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Abstract: Conventional predictive control for permanent magnet synchronous motors (PMSMs)
contains dual speed and current loops, and has a complex structure and multiple parameters to be
tuned. Conventional predictive direct speed control (PDSC) exhibits an unsatisfactory steady-state
performance. To tackle these issues, this paper presents a cascade-free modulated PDSC (MPDSC)
scheme for PMSM drives. First, a speed predictive model is built, where a second-order sliding mode
observer is employed to quickly and robustly estimate the load torque. Then, a dual objective cost
function with speed and stator current tracking is designed, which improves the system’s steady-
state performance. Furthermore, the analytical solution of the constrained optimal voltage vector is
derived and it is synthesized by space vector modulation, resulting in a fixed switching frequency.
Experimental results show that the proposed MPDSC has stronger robustness, and lower torque
ripples and stator current harmonics compared to conventional PDSC.

Keywords: permanent magnet synchronous motor (PMSM); cascade-free; model predictive control
(MPC); direct speed control; fixed switching frequency

1. Introduction

A permanent magnet synchronous motor (PMSM) has the merits of a wide operating
range, compact structure, high power density, and high efficiency. Hence, it has been
extensively applied in new energy power generation systems, electric vehicles, rail transit,
power systems, aerospace, etc. [1,2]. It is well known that a PMSM drive system is a
complex nonlinear system due to its cross-coupling effects among multiple state variables,
which would greatly increase the control complexity. In addition, due to a PMSM’s tough
operating conditions in practical applications, system parameters such as stator inductance
or external loads may constantly change, which will degenerate the control performance [3].
Therefore, exploring a new control strategy that can realize a simple control structure,
satisfactory steady-state accuracy, low total harmonic distortion (THD), and a fast dynamic
response, as well as strong robustness to model mismatches for PMSM drives, is still a
challenging issue.

Till now, the commonly-used control strategies for PMSM drives in industrial sectors
are still the traditional linear control schemes, such as proportional–integral (PI) control.
Although a PI control scheme has been widely accepted practically, it usually contains a
cascade control structure, multiple parameters to be tuned and hard-to-handle constraints,
which cannot meet the high-precision control requirements [4,5]. Nonlinear control schemes
such as sliding mode control and model predictive control are considered effective solutions
to deal with state-coupling issues [6–8]. Among them, model predictive control (MPC), has
gained increasing attention in PMSM drives due to its simple concept, and easy to handle
multiple control objectives and constraints [9]. The fundamental principles of MPC are
described as follows: predicting the future states using a system discrete model, obtaining
the optimal control voltage vector by minimizing the performance-dependent cost function,
and, finally, applying the resulting optimal vector to the system [10]. Existing MPC schemes
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for PMSM drives can be classified into three groups: single-vector MPC, double-vector
MPC, and multi-vector MPC [11–18]. Each of the MPC schemes has its advantages and
disadvantages. Single-vector MPC only performs a single voltage vector during a control
period, which can take advantage of the discrete nature of the inverter [11]. However,
it results in poor steady-state performance with variable switching frequency, spread
harmonic spectrum, and large steady-state torque ripples [12]. Although its performance
can be improved by increasing the sampling frequency, the hardware cost is significantly
increased [13]. Different from single-vector MPC, two-vector MPC applies two voltage
vectors instead of only one to the inverters during a sampling interval. As a result, its
steady-state control accuracy is somewhat improved and a quasi-fixed switching frequency
is achieved [14,15]. To further enhance the control performance, multi-vector MPC schemes
have recently been proposed. Since three voltage vectors are applied to the inverters in
a sampling period, the optimal voltage vector (OVV) reference can be synthesized more
accurately and the steady-state performance is highly improved. Additionally, a fixed
switching frequency would be produced using multi-vector MPC schemes, which reduces
the losses and noises compared to single-vector and two-vector MPC schemes [16–18].

Nevertheless, conventional MPC schemes for PMSM drives are still built based on
a cascaded structure such as the aforementioned cascade PI control, e.g., an outer speed
control loop and an inner current control loop. To be specific, they retain the outer-loop
speed PI controller while replacing the inner-loop current PI controller with an MPC
controller [14–16]. Hence, these MPC schemes are essentially predictive current control
schemes deployed in cascaded loops, leading to an unsatisfying system dynamic response
and increased control complexity. Although a full predictive cascaded speed and current
controller is proposed in [19], it still inherits the aforementioned disadvantages of a cas-
caded structure. To simplify the cascaded structure of conventional predictive current
control, several works have investigated the cascade-free predictive direct speed control
(PDSC) for PMSM drives [20–24]. The advantages of PDSC schemes are that they only
employ a single MPC loop for speed control, thus reducing the implementation complexity.
In [20], a finite control-set predictive direct speed control (FCS-PDSC) for PMSM drives
is proposed, which somewhat enhances the system dynamic response. Similarly, in [21],
an FCS-PDSC scheme is extended for matrix converter-fed PMSM drives. In [22], a de-
lay compensation-considered FCS-PDSC is further proposed to improve the steady-state
performance. Nevertheless, the references above are all designed based on single-vector
frameworks with a short prediction horizon, which may result in large speed and cur-
rent ripples. To attenuate these problems, in [23], a PI-like q-axis current reference-based
FCS-PDSC scheme is proposed, which is derived based on conventional PI speed control
and improves the speed-tracking accuracy to some degree. Nevertheless, this approach
still belongs to a single-vector MPC method, which inherits the disadvantages of unfixed
switching frequency, high current harmonics, and large torque ripples. To solve these
problems, an improved double-vector PDSC is proposed in [24]. However, since only two
voltage vectors are employed instead of three, this approach still cannot achieve an optimal
control performance as with multi-vector MPC schemes.

To this end, this paper proposes a cascade-free modulated predictive direct speed
control (MPDSC) scheme for PMSM drives to further enhance the steady-state performance
on the basis of a simple control structure. It is essentially a multi-vector MPC method. The
contributions are listed below:

(1) To complete the speed prediction, a second-order sliding mode observer (S2MO) is
constructed, which can quickly and robustly estimate the load torque compared to
existing observers.

(2) A dual objective cost function with both speed and current tracking is designed, which
reduces the stator current harmonics and torque ripples.

(3) An analytical solution of the OVV with constraints is derived and synthesized by space
vector modulation, resulting in a fixed switching frequency and further improving
the steady-state performance.
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The organization of the paper is as follows. Section 2 provides the mathematical model
of a PMSM drive system. In Section 3, the principle of the proposed modulated predictive
direct speed control is elaborated. In Section 4, the experimental results and analysis are
given. Finally, the conclusions are drawn in Section 5.

2. Modeling of a PMSM Drive System
2.1. System Modeling

The continuous time dynamic model of a PMSM in the dq reference frame is expressed
as follows {

vd = Rsid + Ls
d
dt id −ωeLsiq

vq = Rsiq + Ls
d
dt iq + ωe(Lsid + ψ f )

(1)

{
J dωr

dt = Te − TL − Bmωr

Te = 1.5npψ f iq
(2)

where vd and vq are the d-axis and q-axis inverter voltage, respectively. id and iq are the d-axis
and q-axis stator current, respectively. Rs and Ls represent the stator resistance and stator
inductance, respectively. ωe and ωr are the electrical and mechanical angular velocities of
PMSM, respectively. ψf stands for the flux of rotor permanent magnets. J stands for the
rotor inertia, Te and TL represent the electromagnetic torque and load torque, respectively.
Bm is the friction coefficient and np is the number of pole pairs.

Supposing the system sampling time is Ts and using the Euler forward discretization
method, the discrete predictive model of the system can be obtained as id,k+1 =

(
1− TsRs

Ls

)
id,k + Tsωe,kiq,k +

Ts
Ls

vd,k

iq,k+1 =
(

1− TsRs
Ls

)
iq,k − Tsωe,kid,k +

Ts
Ls

vq,k −
Tsψ f ωe,k

Ls

(3)

ωr,k+1 = (1− TsBm

J
)ωr,k +

1.5npψ f Ts

J
iq,k −

TsTL,k

J
, (4)

where the subscript ‘k’ and ‘k + 1′ represent the measured values at the instant of kTs and
predictive values at the instant of (k + 1)Ts, respectively.

To facilitate the presentation and analysis, (3) is rewritten as the discrete state-space
model form

ik+1 = Adik + Bdvk + Dd (5)

where the matrixes are

Ad =

[
1− TsRs

Ls
Tsωe,k

−Tsωe,k 1− TsRs
Ls

]
, Bd =

[ Ts
Ls

0

0 Ts
Ls

]
, Dd =

[
0

− Tsψ f ωe,k
Ls

]
, (6)

where ik+1 = [id,k+1, iq,k+1]T, ik = [id,k, iq,k]T and vk = [vd,k, vq,k]T represent the stator current
and inverter voltage matrixes, respectively.

Note that the speed control system of PMSM is a second-order system since there
are two state variables, namely rotor speed and stator current. Considering the essential
differences between the electromagnetic time constant and the mechanical time constant,
the q-axis stator current served as the control input in (4) should be predicted from the state
equation in (3) instead of using its kTs instant value. Hence, the predictive model of the
speed should be rewritten as

ωr,k+1 = (1− TsBm

J
)ωr,k +

1.5npψ f Ts

J
iq,k+1 −

TsTL,k

J
. (7)
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2.2. Delay Compensation

In practice, due to the inherent characteristics of digital controllers, a one-step control
delay occurs when implementing PDSC algorisms. The control delay will cause adverse
impacts on the dynamic and steady-state performance of the system, such as increasing
the current and torque ripple, and even instability of the entire control system. Generally,
to compensate for the control delay, a two-step prediction strategy is adopted, i.e., using
the predictive values of (k + 2)Ts instant to correct the original prediction model [25].
Specifically, the prediction model of stator current and rotor speed in (5) and (7) with delay
compensation is updated as follows

ik+2 = Adik+1 + Bdvk+1 + Dd (8)

ωr,k+2 = (1− TsBm

J
)ωr,k+1 +

1.5npψ f Ts

J
iq,k+2 −

TsTL,k+1

J
, (9)

where the stator current and rotor speed at the time interval (k + 1)Ts are calculated by the
prediction model (5) and (7) using the optimal voltage vector vdop,k and vqop,k obtained at
the previous sampling instant.

3. Proposed Modulated Predictive Direct Speed Control
3.1. Cost Function Design

The key problem of PDSC is the large differences between mechanical and electrical
time constants. Conventional PDSC only considers the speed reference tracking, so long
prediction horizons are needed to compensate for the difference between the electromag-
netic and mechanical dynamics. If the prediction horizon is not long enough to include both
dynamics, high-frequency components will appear in the motor currents and consequently
results in large speed ripples [23].

To solve this problem, this paper introduces dq-axis stator current error tracking terms
into the conventional cost function to improve the speed-tracking accuracy. Considering
the one-step control delay compensation, a dual objective cost function for tracking both
speed and current is designed below

g = (ωref
r −ωr,k+2)

2
+ λi(iref

d − id,k+2)
2
+ λi(iref

q − iq,k+2)
2
, (10)

where λi is the weighting factor, ω
re f
r is the speed reference, and d-axis current reference

is set to iref
d = 0. It can be seen that the newly designed cost function contains only one

weighting factor, which is convenient for parameter tuning.
Then, the q-axis current reference can be obtained from the speed dynamics model.

To be specific, when the system reaches the steady state, the changing rate of the speed
in (2) is equal to 0. By ignoring the friction coefficient, the q-axis current reference can be
calculated as

TL,k+1 = 1.5npψ f iq ⇒ iref
q =

TL,k+1

1.5npψ f
, (11)

Hence, the proposed cost function in (10) can simultaneously ensure the optimal
tracking of the PMSM’s speed and stator current.

3.2. Unconstrained OVV Derivation

First, ignoring the system constraints, the primary target of the optimization problem
is to determine the OVV that minimizes the cost function (10), i.e.,

v∗ =
[
v∗d v∗q

]T
= argming(vd,k+1, vq,k+1), (12)

The unconstrained OVV can then be calculated by solving the following equations
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
∂g(vd,k+1,vq,k+1)

∂vd,k+1
= 0

∂g(vd,k+1,vq,k+1)

∂vq,k+1
= 0

, (13)

Substituting (10) into (13), the unconstrained OVV can be determined and expressed
as follows {

v∗d = (Rs − Ls/Ts)id,k+1 −ωe,k+1Lsiq,k+1

v∗q = (Rs − Ls/Ts)iq,k+1 + ωe,k+1(Lsid,k+1 + ψ f ) + D
(14)

D = k1(ω
ref
r −ωr,k+1) + k2TL,k+1 + k3iref

q , (15)

where the coefficients are 

k1 =
6JLsnpψ f

4λi J2+9(Tsnpψ f )
2

k2 =
6Ts Lsnpψ f

4λi J2+9(Tsnpψ f )
2

k3 = 4λi J2Ls/Ts

4λi J2+9(Tsnpψ f )
2

. (16)

In addition, the second-order partial derivative of the cost function is
∂2g(vd,k+1,vq,k+1)

∂v2
d,k+1

= 2λiT2
s /L2

s

∂2g(vd,k+1,vq,k+1)

∂v2
q,k+1

= 2λiT2
s /L2

s + 9T4
s n2

pψ2
f /(2J2L2

s )
. (17)

It is obvious that (17) is positive, which means that the unconstrained OVV given in
(14) can minimize the cost function (10).

3.3. Current Constraint Handling

In practice, the current magnitude should be limited to a safe range to protect the
PMSM drive system. Assuming that the maximum allowable current is Imax and consider-
ing the delay compensation, the current constraint is expressed as

Ik+2 =
√

i2d,k+2 + i2q,k+2 ≤ Imax. (18)

Then, substituting the unconstrained OVV (14) into (8) to calculate the predicted
current at (k + 2)Ts instant. If the magnitude of the stator current is within the predefined
range (18), the unconstrained OVV is maintained. Otherwise, the stator current should be
limited to its maximum value, i.e.,

imax =
ik+2
Ik+2

Imax. (19)

As a result, the OVV should be modified according to the maximum current imax. To
sum up, the OVV considering the current constraint should be corrected as

vlim =

{
v∗, Ik+2 ≤ Imax

B−1
d (imax −Adik+1 −Dd), Ik+2 > Imax

. (20)

3.4. Voltage Constraint Handling

In addition to the current constraint, the inverter voltage constraint should also be
considered. To facilitate the analysis, the current constraint OVV vlim is first transformed to
the αβ coordinate through the inverse Park transformation below
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[
vα

lim

vβ
lim

]
=

[
cos θe − sin θe

sin θe cos θe

]
vlim, (21)

where θe is the rotor electrical angle.
If the current constraint OVV is located in a regular hexagon corresponding to the

output voltage limit of the inverter, it remains unchanged. Otherwise, it should be limited
to the boundary of the regular hexagon, as shown in Figure 1.
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It is known from the geometric relationship that the maximum voltage vector un-
der voltage constraint can be obtained by projecting the current constraint OVV on the
boundary, which can minimize the error between constrained and unconstrained OVV. The
voltage constraint is illustrated in detail by taking sector I as an example below. In Sector I,
the projected current constraint OVV can be expressed as vαop =

vαlim−
√

3vβlim+2Vdc
4

vβop = −
√

3(vαop − 2
3 Vdc)

, (22)

where Vdc is the dc link voltage.
Note that the voltage constraint OVV obtained by (22) may exceed the range of sector I.

In this case, it should be replaced by the nearest active voltage vector, namely u1 or u2.
Finally, the OVV considering both current and voltage constraints is output via space vector
modulation (SVM) to achieve a fixed switching frequency.

3.5. Load Torque Observation

It can be seen from (9) that the load torque information is required when implementing
the MPDSC scheme. Therefore, a load torque observer usually needs to be designed. The
traditional load observers are mostly based on the linear Luenberger observer theory, such
as full-order load observers or reduced-order load observers [26]. However, due to the
harsh operating conditions of PMSMs, various disturbances and model mismatches will
inevitably occur, which leads to large observation errors in traditional load observers. In
addition, traditional linear load observers feature a property of asymptotic convergence;
that is, the load disturbance estimation is converged in infinite time, which may affect the
system dynamic response.

Note that the second-order sliding mode observer not only has strong robustness
to various disturbances but also converges in finite time. Moreover, the chattering is
significantly attenuated compared to conventional sliding mode observers [27]. Therefore,
the second-order sliding mode observer, which combines the above advantages, is more
suitable for stable, accurate, and robust observation of load torque.

First, the simplest form of an S2MO is expressed as
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
.
x̂(t) = u(t) + v(t)

v(t) = −λ1|x̂(t)− x(t)|1/2sgn[x̂(t)− x(t)] + ẑ(t)
.
ẑ(t) = −λ2sgn[ẑ(t)− v(t)]

, (23)

where x(t) and z(t) represent system state variables and disturbances, respectively. x̂(t) and
ẑ(t) represent the estimated values of system state variables and disturbances, respectively.
λ1 and λ2 are positive gains of the observer. Notation ‘sgn’ is a sign function.

Then, using the Euler forward discretization method, (23) can be discretized as
x̂k+1 = x̂k + Ts(uk + vk)

vk = −λ1|x̂k − xk|1/2sgn(x̂k − xk) + ẑk

ẑk+1 =
.
ẑk − Tsλ2sgn(ẑk − vk)

. (24)

Regarding the analysis of discretization modeling error, more details are investigated
in [28,29], which are not detailed here. Applying (24) to the discrete speed dynamics model
in (4), the second-order sliding mode load torque observer is designed as

ω̂r,k+1 = ω̂r,k + Ts[−λ1
∣∣ω̂r,k −ωr,k

∣∣1/2sgn(ω̂r,k −ωr,k)

+Acωr,k + Bciq,k + d̂k]

d̂k+1 = d̂k − Tsλ2sgn[λ1
∣∣ω̂r,k −ωr,k

∣∣1/2sgn(ω̂r,k −ωr,k)]

, (25)

where the matrices

Ac = −
Bm

J
, Bc =

1.5npψ f

J
, dk = −

TL,k

J
. (26)

As a result, the observed disturbance d̂k is further converted into the load torque as

T̂L,k = −Jd̂k. (27)

Figure 2 shows the block diagram of the designed second-order sliding mode load
torque observer for a PMSM.
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3.6. Experimental Setup

To verify the effectiveness of the proposed MPDSC, experiments are carried out in
this section. Figure 4 shows the experimental platform, which consists of a DC source, a
surface-mounted PMSM, a hysteresis-brake load, a two-level three-phase voltage-source
inverter, an LEM box for current sampling, and a host PC. Moreover, a TMS320F28335-
DSP is used for algorithm implementation. The parameters of the PMSM drive system
are listed in Table 1. Moreover, the state-of-the-art double-vector PDSC proposed in [24]
is implemented for performance comparison. The sampling frequency fs and switching
frequency fsw for both control methods are set as 10 kHz. The weighting factor λi is set as 1
to achieve good balance between the speed and stator current control objectives.
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Table 1. Parameters of the PMSM drive system.

Parameters Symbols Values

DC link voltage Vdc 36 V
Stator inductance Ls 0.85 mH
Stator resistance Rs 0.375 Ω

Rotor flux linkage ψf 0.01 Wb
Pole pairs np 4

Inertia J 6 × 10−6 kg·m2

Rated speed nN 2000 rpm
Rated torque TN 0.3 N·m

4. Experimental Results and Analysis
4.1. Steady-State Performance

Figure 5 shows the steady-state experimental waveforms of the proposed MPDSC and
double-vector PDSC at the speed of 1500 rpm, and Figure 6 shows the corresponding stator
current harmonic spectrum. It can be seen from Figure 5 that both methods can track the
speed and current reference well. However, since the proposed MPDSC features a fixed
switching frequency and applies three voltage vectors in one sampling period, the current
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ripple is reduced compared with the double-vector PDSC. It can be seen from Figure 6 that
the stator current THD using the proposed method is reduced by about 50% (from 11.97%
to 6.25%) compared with using the double-vector PDSC, which reveals that the proposed
method can achieve better steady-state performance.
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4.2. Dynamic Performance
4.2.1. Load Torque Variations

Figures 7 and 8 depict the dynamic response of two methods under a sudden load
torque change, where the speed reference is 1500 rpm. It can be seen that the speed drop and
settling time of the proposed method are much lower than those of the double-vector PDSC
when the load torque increases from 0 Nm to 0.2 Nm. Similar experimental results are also
obtained when unloading. It can be seen that the speed fluctuation using double-vector
PDSC is 30 rpm, while that with the proposed method is 15 rpm. Hence, the proposed
MPDSC method has a faster dynamic response and is more robust to load disturbances
compared with the double-vector PDSC.
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4.2.2. Speed-Regulation Performance

In Figure 9, the experimental results of speed-regulation performance under the no-
load conditions are compared, where the reference speed changes from 500 rpm to 1500 rpm.
As shown in Figure 9, similar dynamic performance appears in two methods.
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4.3. Robustness Evaluation

To investigate the sensitivity to model mismatches using the proposed MPDSC, ex-
perimental comparisons under different stator inductance mismatches are carried out.
Figure 10 shows the experimental comparisons with a −50% Ls mismatch in the controller,
while Figure 11 shows the experimental comparisons with a +50% Ls mismatch in the
controller. It can be observed that PMSM can operate stably with both methods under a
certain model mismatch. However, when the double-vector PDSC is adopted, the speed of
PMSM decreases and cannot be restored with a −50% Ls mismatch. When there exists a
+50% Ls mismatch, slight oscillations appear in stator current with double-vector PDSC.
Therefore, the proposed method is proved to have stronger robustness to stator inductance
mismatches compared to double-vector PDSC.
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4.4. Load Torque Observation Evaluation

Figure 12 shows the experimental results of the designed second-order sliding mode
load torque observer, where the blue line represents the actual load torque and the mauve
line represents the observed load torque. It can be seen from Figure 12 that the S2MO can
quickly and smoothly track the load torque in the transient process. Moreover, since the
S2MO introduces an integral action, the chattering effect is greatly weakened.

Energies 2022, 15, x FOR PEER REVIEW 12 of 14 
 

 

Figure 11. Experimental comparison with a +50% Ls mismatch. (a) Proposed MPDSC. (b) Double-

vector PDSC. 

4.4. Load Torque Observation Evaluation 

Figure 12 shows the experimental results of the designed second-order sliding mode 

load torque observer, where the blue line represents the actual load torque and the mauve 

line represents the observed load torque. It can be seen from Figure 12 that the S2MO can 

quickly and smoothly track the load torque in the transient process. Moreover, since the 

S2MO introduces an integral action, the chattering effect is greatly weakened. 

Time[1s/div]

[0.12 N·m/div]

TL̂ 

TL

 

Figure 12. Evaluation of the second-order sliding mode load torque observer. 

4.5. Discussion 

Existing predictive direct speed control for PMSM drives has been able to simplify 

the control structure and parameter tuning work, which is simple in implementation. 

However, the main idea of this paper is to further improve the steady-state performance 

and robustness to load variations compared to state-of-the-art predictive direct speed con-

trol. Experimental results reveal that the steady-state torque ripples and stator current 

THD are reduced. Nevertheless, the weighting factor design is based on trial-and-error in 

this paper, and the theoretical guidelines for weighting factor selection are required to 

achieve an optimal control performance, which will be our future work.  

5. Conclusions 

This paper proposes a cascade-free modulated predictive speed control scheme of 

PMSM drives for steady-state performance and robustness enhancement. To realize the 

speed predictions, a second-order sliding mode observer is firstly employed for fast and 

robust load torque estimation. Then, a dual objective cost function with both speed and 

current tracking is firstly constructed, enhancing the steady-state tracking accuracy. Fi-

nally, to achieve a fixed switching frequency, the analytical solution of the constrained 

optimal voltage vector with constraints is derived offline, which is finally synthesized by 

space vector modulation. Experimental results are provided, which verify that the pro-

posed MPDSC can achieve improved steady-state performance (reducing 50% of stator 

current THD), and stronger robustness to load variations (reducing 50% of speed fluctu-

ations) compared with conventional double-vector PDSC.  

Author Contributions: Conceptualization, C.Z.; methodology, C.Z. and J.Y.; software, Z.X. and 

X.D.; validation, C.Z., J.Y., Z.G., Z.X. and X.D.; formal analysis, C.Z. and J.Y.; investigation, C.Z., 

J.Y., Z.G., Z.X. and X.D.; resources, C.Z.; data curation, C.Z., J.Y., Z.G., Z.X. and X.D.; writing—

original draft preparation, C.Z. and J.Y.; writing—review and editing, C.Z., J.Y. and Z.G.; visualiza-

tion, C.Z., J.Y., Z.G., Z.X. and X.D.; supervision, C.Z. and Z.G.; project administration, C.Z. and Z.G.; 

funding acquisition, C.Z. and Z.G. All authors have read and agreed to the published version of the 

manuscript. 

Figure 12. Evaluation of the second-order sliding mode load torque observer.

4.5. Discussion

Existing predictive direct speed control for PMSM drives has been able to simplify
the control structure and parameter tuning work, which is simple in implementation.
However, the main idea of this paper is to further improve the steady-state performance
and robustness to load variations compared to state-of-the-art predictive direct speed
control. Experimental results reveal that the steady-state torque ripples and stator current
THD are reduced. Nevertheless, the weighting factor design is based on trial-and-error
in this paper, and the theoretical guidelines for weighting factor selection are required to
achieve an optimal control performance, which will be our future work.

5. Conclusions

This paper proposes a cascade-free modulated predictive speed control scheme of
PMSM drives for steady-state performance and robustness enhancement. To realize the
speed predictions, a second-order sliding mode observer is firstly employed for fast and
robust load torque estimation. Then, a dual objective cost function with both speed and
current tracking is firstly constructed, enhancing the steady-state tracking accuracy. Finally,
to achieve a fixed switching frequency, the analytical solution of the constrained optimal
voltage vector with constraints is derived offline, which is finally synthesized by space
vector modulation. Experimental results are provided, which verify that the proposed
MPDSC can achieve improved steady-state performance (reducing 50% of stator current
THD), and stronger robustness to load variations (reducing 50% of speed fluctuations)
compared with conventional double-vector PDSC.
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