005263 −0.02999 0.9862



B1 =



−0.0001004 1.268× 10−6

−2.647× 10−5 3.311× 10−7

0.005105 2.026× 10−6

1.057× 10−6 −5.152× 10−5

2.761× 10−7 −1.362× 10−5

1.28× 10−6 0.004966


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II. Mode 2, least reliable operation (line 5–6, L3 fails)

A2 =



0.94762 11.112 −0.052837 3.6529× 10−6 1.3872× 10−5 1.8734× 10−6

−0.009162 0.94762 −0.009221 6.3474× 10−7 3.6529× 10−6 3.2113× 10−7

−0.011313 −0.064825 0.975 1.0886× 10−6 6.2657× 10−6 1.6659× 10−6

2.5978× 10−6 9.8587× 10−6 2.2093× 10−7 0.96888 11.192 −0.034612
4.5201× 10−7 2.5978× 10−6 3.3774× 10−8 −0.005468 0.96888 −0.0060749
7.6358× 10−7 4.3898× 10−6 7.4117× 10−7 −0.0059069 −0.033654 0.98683

.

B2 =



−9.161× 10−5 3.1647× 10−9

−2.4162× 10−5 8.2838× 10−10

0.0051068 4.2183× 10−9

4.0257× 10−10 −5.7883× 10−5

1.0103× 10−10 −1.5304× 10−5

1.9479× 10−9 0.0049679


Machine #3 is considered as the reference in the above state equations. Solving

theorem 2, the obtained controllers are

K1 =

[
−13.095 −354.53 3.4752
−0.42605 −8.1572 0.0019265

−0.46003 −9.4363 0.0013589
−28.096 −704.63 3.6193

]

K2 =

[
−14.071 −376.95 3.4283
−0.11614 −2.698 0.010591

−0.13817 −3.191 0.0081354
−26.075 −651.69 3.6834

]
α = 0.010329 β = 12.342

For nominal loads and a cleared fault on the bus bar of machine 2 at t = 0 (which
induce 0.3 and 0.1 as a rad rotor angle perturbation in machines 2 and 3, respectively), the
initial conditions are then x(0) =

[
0.3 0 0 0.1 0 0

]′.
The external disturbance noise and Markov random jumps between the two modes

(line fixed and line fails) are shown in Figures 4 and 5, respectively.
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Figure 6. Unstable response, without control. (a) Unstable response (δ2 − δ1 increases with time);
(b) zoomed-in plot.

Under the above external disturbances and random topological changes, the rotor
angle responses x1, x4 without and with control are shown in (Figures 6ab and 7), when
line 5–6 (L3) is out of service for maintenance/fixed. x1, x4 are the rotor angle deviations
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of machines #1 and #2, with machine #3 as the reference. The control input is depicted in
Figure 8.
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5.2. Comparison with Linear Optimal Excitation Control (LOEC)

The industrial devices of (LOEC) are now operating in power plants in northeast
China [34]. The design of the Linear optimal excitation control is set up to find the optimal
gain matrix K such that the state feedback law u(k) = −Kx(k) minimizes the cost function

J = ∑∞
k=0

{
x′Qx + u′Ru

}
subject to the state dynamics x(k + 1) = Ax(k) + Bu(k).

The obtained controllers using the Matlab command dlqr, with the Q ≥ 0, R > 0 unit
matrices of appropriate dimensions, are:

K1,opt =

[
0.18068 −0.34298 0.60472

0.013735 −0.045423 0.046898
0.022972 0.04713 0.048414
0.39539 0.1938 0.85227

]

K2,opt =

[
0.21062 −0.15639 0.56721

1.3888× 10−5 5.8402× 10−5 9.035× 10−5
3.1063× 10−5 −0.00011993 9.4134× 10−5

0.35962 −0.34048 1.0698

]
The response is given in Figure 9 with the same simulation conditions as before.
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The linear optimal excitation control cannot stabilize the system under nominal load,
random line fail/fixed, and external disturbances.

5.3. Robustness Testing of the Proposed Controller against over/under Loads and Line Fixed/Fails Modes

The robustness of the proposed controller is tested for ±10% load variations under
the same external disturbances and random jumps representing the least reliable case of
the line fixed/repair modes, as shown in Figures 10 and 11.
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Note that since the system is subject to random input, the output will also be random.
Figures 7, 10 and 11 show that the system is stochastically stable in the mean-square sense.
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It is clear that the proposed controller succeeds in stabilizing the study system under load
variations, random jumps for normal/extreme contingency of line fixed/fails modes, and
external disturbances.

6. Conclusions

Using a Markov jump technique, this article provides a new ellipsoidal design of
robust stabilization for power systems. The following contributions are gained:

1. Power systems subject to normal and repair/failure modes and random noise (rep-
resenting parameter uncertainties, e.g., line reactance depends on the spacing of
conductors, which depends on wind speed variations) are considered.

2. Discrete-time Markov jumps are used to model the resulting transmission line
fixed/repair modes.

3. The innovative power system excitation control is based on a derived sufficient condi-
tion in the framework of linear matrix inequalities (LMIs) and the attracting ellipsoid
method. The proposed controller is robust against such stochastic uncertainties and
load changes.

4. The suggested controllers switch between the two random modes, i.e., line fixed/repair.
They are easy to implement by using simple logic to select the relevant controller
according to the mode.
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Nomenclature

Unless otherwise specified, all quantities are in per unit (p.u.). δi(t) is the ith generator’s power
angle, in rad; ωi(t) is the ith generator’s relative speed;ω0 is the synchronous machine speed; Pmi0 is
the mechanical input power; Pei(t) is the active electrical power, while Qei(t) is the reactive electrical
power; Hi in seconds, the inertia constant; E′qi(t), Eqi(t), and E f i(t) are, respectively, the transient
EMF in the quadrature axis, the EMF in the quadrature axis, and the equivalent excitation EMF; T′doi,
in seconds, is the direct-axis transient short-circuit time constant; Idi(t) is the direct-axis current, while
Iqi(t) is the quadrature-axis current; Vti(t) is the ith generator’s terminal voltage; Bij is the ith row and
jth column element of nodal susceptance matrix at the internal nodes after eliminating all physical
buses; xdi is the direct-axis reactance, while xqi is the quadrature-axis reactance; x′di is the direct-axis
transient reactance, while x′qi is the quadrature-axis transient reactance.

Appendix A. Linear State Equation for Multi-Machine System

The notation for the multi-machine power system model is given in the nomenclature.
Let the generator i be working at an operating point δi0, wi0, Pei0. Assume Pmi = constant,
and define ∆δi = δi − δi0, ∆wi = wi − wi0, . . .. For small oscillations around the operating
point, the linearized state equation is

∆
.
δi = w0∆wi, (A1)
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∆
.

wi =
1

2Hi

(
0− ∆ ∑m

j=1 E′qiE
′
qjBij sin

(
δi − δj

))
= −1

2Hi
[∑m

j=1 E′qjBij sin
(
δi − δj

)∣∣∣0∆E′qi + ∑m
j=1 E′qiBij sin

(
δi − δj

)∣∣∣0∆E′qj

+∑m
j=1 E′qiE

′
qjBij cos

(
δi − δj

)∣∣∣0(∆δi − ∆δj
)
]

 (A2)

∆
.
E
′
qi =

1
T′d0

[
ui − ∆E′qi −

(
xdi − x′di

)
∆Idi

]
= 1

T′d0
[ui − ∆E′qi +

(
xdi − x′di

)
(∑m

j=1 Bij cos
(
δi − δj

)∣∣∣0∆E′qj

−∑m
j=1 E′qjBij sin

(
δi − δj

)∣∣∣0(∆δi − ∆δj
)
]

 (A3)

Equations (A1)–(A3) can then be cast in the matrix form

.
x = Ax + Bu (A4)

where
x = [x′1 . . . x′n]

′, xi =
[
∆δi, ∆wi, ∆E′qi

]′
, ui =

[
∆E f i

]
,
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