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Abstract: Researchers have made great progress in developing cutting-edge solar energy forecasting
methods. However, these methods are far from optimal in terms of their accuracy, generalizability,
benchmarking, and other requirements. Particularly, no single method performs well across all
climates and weather due to the large variations in meteorological data. This paper proposes
SENERGY (an acronym for sustainable energy), a novel deep learning-based auto-selective approach
and tool that, instead of generalizing a specific model for all climates, predicts the best performing
deep learning model for global horizontal irradiance (GHI) forecasting in terms of forecasting error.
The approach is based on carefully devised deep learning methods and feature sets created through
an extensive analysis of deep learning forecasting and classification methods using ten meteorological
datasets from three continents. We analyze the tool in great detail through a variety of metrics
and means for performance analysis, visualization, and comparison of solar forecasting methods.
SENERGY outperforms existing methods in all performance metrics including mean absolute error
(MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), the normalized
versions of these three metrics (nMAE, nRMSE, nMAPE), forecast skill (FS), and relative forecasting
error. The long short-term memory-autoencoder model (LSTM-AE) outperformed the other four
forecasting models and achieved the best results (nMAE = nRMSE = nMAPE = 0.02). The LSTM-AE
model is the most accurate in all weather conditions. Predictions for sunny days are more accurate
than for cloudy days as well as for summer compared to winter. SENERGY can predict the best
forecasting model with 81% accuracy. The proposed auto-selective approach can be extended to
other research problems, such as wind energy forecasting, and to predict forecasting models based
on different criteria such as the energy required or speed of model execution, different input features,
different optimizations of the same models, or other user preferences.

Keywords: solar energy forecasting; generalizability; long short-term memory (LSTM); gated recur-
rent unit (GRU); convolutional neural network (CNN); hybrid CNN-bidirectional LSTM; LSTM au-
toencoder

1. Introduction

The last century has seen many technological advancements that have enabled us
to make unimaginable progress, particularly during the last few decades. This progress,
however, has come at a rapidly increasing price. The sustainability of the planet and its
inhabitants is in dire danger and is among the highest priorities on global agendas such
as the sustainable development goals (SDGs) of the United Nations (UN). Solar energy,
among other clean, renewable, and sustainable energies, such as wind energy, is essential
for environmental, social, and economic sustainability.

Solar energy could generate 10,000 times more than the world’s total energy con-
sumption with its Earth strike rate of 173,000 terawatts [1]. Therefore, solar energy has
enormous potential for reducing global carbon emissions. For example, the installation of
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113,533 domestic solar systems in California, USA, has lowered or prevented 696,544 metric
tons of CO2 emissions [2]. Developing capacity for solar energy production is also critical
for Saudi Arabia, which is among the top few oil producers and consumers in the world
and is ranked sixth in the world in terms of its potential for producing solar energy [3]. The
Sakaka 300-megawatt (MW) solar power station, Saudi Arabia’s first utility-scale solar PV
project, was linked to the national grid in November 2019. With a $302 million investment,
the plant will cover a six square kilometer area in Al-Jouf. This is the first in a series of
projects under Saudi Arabia’s national renewable energy program to generate 9.5 GW of
renewable energy by 2023 [4].

The need for integrating solar energy into the electrical grid has motivated researchers
across the globe to develop advanced methods for solar radiation forecasting. Accurate
prediction of solar radiation is vital to ensure hybrid energy systems’ reliability and per-
manency. Specifically, it reduces the risks and costs of managing the energy market and
energy systems, which are attributed to the influence of climate changes and weather
variability [5,6]. The applications of solar radiation forecasting in solar energy systems
vary according to the forecasting horizon, which ranges from very short to long term.
They include real-time monitoring, demand and supply balancing, decision making, unit
commitment, power plant maintenance scheduling, site selection, solar plant installation,
grid operations planning, and others [7].

Solar energy and its generated electrical energy outputs will always be unsteady due
to the natural variability and uncertainty of weather. As a result, solar energy prediction
is critical and difficult, necessitating the development of advanced methods. There are
four types of methods used for this purpose: physical (such as numerical and simulation
weather prediction models), statistical, those based on artificial intelligence (AI), and
hybrid methods [8,9]. Because of their ability to discover nonlinear relationships and
provide greater performance, artificial intelligence methods such as machine and deep
learning methods have grown in popularity [10,11]. Machine learning including deep
learning methods, in particular, have excelled in a wide range of scientific problems and
applications domains, including computer vision and natural language processing [12–14],
transportation [15], healthcare [16], education [17], and smart cities [18]. This is also true
for solar energy forecasting, with many deep learning methods emerging in recent years
that outperform the other three types of forecasting methods [12,19,20].

We have performed an extensive literature review (see Section 2 and [19]) on deep
learning-based solar energy forecasting methods and have identified the key research
gaps in this field. We explain the research gaps in Figure 1. The figure provides a per-
formance comparison of different deep learning models. The compared works include
Kumari and Toshniwal [21], Lima et al. [22], AlKandari and Ahmad [23], Gao et al. [24],
Fouilloy et al. [25], Lago et al. [26], Lee et al. [27], Yagli et al. [28], Srivastava and Less-
mann [29], and Bouzgou and Gueymard [30]. We will elaborate on the reasons for the
selection of these methods in the later sections. In the figure, note that performance for
different methods is plotted using different performance metrics as originally used by the
authors in their published works. The metrics used in these works include mean absolute
error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE),
normalized RMSE (nRMSE), relative RMSE (rRMSE), and normalized MAE (nMAE). Each
work is plotted as a boxplot, labelled with the authors’ names, the performance metric
used by the authors, and the total number of datasets used in their work. For example,
Lima et al. [22] reported the performance of their proposed methods using MAPE with two
datasets and is labelled as Lima et al. (MAPE, 2). Ideally, the boxplot should be closest to
the x-axis to reflect a small value for the error metric. Additionally, the boxplot should be
vertically small to reflect small variations in the error metrics for different datasets.
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ported by Kumari and Toshniwal [21] and Srivastava and Lessmann [29], due to the large 
difference between the number of datasets (3 versus 21) despite the fact that both of them 
reported their results using the same metric (RMSE). Note that a large number of datasets 
does not necessarily show variations in the input data; one needs to look at the size of the 
datasets, the dataset climates, the variations in data, etc. 
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An example is the Global Energy Forecasting Competition in the USA, which to date has 
been organized three times in 2012, 2014, and 2017 [33]. These works and proposals 
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transparent, and fair benchmarking of these models. Because of the large variations in 
meteorological data, no single forecasting method performs well across all climates and 

Figure 1. Performance comparison of solar forecasting models (different performance metrics).

The figure shows that different works have used different metrics and different num-
bers of datasets and that there is a large variation in their performances. The use of different
metrics makes it difficult to compare the performance of the varying methods. A larger
number of datasets may indicate better generalizability and validation of results. However,
this is not necessarily true because it depends on the size of the datasets, variability in the
climates and data characteristics, and the metrics used to measure the performance, and
other factors. Even if the same performance metric was used by these works, comparing
their performance using RMSE or other existing metrics is difficult because these metrics
do not always exhibit the variability in the input data such as variations in the types of
climates, the proportion, and unpredictability of sunny and cloudy weather, variations in
GHI, etc. For example, although both Lima et al. [22], and AlKandari and Ahmad [23] used
two datasets, it is hard to fairly compare them because the error metrics used by them are
different (MAPE versus nMAE). Similarly, it is hard to compare the results reported by
Kumari and Toshniwal [21] and Srivastava and Lessmann [29], due to the large difference
between the number of datasets (3 versus 21) despite the fact that both of them reported
their results using the same metric (RMSE). Note that a large number of datasets does not
necessarily show variations in the input data; one needs to look at the size of the datasets,
the dataset climates, the variations in data, etc.

The challenges described above call for new approaches from the community for novel
forecasting and evaluation methods. There is a need for independent and transparent
evaluation and extensive testing of the published models [12], similar to what has been
done in other fields such as computer vision. Some researchers have suggested the use of a
single statistical index called the global performance indicator to overcome the difficulty
of comparing different performance metrics [31,32]. Moreover, some independent bench-
marking exercises or conferences in the renewable energy fields have started to emerge. An
example is the Global Energy Forecasting Competition in the USA, which to date has been
organized three times in 2012, 2014, and 2017 [33]. These works and proposals demonstrate
that the community has made significant progress in developing high-performance solar
energy forecasting methods. However, much more sustained effort is required to improve
forecasting model accuracies and generalizability, as well as extensive, transparent, and
fair benchmarking of these models. Because of the large variations in meteorological data,
no single forecasting method performs well across all climates and weather conditions.
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There is a need to close this gap so that forecasting methods can perform optimally across
varying climates and data.

This paper proposes a novel deep learning-based auto-selective approach and tool that
predicts the best-performing deep learning model for GHI forecasting instead of generaliz-
ing a specific model for all climates. We call this approach and tool SENERGY, an acronym
for sustainable energy. The approach is based on carefully devised deep learning methods
and feature sets through an extensive analysis of deep learning forecasting and classification
methods using ten meteorological datasets from three continents. The models that we have
used in this work include long short-term memory (LSTM), gated recurrent unit (GRU),
convolutional neural network (CNN), hybrid CNN-bidirectional LSTM (CNN-BiLSTM),
and LSTM autoencoder (LSTM-AE). We analyze the tool in great detail through a range
of metrics and methods for performance analysis, visualization, and comparison of solar
forecasting methods. SENERGY outperforms existing methods in all performance metrics
including mean absolute error (MAE), root mean square error (RMSE), mean absolute per-
centage error (MAPE), and the normalized versions of these metrics in addition to forecast
skill (FS)and relative forecasting error. The LSTM-AE model outperformed the other four
forecasting models and achieved the best results (nMAE = nRMSE = nMAPE = 0.02). The
LSTM-AE model is the most accurate in all weather conditions. Prediction for sunny days is
more accurate than for cloudy days and the same is true for the summer season compared
to the winter season. SENERGY can predict the best forecasting model with 81% accuracy.

Figure 2 shows a higher-level overview of the SENERGY approach. The figure shows
that various forecasting temporal information (month, day, hour) along with the previous
values of global horizontal irradiation (GHI) and weather variables are supplied to the
tool as inputs and the tool recommends the best forecasting model and uses this model to
provide forecasted GHI. A detailed explanation of the design of the SENERGY approach
and tool is given in Section 3.
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Figure 2. SENERGY: A high-level overview.

The approach proposed in this paper to use machine or deep learning to automatically
predict a best-performing model or configuration is not new and has been used in our
earlier work for computations of sparse matrix-vector (SpMV) products [34–36]. However,
to the best of our knowledge, this is the first time that such an approach has been used
in solar energy forecasting and is implemented in a tool for this purpose. The proposed
auto-selective approach currently considers minimum forecasting error to predict the
best performing deep learning model for GHI forecasting. It can be extended to predict
forecasting models based on different additional criteria, such as the energy required or
the speed of model execution, different input features, different optimizations of the same
models, or other user preferences. Additional deep learning models for classification (to
auto-select) or forecasting solar radiation can be incorporated into the tool to improve the
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performance and diversity of the tool. The approach is extensible also to other renewable
energy sources and problems such as wind energy forecasting.

The contributions of this paper can be summarized as follows.

1. This paper proposes a novel approach and tool that uses deep learning to automat-
ically predict the best-performing solar energy forecasting model. The approach is
extensible to other performance metrics or user preferences and is applicable to other
energy sources and problems.

2. We provide an in-depth analysis of five deep learning models for solar energy fore-
casting using ten datasets from three continents. This is the first time that such a
combination of models, datasets, and analyses has been reported. Particularly, none of
the earlier works have reported forecasting based on five deep learning-based models
with such many locations in Saudi Arabia and provided a comparison with locations
abroad (Toronto and Caracas).

3. We highlight the need for standardization in performance evaluation of machine
and deep learning modelling in solar forecasting by providing extensive analysis
and visualization of the tool and its comparison with other works using several
performance metrics. We have not seen such an extensive evaluation of work earlier
in solar energy forecasting. This paper is expected to open new avenues for higher
depth and transparency in benchmarking of solar energy forecasting methods.

This paper is organized as follows: Section 2 reviews the related works and clarifies the
research gap. Section 3 presents the methodology used in the work including subsections
describing the SENERGY development process, the dataset’s development process, feature
importance, and the model’s development process. Additionally, Section 3 includes a
description of the performance evaluation metrics and tool implementation of the models.
In Section 4, the results are discussed and analyzed in detail. Section 5 concludes and
provides future directions.

2. Literature Review

Deep learning models’ promising achievements have motivated researchers to apply
them in the field of solar radiation and solar energy forecasting. Their advantages include
the ability to discover nonlinear relationships among inputs, generalization capability, and
unsupervised feature learning in addition to superior performance. In our earlier work [19],
we conducted an extensive review of solar and wind energy forecasting methods based
on deep learning and proposed a taxonomy of this research field as shown in Figure 3.
The most used deep learning-based architectures in the literature are first the hybrid
models; next, recurrent neural network (RNN) models including the LSTM model and
GRU model; and CNN models in the third place. Based on the numerous studies we
reviewed, we found that deep learning-based forecasting models constantly outperform
other machine learning models and statistical methods in accuracy and generalization
ability, especially when they are merged with other methods in hybrid models. However,
there will be no consensus regarding the best performing forecaster unless thorough testing
is conducted using datasets that represent different climates and cover all seasons and
weather conditions. Although deep learning models have proven their ability to provide
competitive results in terms of forecasting accuracy, there is still room for improvement
regarding models’ generalization and stability. More studies should focus on developing
general forecasting models since developing a model for each location is infeasible. Few
studies have suggested forecasting models for a whole region, such as [37–41]. However,
general forecasting models should be able to provide forecasting for locations within
different climatic zones rather than just similar regions.
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The current efforts focused on improving the generalizability of deep learning-based
forecasters in the literature are still limited. Some researchers suggest ensemble learning to
improve generalization. Ensemble learning takes the average prediction of several forecast-
ing models instead of finding a single best-performing one. For example, Lima et al. [22]
used ensemble learning along with a new integration technique based on portfolio theory.
Their proposed solar irradiance ensemble forecasting model integrates the multilayer per-
ceptron network (MLP) model, support vector regression (SVR) model, radial basis function
model, and LSTM model. Weights are assigned adaptively to each model before calculating
the final forecasting result. Such a self-adaptive model structure enables improved fore-
casting performance in terms of generalizability and accuracy. The authors also compared
their model’s performance using datasets collected from Brazil and Spain. In addition,
Khan et al. [42] combined shallow artificial neural network (ANN), LSTM, and extreme
gradient boosting (XGBoost) in their ensemble model to improve the generalization of solar
forecasting. Their method achieved more stable performance in several case studies than
using ANN, LSTM, or bagging alone. AlKandari and Ahmad [23] proposed a solar power
forecasting model employing an ensemble approach, combining the GRU, LSTM, and
theta models. They found that the ensemble technique involving both machine learning
and statistical models achieved better prediction accuracy than single models. They also
compared their model performance using datasets from Kuwait and USA. Wang et al. [43]
utilized classification along with ensemble learning in their proposed PV power ensemble
forecasting framework. The classification is used to identify the daily pattern label of the
forecasting day to improve the forecasting accuracy performed by multiple LSTM models.
Singla et al. [44] utilized wavelet transform (WT) to decompose the input time series data into
different subseries. They then trained a bidirectional LSTM model for each subseries. The
forecasted values of each subseries from the BiLSTM models are combined to deliver the final
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24 h GHI forecast. Pan and Tan [45] performed cluster analysis on data to obtain weather
regimes before employing random forests to acquire prediction from different weather regimes.
El-Kenawy et al. [46] developed an ensemble model for solar radiation forecasting, which
consisted of LSTM, NN, and support vector machine (SVM). This model’s ensemble weights
were optimized by advanced sine cosine algorithm that showed performance superiority over
the average and K-nearest neighbors ensemble methods.

Comparing the performance of a proposed model using several datasets collected from
locations with different climates is a practice found in the literature that aims to improve
forecasting models’ performance generalization and stability. For example, Kumari and
Toshniwal trained and tested their ensemble model, which consists of XGB forest and
deep neural network (DNN) to perform hourly GHI forecasting using data collected
from three locations with humid subtropical, hot semi-arid, and subtropical climates of
India [21]. Similarly, Gao et al. [24] tested the ability of their proposed CNN and LSTM
hybrid model to provide hourly solar irradiance forecasting by using four datasets from
locations with Mediterranean, semi-arid, rainforest, and desert climates. On a similar
vein, Kapa et al. [47] compared the performance of a DNN model in relation to daily
GHI forecasting on datasets collected from thirty-four cities in Turkey, situated in very
wet, humid, semi-humid, and semi-dry climates. Fouilloy et al. [25] also compared eleven
machine learning and statistical models for solar irradiation forecasting using three datasets
with different meteorological characteristics. The datasets’ sources are two locations in
France Odeillo in the mountains and Ajaccio near the Mediterranean Sea in addition to
Tilos island in Greece. Lago et al. [26] proposed a generalized model based on DNN for
solar irradiance forecasting using data from twenty-five locations in the Netherlands, and
Lee et al. [27] compared several ensemble models using datasets from six distinct locations
in the USA. Yagli et al. [28] evaluated sixty-eight machine learning algorithms using data
in five climate zones for hourly solar forecasting. Srivastava and Lessmann [29] compared
LSTM performance in twenty-one locations in Europe and the USA with ten climate types
to three other methods. Jeon and Kim [48] proposed a global LSTM model for the next-day
solar irradiance prediction by training the model with data collected from Cape Town,
Canberra, Colorado, and Paris, then evaluating it with data from Inchon. Bouzgou and
Gueymard [30] trained an extreme learning machine (ELM) model using data from twenty
locations with four different climates.

Table 1 highlights the approach used to improve forecasting performance generaliza-
tion (ensemble model, multiple climates, or both) along with the results and main findings
for each paper covered in this section. Since most of the researchers in this field are more
concerned with improving forecasters’ accuracies as their main goal, there is a need to
explore new methods to improve generalization in order to achieve greater accuracy. In
this paper, we have combined two methods: the knowledge gained from comparing multi-
ple forecasting models’ performance on different climate data along with classification to
recommend the best forecasting model for certain data inputs.

Research Gap

The literature review presented in this section (also see [19]) identified the major
research gaps in deep learning-based solar energy forecasting methods research. Despite
significant progress in developing high-performance solar energy forecasting methods,
much more sustained effort is required to improve forecasting model accuracies and gen-
eralizability, as well as extensive, transparent, and fair benchmarking of these models.
Because meteorological data vary so greatly, no single forecasting method performs well
across all climates and weathers. There is a need to close this gap so that forecasting
methods can perform optimally across varying climates and data. This paper proposes a
novel approach and tool for automatically predicting the best-performing solar energy fore-
casting model using deep learning. The method is adaptable to other performance metrics
or user preferences, as well as other energy sources and problems. To our knowledge, this
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is the first time such an approach has been used in solar energy forecasting and has been
implemented in a tool for this purpose.

Table 1. Summary of the literature review.

Ref
No.

Ensemble
Model

Multiple
Climates Results Main Findings

[21] 4 4

The ensemble model (XGBF-DNN) performed
better than smart persistence, SVR, random forest
(RF), XGBoost, and DNN models in hourly GHI
prediction for all three locations in India and can be
used for other locations.

The ensemble model (XGBF-DNN)
attained RMSE = 53.79 for Jaipur,
RMSE = 51.35 for New Delhi, and
RMSE = 89.13 for Gangtok.

[22] 4 4

Integrating of LSTM, MLP, RBF, and SVR
forecasting techniques provided better
performance than the individual models for Brazil
and Spain in 1 h ahead PV power forecasting.

The ensemble model of LSTM, MLP, RBF,
and SVR achieved MAPE = 5.36% for
Spain and 4.52% for Brazil.

[42] 4

The ensemble model of ANN, LSTM, and XGBoost
performed better than ANN and LSTM models
alone in PV power forecast.

The ensemble model of ANN, LSTM, and
XGBoost achieved RMSE = 0.74 and
MAE = 0.47 with 15 min data resolution
and RMSE = 0.78 and MAE = 0.59 with
1 h data resolution.

[23] 4 4

The ensemble model of GRU, LSTM, and Theta
achieved better performance with Shagaya dataset
than with Cocoa because of the additional weather
data and it achieved better accuracy than single ML
algorithms and theta model in day-ahead solar
power forecast for both locations.

The ensemble model of GRU, LSTM, and
Theta achieved nMAE = 0.0317 for
Shagaya in Kuwait while LSTM model
alone achieved nMAE = 0.0739 for Cocoa
in USA, which is slightly better than the
ensemble model performance with
nMAE = 0.0877.

[43] 4

The ensemble model of LSTMs attained better
performance than back propagation neural network
(BPNN), SVM, and persistent models in day-ahead
PV power forecasting.

The ensemble model of LSTMs attained
RMSE = 5.68.

[44] 4

The ensemble model of WT and bidirectional LSTM
outperformed the naïve predictor, LSTM, BiLSTM,
GRU and two different WT based BiLSTM models
in 24 h ahead solar irradiance forecast.

The ensemble model of WT and
bidirectional LSTM attained annual
average RMSE = 45.61 and
MAPE = 6.48%.

[45] 4

The ensemble model of RF with cluster analysis for
day-ahead solar forecasting performed better than RF
alone and gradient boosted regression trees because
weather classification improved the accuracy.

The ensemble model of RF with cluster
analysis attained nRMSE = 8.8.

[46] 4

The ensemble model of LSTM, NN, and SVM for
solar radiation forecasting, optimized using
advanced sine and cosine algorithm, outperformed
all the reference models.

The ensemble model of LSTM, NN, and
SVM achieved RMSE = 0.0018.

[24] 4

The hybrid model of complete ensemble empirical
mode decomposition adaptive noise (CEEMD),
CNN, and LSTM to forecast hourly irradiance
performed better compared to LSTM, BPNN, and
SVM models as well as the hybrid
CEEMDAN-LSTM, CEEMDAN-BPNN, and
CEEMDAN-SVM models.

The hybrid model of CEEMD, CNN, and
LSTM achieved annual RMSE = 42.84 for
Tamanrasset, 43.98 for Hawaii’s Big Island,
40.60 for Denver, and 27.09 for Los Angeles.

[47] 4

The DNN model for daily GHI prediction showed
good performance with 34 cities in Turkey using all
inputs (extraterrestrial radiation, sunshine
duration, cloud cover, and maximum and
minimum temperature).

The DNN achieved RMSE ranges from
0.52 to 1.29 for 34 cities, which represent
all climatic conditions in Turkey.
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Table 1. Cont.

Ref
No.

Ensemble
Model

Multiple
Climates Results Main Findings

[25] 4

Statistical models’ performance of hourly solar
irradiation forecasting with low to medium
meteorological variabilities data is efficient while
with high variability or longer forecasting horizons,
bagged regression tree and RF approaches
performed better.

For a medium and low variability dataset
(Tilos and Ajaccio), the best 1 h ahead
forecasting is MAE = 71.27 and 54.58
achieved by SVR model, whereas for a
high variability dataset (Odeillo), the best
result is 97.48 achieved by RF.

[26] 4

The global DNN for hourly GHI forecasting, which
was trained using data from 25 locations in the
Netherlands (satellite-based measurements and
weather-based forecasts) has a better average
performance than other four local models.

The global DNN attained average relative
RMSE = 31.31%, where the lowest relative
RMSE = 29.24 for Hoek v. H. site and the
highest relative RMSE = 34.55 for
Deelen site.

[27] 4 4

The ensemble models (boosted trees, bagged trees,
RF, and generalized RF) for short-term solar
irradiance forecast outperformed SVR and
Gaussian process regression.

The ensemble model achieved the best
MAPE results for 4 out of 6 datasets
(MAPE equals to 19.76, 42.27, 31.79, and
58.58 for CA, TX, WA, and MN
respectively).

[28] 4

For hourly solar forecasting, tree-based methods
were better in all-sky conditions, whereas variants
of MLP and SVR were better in clear-sky and RF
with quantile regression in overcast sky conditions.

Tree-based methods are superior for
all-sky conditions with nRMSE ranges
from 15.46% to 33.36% based on location.

[29] 4

The LSTM model outperformed persistence, FFNN,
and gradient boosting regression methods in
day-ahead GHI forecasting.

The LSTM model achieved RMSE ranges
from 23.6 to 37.78 for 21 locations.

[48] 4

The global LSTM model, which was trained with
international data for next-day GHI prediction, was
able to predict GHI in Korea.

The global LSTM model achieved
RMSE = 30 with Inchon in Korea.

[30] 4

The ELM model, which was trained with data from
20 locations, has good performance for 15 min, 1 h,
and 24 h ahead forecasting.

The ELM model achieved average
RMSE = 93.82 for 20 locations for 1 h
ahead forecast.

Using ten datasets from three continents, we conducted an in-depth analysis of five
deep learning models for solar energy forecasting. None of the previous works reported
such an integration of models, datasets, and analysis. None of the works reported forecast-
ing based on five deep learning-based models with such many locations in Saudi Arabia,
nor did they provide a comparison with locations elsewhere (Toronto and Caracas). We
highlight the need for standardization in the performance evaluation of machine and deep
learning modelling in solar forecasting by providing in-depth analysis and visualization of
the tool, as well as comparisons with other works using various performance metrics. We
have not seen a thorough evaluation of work in solar energy forecasting before. We antici-
pate that this work will pave the way for greater depth and transparency in benchmarking
solar energy forecasting methods.

3. SENERGY: Methodology and Design

We first provide an overview of the SENERGY development process in Section 3.1,
then we describe the steps in detail in later sections. In Section 3.2, we describe the datasets
development process, which includes data collection and data preprocessing for forecast-
ing and model prediction. In Section 3.3, we discuss four feature importance methods:
Pearson’s correlation, mutual information, forward feature selection and backward feature
elimination in section, and LASSO feature selection. Then, five deep learning models
used in SENERGY are explained in Section 3.4. These are long short-term memory, gated
recurrent unit, convolutional neural network in section, hybrid convolutional neural net-
work and bidirectional long short-term memory, and long short-term memory autoencoder.
Finally, a description of the performance evaluation metrics is given in Section 3.5 and
SENERGY implementation is discussed in Section 3.6.
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3.1. Tool Development Process

The SENERGY development process is displayed in Figure 4. This starts with collect-
ing datasets from multiple locations that have different climates and is followed by data
preprocessing, such as filling missing values, creating lagged features, and normalization.
Then, the process continues with feature selection through Pearson’s correlation, mutual
information, forward feature selection, backward feature elimination, and LASSO methods.
Next, preprocessed data are used for training and testing five deep learning-based forecast-
ers. The forecasters’ performance on the datasets is compared using several performance
evaluation metrics. Based on performance comparison, the best model label is obtained,
which is the forecaster that achieves the least forecasting error. Then, the best model label
is added to become the target variable, and all the datasets are combined to train and test
the best forecaster recommendation model. After completing the development process of
SENERGY, the tool is able to receive new inputs, recommend the best forecaster based on
inputs, and use the chosen forecaster to predict the next hour GHI.
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3.2. Datasets Development

Here in this section, we first describe the data collection process (Section 3.2.1), then
the data preprocessing and feature engineering performed for forecasting (Section 3.2.2),
and for model prediction (Section 3.2.3).

3.2.1. Data Collection

We used a total of ten datasets, eight of which were collected from solar monitoring
stations in Saudi Arabia and the remaining two from a Toronto dataset and a Caracas
dataset. The used datasets represent three different climates and contain records for five
years, ensuring the inclusion of a variety of weather types, such as sunny, cloudy, and rainy,
etc. The datasets from the Saudi Arabian locations were provided by the King Abdullah
City for Atomic and Renewable Energy (K.A.CARE) [49]. They contain the measurements
of three components of solar radiation: global horizontal irradiance (GHI), direct normal
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irradiance (DNI), and diffuse horizontal irradiance (DHI), in addition to related meteo-
rological parameters. The datasets cover the period from 1 January 2016 to 31 December
2020. Ideally, each dataset should contain the observations of 1827 days (5 years) averaged
into one-hour intervals. However, some days’ observations are not available because of
device malfunction or maintenance scheduling. The ground-based measurements were
taken at eight Tier 1 solar monitoring stations with a resolution of 1 min. Tier 1 stations
provide the highest quality data, with an uncertainty of +/−2% (sub-hourly). Table 2
presents information about these solar monitoring stations including the station name,
latitude, longitude, and elevation. The climate classification of all locations is hot desert
climate (BWh), according to the Köppen classification obtained from ClimateCharts.net [50].
Figure 5 shows the solar stations’ locations on the Saudi Arabia map.

Table 2. Saudi Solar monitoring stations information.

Station No. Station Name Latitude (N) Longitude (E) Elevation (m)

1 Al-Baha University 20.1794 41.6357 1680
2 Al-Jouf College of Technology 29.77634 40.02318 680

3 Saline Water Conversion Corporation
(Al-Khafji) 28.50676 48.45513 13

4 Arar Technical Institute 31.0274 40.90642 583
5 Hail College of Technology 27.65261 41.70826 928
6 Tabuk University 28.38287 36.48396 781
7 Taif University 21.43278 40.49173 1518
8 Wadi-Addawasir College of Technology 20.43008 44.89433 671
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The datasets of Toronto, Canada and Caracas, Venezuela were collected from the
National Solar Radiation Database accessed through the National Renewable Energy Labo-
ratory (NREL) website [51]. These datasets were gathered by geostationary satellites, unlike
the Saudi datasets, which were collected from ground stations. The climate classification of
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Toronto is humid continental (Dfb) and that of Caracas is tropical (A), according to Köppen
classification. Table 3 provides the source information of both datasets and Figure 6 shows
the Caracas and Toronto locations on a map.

Table 3. External datasets source information.

Location Latitude (N) Longitude (E) Elevation (m) Climate Class

Caracas, Venezuela 10.49 −66.9 942 A
Toronto, Canada 43.65 −79.38 93 Dfb
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3.2.2. Datasets for Forecasting

In this section, a description of data preprocessing for forecasting is given. First, the
data variables and the relationships between them are clarified. Then, the steps for creating
lagged features and temporal features steps are explained. Next, the steps for filling missing
values, deleting night hours records, and data normalization steps are described. Finally,
detailed information about each dataset is given.

For GHI forecasting, researchers usually use historical values of GHI alone as inputs
to make a prediction or include other meteorological variables, such as wind speed and
air temperature. Sometimes forecasted values of the meteorological variables and GHI,
such as numerical weather prediction (NWP) models’ outputs, are also used as inputs [19].
In our work, the following nine measurements were chosen as inputs to GHI forecasting
models. Figure 7 shows the relationship between GHI and the nine measurements in three
datasets only as an example (Al-Baha, Al-Jouf, and Hail datasets).
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1. GHI: the total amount of shortwave radiation received from sun by a surface horizon-
tal to the ground. It is calculated using the following equation, which explains how
GHI is related to DHI, DNI, and the Zenith Angle (ZA) [52];

GHI = DNI × cos(ZA) + DHI (1)

2. DHI: solar radiation that does not come on a direct path from the sun, but has been spread
by particles and molecules in the atmosphere and comes equally from all directions;

3. DNI: solar radiation that comes in a straight path from the direction of the sun at its
current place in the sky. On a sunny day, GHI consists of 20% DHI and 80% DNI [52].

4. ZA: the angle between the sun’s rays and a vertical line;
5. Air temperature (AT). This has a positive correlation with solar radiation [53] as can

be seen in Figure 7;
6. Wind speed (WS) and wind direction (WD) at 3 m;
7. Barometric pressure (BP);
8. Relative humidity (RH). This has a negative correlation with solar radiation [53] as

shown in Figure 7.

Using the previous three hours’ measurements (lag = 3 h), we created a set of twenty-
seven features. Table 4 shows the list of these features along with their unit. To create the
lagged features, we used the shift method in the library Pandas. Table 5 shows an example
of using the shift method with GHI values to create lagged features. To guide the decision
about the lag, we utilized the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) for GHI as presented in Figure 8. The ACF shows a correlation of GHI
with its 3 past values, whereas the PACF shows a high correlation of GHI with its first
lag only. However, such functions can measure only the linear relationship between an
observation at time t and the observations at previous times.
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Table 4. Forecasting datasets features.

Time t Features Time t−1 Features Time t−2 Features Time t−3 Features Unit

GHI (output) GHI_lag1 GHI_lag2 GHI_lag3 Wh/m2

Hour_sin (HS) DNI_lag1 DNI_lag2 DNI_lag3 Wh/m2

Hour_cos (HC) DHI_lag1 DHI_lag2 DHI_lag3 Wh/m2

Day_sin (DS) AT_lag1 AT_lag2 AT_lag3 ◦C
Day_cos (DC) ZA_lag1 ZA_lag2 ZA_lag3 ◦

Month_sin (MS) WS_lag1 WS_lag2 WS_lag3 m/s
Month_cos (MC) WD_lag1 WD_lag2 WD_lag3 ◦

RH_lag1 RH_lag2 RH_lag3 %

BP_lag1 BP_lag2 BP_lag3 Pa (Saudi data)/
Millibar (others)

* Wh: watt-hour; m: meter; C: Celsius; s: second; Pa: pascal.

Table 5. Example of creating lagged features of GHI.

Tim Stamp e GHI at t GHI at t−1 GHI at t−2 GHI at t−3

01/01/2016 7:00 0 0 0 0
01/01/2016 8:00 35.3 0 0 0
01/01/2016 9:00 236.2 35.3 0 0
01/01/2016 10:00 468.8 236.2 35.3 0
01/01/2016 11:00 609.6 468.8 236.2 35.3
01/01/2016 12:00 688.7 609.6 468.8 236.2
01/01/2016 13:00 686.8 688.7 609.6 468.8
01/01/2016 14:00 635.6 686.8 688.7 609.6
01/01/2016 15:00 522.7 635.6 686.8 688.7
01/01/2016 16:00 361.3 522.7 635.6 686.8
01/01/2016 17:00 166.2 361.3 522.7 635.6
01/01/2016 18:00 15.6 166.2 361.3 522.7
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Temporal variables (month, day, hour) of the forecasting time (t) are also important
inputs. These variables have a cyclical nature, for example, day 1 in a month is very close
to day 30 of the previous month and the hour 12 pm is very close to the hour 1 am. Treating
temporal variables as regular numbers would make day 1 of a month far from day 30 of the
last month, even though the difference is one day, the same as the difference between days
1 and 2 of the same month. To avoid this problem that might affect the models’ learning,
we decided to eliminate the effect of the cyclical nature of time by encoding these variables
into sine and cosine using the following equations [54]. The result of this transformation is
an additional six features (hour sine, hour cosine, day sine, day cosine, month sine, and
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month cosine). The total number of features used for training the forecasting models is
thirty-three as shown in Table 4.

X̃ = sin
(

2 π X
max(X )

)
(2)

X̃ = cos
(

2 π X
max(X )

)
(3)

As mentioned earlier, there are missing records for many days in the Saudi datasets.
To address this during input-output construction, we eliminated any hour record that
does not have the previous three consecutive hours’ records [55]. Records from the years
2016, 2017, and 2018 were used for training, whereas records from the years 2019 and 2020
were used for validation and testing, respectively. However, for the Arar, Al-Khafji, and
Tabuk datasets, the number of missing days is large. Therefore, records from the year
2020 and the first four months of 2021 were used as testing sets of these locations. In the
Wadi-Addawasir, Arar, and Al-Baha datasets, a few DHI values are missing, and they were
filled by Equation (1). Many values of wind direction and wind speed are missing in the
Wadi-Addawasir, Tabuk, and Taif datasets. However, the interpolation method cannot
be used to fill these values because they are for consecutive hours. For such a situation,
researchers in this field usually either use a regression model to predict the missing values
or use another source of data, such as a nearby station [56–58]. Since regression model
accuracy might affect the data quality, we decided to use a nearby station’s data to fill the
missing wind speed/direction values in the Wadi-Addawasir and Taif datasets. The source
of such data is the King Abdullah Petroleum Studies and Research Center (KAPSARC) [59].
The number of hourly records filled in Wadi-Addawasir dataset is 11,978 h, whereas it is
7630 in the Taif datasets. On the other hand, the Tabuk dataset only has 529 missing hours’
records. Therefore, we decided to eliminate these records since records from the year 2021
had been added to the dataset to compensate for the shortage. Comparing methods for
filling missing values and studying their impact on the forecasting results, as performed
in [60,61], would be an opportunity for future work.

Preprocessing steps also included deleting the records in which GHI equals zero,
which represent nighttime hours. Moreover, all features were normalized to the range of
[0, 1] by min-max scaling, then denormalized to the normal range after the training process
was completed. Table 6 presents information about each dataset including the total hourly
records used for training, validation, and testing in addition to the number of missing days
out of five years. It also indicates the mean, standard deviation (SD), and variance (Var)
of GHI for the training, validation, and testing datasets. Figure 9 shows the percentage of
cloudy and sunny hours of all datasets on the left chart while GHI mean and GHI SD are
shown on the right chart.
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Table 6. Forecasting datasets information.

Location Total Hourly
Records

Missing
Days

GHI
Mean

GHI
SD

GHI
Var

Al-Baha
Train: 6227

635 days
574.67 323.90 104,896.29

Val: 3056 552.10 325.90 106,176.30
Test: 2247 582.09 311.16 96,780.11

Al-Jouf
Train: 8600

363 days
554.11 307.66 94,643.25

Val: 2991 547.92 306.49 93,901.92
Test: 2554 528.14 296.47 87,858.12

Al-Khafji
Train: 4618

970 days
(Year 2019)

504.81 288.56 83,245.88
Val: 2363 555.17 308.66 95,231.29
Test: 2110 486.59 275.73 75,991.13

Arar
Train: 8339

575 days
546.71 310.06 96,128.23

Val: 3589 537.73 300.20 90,097.23
Test: 1357 485.46 295.04 86,983.40

Hail
Train: 8723

271 days
552.26 311.69 97,140.65

Val: 3260 544.05 310.67 96,486.20
Test: 2561 543.77 303.82 92,270.30

Tabuk
Train: 7576

542 days
593.27 310.35 96,307.42

Val: 3100 579.62 303.93 92,342.88
Test: 1937 498.03 261.73 68,465.05

Taif
Train: 8618

272 days
580.83 321.62 103,424.30

Val: 3386 562.14 308.42 95,094.37
Test: 2543 567.62 308.47 95,115.01

Wadi-
Addawasir

Train: 9199
242 days

584.98 309.00 95,474.22
Val: 3450 579.24 306.12 93,684.80
Test: 2551 578.02 301.69 90,982.42

Caracas
Train: 10,112

0 days
499.28 284.48 80,922.07

Val: 3428 505.95 288.71 83,327.90
Test: 3428 524.82 297.12 88,255.24

Toronto
Train: 9892

0 days
381.15 273.39 74,732.91

Val: 3392 336.74 266.95 71,242.70
Test: 3388 366.77 278.11 77,322.36

All
Train: 81,904

3870 days - - -Val: 32,015
Test: 24,676

3.2.3. Datasets for Model Prediction

Preparing data for the auto-selective model prediction engine began by combining
all ten datasets into one dataset and then adding a new column called “Best model” to the
thirty-three features listed in Table 4. To determine the “Best model” for each record, we
first calculated the forecasting error of each model using Equation (4), which represents the
absolute value of the difference between the actual GHI and the forecasted GHI. The best
forecasting model for each record is the model that achieves the least forecasting error.

Forecasting error = |actual GHI − f orecast GHI| (4)

Figure 10 shows a snapshot of a few data records after adding the “Best model” feature
to the thirty-three features used for forecasting. We used label encoding to convert this
column to numeric values (0 for the CNN-BiLSTM model and 1 for the LSTM-AE model).
The total records used with the auto-selective model prediction engine is 24,576 (80% of
them used for training and 20% for testing). The class distribution is 23% and 77% for the
CNN-BiLSTM model and LSTM-AE model, respectively.
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3.3. Feature Importance

Nonlinearity and the “black-box” nature of deep learning models make it difficult
to explain them and rank features based on importance. In this section, we use four
conventional methods for feature selection: Pearson’s correlation (Section 3.3.1), mutual
information (Section 3.3.2), forward feature selection and backward feature elimination
(Section 3.3.3), and LASSO (Section 3.3.4). However, we did not eliminate any feature
listed in Table 4 based on the results of these four methods since there was no agreement
between them. For example, a feature that is considered insignificant by one method
would be selected as an important feature by another. Therefore, we used such methods
to understand the relationship between variables and provide insight into the data. In
Section 4.1.1, the effect of the lagged features on forecasting is studied by first training the
models using only the first lagged features, and then repeating training after adding the
second and third lagged features. To present the results of feature importance methods,
four or five datasets out of ten were selected for the sake of brevity.

3.3.1. Pearson’s Correlation

Pearson’s correlation coefficient is a measure of the linear relationship between two
variables [62]. Figure 11 displays the correlation matrix for Al-Jouf and the same is dis-
played for Al-Khafji in Figure 12. The correlation matrices for Caracas and Toronto are
shown in Figures 13 and 14. Table 7 lists the most significant correlations between GHI
and other features of the five datasets. The strongest positive correlation is between GHI
and its last hour value, whereas the strongest negative correlation is between GHI and the
hour cosine, except for the Toronto dataset, which is between GHI and the ZA of lag 1.
From Table 7, it can be seen that almost the same set of important features appear in the
five datasets and thus, location or climate has a slight impact on feature correlation. For
example, the DNI of lag 2 is more important in the Toronto dataset than in other datasets.

Table 7. Significant Pearson’s correlation (PC) between GHI and other features.

Al-Jouf Al-Khafji Wadi-Addawasir Caracas Toronto

Feature PC Feature PC Feature PC Feature PC Feature PC

GHI_lag1 0.88 GHI_lag1 0.87 HC −0.91 HC −0.80 GHI_lag1 0.87
HC −0.82 HC −0.81 GHI_lag1 0.86 GHI_lag1 0.76 ZA_lag1 −0.68

ZA_lag1 −0.82 ZA_lag1 −0.78 ZA_lag1 −0.80 ZA_lag1 −0.61 DNI_lag1 0.64
DNI_lag1 0.59 DNI_lag1 0.63 HS 0.53 HS 0.58 GHI_lag2 0.64

HS 0.47 HS 0.51 DNI_lag1 0.53 DNI_lag1 0.49 DNI_lag2 0.54
GHI_lag2 0.47 GHI_lag2 0.47 HC −0.51
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3.3.2. Mutual Information

Mutual information (MI) measures the reduction in uncertainty for one variable
given a known value of the other variable [63]. Figure 15 shows the MI values of all
features for five datasets (Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, Toronto). The
most significant features for GHI prediction are GHI lagged observations and zenith angle
lagged observations. Hour sine and cosine are also important in GHI prediction based on
MI values. As in the case of Pearson’s correlation, location and climate have a slight impact
on MI values, since the same set of features show significance in the five datasets with
small variation. For example, hour sine and cosine are less important the Toronto dataset
than in the others. GHI and Zenith Angle lagged observations are more important in the
Saudi locations than in Caracas or Toronto.
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3.3.3. Forward Feature Selection (FFS) and Backward Feature Elimination (BFE)

Forward feature selection is an iterative method, which starts with no feature in
the model. In each iteration, the best feature in improving the model is added until the
addition of a new feature does not enhance the performance. On the other hand, backward
feature elimination starts with all the features and eliminates the least important feature
at each iteration. This process is repeated until no improvement is attained with feature
elimination [64]. Table 8 shows ten selected features by FFS and BFE for five datasets
(Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, Toronto). Features selected by both methods
for the same dataset are italicized. From Table 8, we can see that some features are selected
in all the datasets, such as the hour sine, DHI, DNI, and GHI lagged observations, whereas
other features are rarely selected, such as the wind speed, relative humidity, barometric
pressure, and air temperature.

Table 8. Selected features by FFS and BFE.

Al-Jouf Al-Khafji Wadi-Addawasir Caracas Toronto

FFS BFE FFS BFE FFS BFE FFS BFE FFS BFE

HS HS HS HS HS HS HS HS MS HS
HC HC WS_lag1 DHI_lag1 HC HC HC HC HS DHI_lag1

DHI_lag1 DHI_lag1 DHI_lag1 DNI_lag1 DHI_lag1 DHI_lag1 DHI_lag1 DHI_lag1 GHI_lag1 DNI_lag1
DNI_lag1 DNI_lag1 DNI_lag1 GHI_lag1 DNI_lag1 DNI_lag1 DNI_lag1 DNI_lag1 ZA_lag1 GHI_lag1
GHI_lag1 GHI_lag1 GHI_lag1 BP_lag1 GHI_lag1 GHI_lag1 GHI_lag1 GHI_lag1 WS_lag1 AT_lag1
ZA_lag1 ZA_lag1 ZA_lag1 DHI_lag2 DHI_lag2 DHI_lag2 RH_lag1 RH_lag1 WS_lag3 ZA_lag2
DHI_lag2 DHI_lag2 DHI_lag2 DNI_lag2 ZA_lag3 ZA_lag3 GHI_lag2 DNI_lag2 DNI_lag2 DHI_lag3
DNI_lag2 DNI_lag2 DHI_lag3 GHI_lag2 GHI_lag3 GHI_lag2 ZA_lag2 ZA_lag2 GHI_lag3 DNI_lag3
GHI_lag3 GHI_lag2 DNI_lag3 ZA_lag2 ZA_lag1 ZA_lag2 WS_lag3 WS_lag3 ZA_lag3 GHI_lag3
ZA_lag3 AT_lag1 GHI_lag3 GHI_lag3 RH_lag1 DNI_lag2 AT_lag3 AT_lag3 RH_lag3 AT_lag3
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3.3.4. LASSO Feature Selection

The LASSO method regularizes model parameters by reducing some of the regression
coefficients to zero. After the reduction, non-zero values are selected to be used as features
in the model [65]. Figure 16 shows the selected features based on the LASSO method for
five datasets (Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, Toronto). The most significant
features in all five datasets are GHI lagged observations, especially the last hour value
(GHI_lag1), and last hour zenith angle value (ZA_lag1). DHI and DNI lagged observations
are less important. Relative humidity seems to have importance in the Caracas dataset.
Surprisingly, time-related features are insignificant in all five datasets.
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3.4. Models’ Development

In this section, five deep learning models have been explained: long short-term
memory (Section 3.4.1), gated recurrent unit (Section 3.4.2), convolutional neural network
(Section 3.4.3), hybrid CNN and bidirectional LSTM (Section 3.4.4), and LSTM autoencoder
(Section 3.4.5). All five models are used for next-hour GHI forecasting while only the LSTM
model is also used for classification to serve as an auto-selective model prediction engine.

3.4.1. Long Short-Term Memory (LSTM)

LSTM is a special kind of RNN that has the ability of learning long-term dependencies.
It performs better than traditional RNN in diverse tasks. Besides the hidden state, LSTMs
contain the cell state that conveys important inputs from previous steps to later steps.
Meanwhile, new inputs are added to or deleted from the cell state through input and forget
gates. The output gate determines if the current memory cell will be output. More details
about LSTM can be found in [5,66].

An LSTM model for the next hour GHI forecasting is implemented as shown in
Figure 17. It consists of three LSTM layers for feature extraction and one dense layer to
make GHI prediction. Each LSTM layer has 128 hidden states. Another LSTM model
with a similar structure is implemented to work as an auto-selective model prediction
engine with two differences. First, two dense layers with eight and two neurons are
used for classification instead of regression, respectively. Second, the criterion function is
cross-entropy loss instead of mean squared error loss (MSE).
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3.4.2. Gated Recurrent Unit (GRU)

GRU is similar to LSTM in that it also captures long-term dependencies but does
not contain the cell state. The update gate in GRU determines the amount of the past
information needs to be kept, whereas the reset gate determines how much to forget. GRUs
are usually faster and need less computation time and memory than LSTMs [67].

A GRU model for the next hour GHI forecasting is implemented as shown in Figure 18.
It consists of three GRU layers for feature extraction and one dense layer to make GHI
prediction. Each GRU layer has 128 hidden states.
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3.4.3. Convolutional Neural Network (CNN)

CNN is a kind of neural network that is widely known in the computer vision field. It
consists of several convolutional and pooling layers followed by fully connected layers. In
convolutional layers, feature maps are created by applying convolution filters on inputs.
These feature maps are down-sampled in pooling layers. After several convolution and
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down-sampling operations, features are flattened into 1D and passed to one or more fully
connected layers to generate the output. More details on CNNs can be found in [68,69].

A CNN model for the next hour GHI forecasting is implemented as shown in Figure 19.
It consists of two 1D convolutional layers, one max-pooling layer, and two dense layers. In
the first convolutional layer, 10 feature maps are created using a kernel of size two and a
stride of two, whereas in the second convolutional layer, five feature maps are created. The
max-pooling layer uses a kernel of size two and a stride of one.
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3.4.4. Hybrid CNN-Bidirectional LSTM (CNN-BiLSTM)

Bidirectional-LSTM (BiLSTM) is an adjusted version of LSTM that contains two layers:
one to process inputs in a forward direction, and another to process inputs in a backwards
direction. This structure allows learning from past and future information. More details on
BiLSTMs can be found in [70,71].

In CNN and BiLSTM structure, convolutional and pooling layers are followed by
BiLSTM layers, then one or more dense layers to generate the output [72].

A CNN BiLSTM model for the next-hour GHI forecasting is implemented as shown
in Figure 20. It has the same design as the CNN model illustrated previously with an
additional BiLSTM layer placed before the dense layers.
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3.4.5. LSTM Autoencoder (LSTM-AE)

Autoencoder is a neural network that comprises two parts encoder and decoder. The
encoder receives inputs and compresses them into a feature vector called latent space
while the decoder decompresses the feature vector into an output. This data reconstruction
process helps the model extract the most important features. The LSTM autoencoder model
is an autoencoder in which both the encoder and decoder consist of LSTM layers to learn
temporal dependencies in sequence data. More about LSTM-AE can be found in [73,74].

An LSTM-AE model for the next hour GHI forecasting is implemented as shown in
Figure 21. Both the encoder and decoder have two LSTM layers, followed by a dense layer
to make GHI prediction.
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3.5. Performance Evaluation Metrics

In this paper, six performance evaluation metrics are used to evaluate the forecasting
models.

Mean absolute error (MAE) is the mean of the absolute values of the individual forecast
errors on overall examples (N) in the test set. Each forecasting error is the difference between
the actual value (actual GHI) and the forecast value (forecast GHI). A lower value of MAE
is better. It is calculated as follows [75].

MAE =
1
N

N

∑
i =1
|actual GHIi − f orecast GHIi| (5)

Root mean square error (RMSE) is the standard deviation of the residuals or the
forecast errors. It measures how spread out the residuals are and how the data are concen-
trated around the line of regression. A lower value of RMSE is better. It is calculated as
follows [75].

RMSE =

√√√√ 1
N

N

∑
i =1

(actual GHIi − f orecast GHIi)
2 (6)

Coefficient of determination (R2) is a statistical measure that defines the amount of
variance in the dependent variable that can be explained by the independent variable. It
displays the data’s fit to the regression model. R2 value ranges from 0 to 1 and a higher
coefficient indicates a better fit for the model. It is calculated as follows [75].

R2 = 1− ∑N
i =1(actual GHIi − f orecast GHIi)

2

∑N
i =1

(
actual GHIi − GHI

)2 (7)
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Mean absolute percentage error (MAPE) is a measure of forecasting accuracy. This
percentage indicates the average difference between the forecasted value and the actual
value. The smaller the MAPE, the better the forecast. It is calculated as follows [76].

MAPE =
1
N

N

∑
i =1

∣∣∣∣ actual GHIi − f orecast GHIi
actual GHIi

∣∣∣∣× 100% (8)

Normalized metric (nMetric) is used to compare multiple forecasting methods applied
to different datasets. The GHI range in a particular location affects the forecast results
significantly. nMetric takes this fact into account by dividing the obtained metric by the
mean of GHI of the test dataset as shown in the equation below, which could allow more
fair comparison [6]. Normalization could be applied to any metric, such as MAE, RMSE,
and MAPE.

nMetric =
Metric
GHI

(9)

Forecast skills (FS) is used to compare a proposed forecasting model performance
metric with a reference model performance metric. A commonly used reference model in
the literature is the persistence method. The evaluation metric could be RMSE, MAE, or
others. FS is calculated as follows [6].

FS = 1−
Metric proposed

Metric persistence
× 100% (10)

Note that for performance analysis in Section 4, we have used both standard and
normalized versions of MAE, RMSE, and MAPE.

3.6. Tool Implementation

In this paper, PyTorch, an open-source machine learning framework developed by
Facebook’s AI research lab, was used as the platform to create deep learning models, where
Python3 was employed as the programming language. The experiments were performed on a
laptop with Intel Core i7-11800 H CPU, NVIDIA GeForce RTX 3070 GPU, and 16 GB memory.
However, all deep learning models were developed using GPU. The hyperparameters used in
each model are listed in Table 9 in addition to the optimization methods.

Table 9. Models’ hyperparameters.

Model Batch
Size Layers Learning

Rate
Number of

Epochs Optimization

LSTM 256 3 hidden layers with 128 hidden
states, 1 dense layer 0.001 100 Dropout = 0.2, ReLU function,

Weight decay = 0.000001, Adam

GRU 256 3 hidden layers with 128 hidden
states,1 dense layer 0.001 100 Dropout = 0.2, ReLU function,

Weight decay = 0.000001, Adam

CNN 64
2 conv layers with 10 and

5 filters, 1 max-pooling layer,
2 dense layers

0.001 100 Dropout = 0.2, ReLU function,
Adam, batch normalization

CNN-BiLSTM 64
2 conv layers with 10 and

5 filters, 1 max-pooling layer,
1 BiLSTM layer, 2 dense layers

0.001 100 Dropout = 0.2, ReLU function,
Adam, batch normalization

LSTM-AE 256 4 LSTM layers with 128 hidden
states, 1 dense layer 0.001 100 ReLU function, weight

decay = 0.000001, Adam

4. SENERGY: Results and Evaluation

The performance of the forecasting engine and auto-selective model prediction engine
components of SENERGY is evaluated in Sections 4.1 and 4.2 respectively. The evaluation
of both components is analyzed from several aspects, such as climate and location, sunny
and cloudy weathers, and summer and winter seasons. Then, the gains and losses in
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terms of forecasting performance using SENERGY are discussed in Section 4.3. Finally, a
comparison of SENERGY’s performance with other related works is provided in Section 4.4.

4.1. SENERGY: Forecasting Engine Performance

In this section, first, the effect of the lagged features on forecasting is analyzed
(Section 4.1.1). Then, the forecasting results of five deep learning models, which are de-
scribed earlier in Section 3.4 are analyzed here. The analysis is performed using four
aspects: climate and location (Section 4.1.2), sunny and cloudy weather (Section 4.1.3),
summer and winter seasons (Section 4.1.4), and forecasting error results (Section 4.1.5). The
results reported are the average of the evaluation metrics for fifty simulations, which were
calculated for unseen data (testing datasets). The size of each testing dataset is given in
Table 6 and the used performance evaluation metrics are described in Section 3.5.

4.1.1. Effect of Lagged Features on Forecasting

In Section 3.2.2, we explained how lagged features were created and why we decided
to use a lag equal to three (the last three hours of observations). In this Section, we use the
Toronto dataset to study the effect of using lags equal to one, two, and three to examine
the effect of such different lags on the forecasting results. Figure 22 shows the difference
in MAE, RMSE, and MAPE for the five forecasting models when using lags equal to one,
two, and three with the Toronto dataset. With the LSTM, GRU, and CNN-BiLSTM models,
it is apparent that using a lag of three made the results slightly worse. However, with
MAPE, using a lag of three improved the results. In contrast, the LSTM-AE model achieved
better results with a lag of two than a lag of one in all error metrics and achieved the
best results with a lag of three. Given the fact that GHI is only highly correlated with
GHI for a lag of one (see Table 7), using a lag equal to one would give satisfactory results,
especially if dimensionality might affect the model efficiency. Otherwise, it is worth trying
different lagged features to see if this would result in better performance as in the case of
the LSTM-AE model, especially because the climate in the data source might have an effect
as well.
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4.1.2. Effect of Climate and Location on Forecasting

The performance of five deep learning-based forecasting models (LSTM, GRU, CNN,
CNN-BiLSTM, and LSTM-AE) is compared in this section for all the ten datasets for the task
of next-hour GHI prediction. Forecasting results using the MAE metric and its normalized
value are plotted in Figure 23. From the figure, we can see that the best MAE and nMAE
values are associated with Wadi-Addwasir whereas the worst values are associated with
Caracas and Toronto, except for the LSTM-AE model. The high performance related to the
Wadi-Addwasir dataset might be attributed to the completeness of this dataset compared
to other Saudi datasets since it has the least number of missing days and the largest training
set size. In contrast, the low performance associated with the Caracas and Toronto datasets
might be attributed to the high percentage of cloudy hours (or unclear sky condition)
compared to the Saudi locations. The best model according to MAE and nMAE values is
the LSTM-AE model, which achieves nMAE equal to 0.02 with the Wadi-Addwasir and
Toronto datasets. This excellent performance is attributed to the ability of the model to
reconstruct the inputs into a better representation in addition to extracting the temporal
features. On the other hand, the worst performance is associated with the CNN model with
the Saudi datasets while the CNN-BiLSTM model is the worst for Caracas and Toronto.
With time-series data, the temporal features are the most important ones, and these cannot
be captured by the CNN model.
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Forecasting results using RMSE metric and its normalized value are plotted in Figure 24.
From the figure, we can see that the best RMSE and nRMSE values are associated with
Wadi-Addwasir for all five models. This is also observed earlier with the MAE and nMAE
results. On the other hand, the worst values are associated with Caracas and Toronto for all
models, except for LSTM-AE, which delivered the worst nRMSE value equal to 0.08 with
the Al-Khafji dataset. We mentioned earlier the advantage of the Wadi-Addwasir dataset
compared to other Saudi datasets and the disadvantage of Caracas and Toronto. Regarding
the Al-Khafji dataset, it has the equivalent of a year’s missing data, which might explain the
low performance of the LSTM-AE model here. However, the LSTM-AE model is the best
model for all locations, whereas CNN is the worst with the Saudi datasets and the CNN-
BiLSTM model is the worst with the Caracas and Toronto datasets. As mentioned earlier,
the ability of LSTM-AE to reconstruct the inputs into a better representation in addition to
extracting the temporal features might be the reason for its superior performance.
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Forecasting results using the MAPE metric and its normalized values are plotted in
Figure 25. From the figure, we can see that the location effect on MAPE and nMAPE
values are different from what was observed earlier with MAE and RMSE results. For
example, the best nMAPE value for the LSTM model is 0.04 is achieved with Al-Baha,
Tabuk, and Wadi-Addwasir, while for the GRU model it is also achieved 0.04 with Tabuk
and Wadi-Addwasir. For the CNN model, the best nMAPE value is 0.13, achieved with
Caracas. For the CNN-BiLSTM model, the best nMAPE value is 0.02, achieved with Tabuk
and Wadi-Addwasir. For the LSTM-AE model, the best nMAPE value is 0.02, achieved with
Hail, Taif, and Caracas. On the other hand, the worst values for all models are associated
with Toronto, except for the LSTM-AE model, which has the worst value of 0.07 with
Al-Khafji. Comparing the performance of the different models, the best is the LSTM-AE
model for five datasets (Al-Baha, Hail, Taif, Caracas, Toronto) and the CNN-BiLSTM model
for four datasets (Al-Khafji, Arar, Tabuk, Wadi-Addwasir). The worst is the CNN model
for all locations. MAPE (refer to Equation (8)) is different from the other metrics because
it gives the forecasting error relative to the actual GHI, which might explain the different
results observed with this metric.
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Figure 26 shows the FS results based on MAE and RMSE for all the forecasting models,
which represent the performance improvement compared to the persistence method. The
best FS results are achieved by the LSTM-AE model, which is 93% in MAE with Hail and
Wadi-Addawasir datasets, while it is 92% in RMSE with Toronto dataset.
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In summary, looking at the performance from the models’ perspective (refer to
Figures 23–25), it is evident that the LSTM-AE model achieved the lowest nMAE, nRMSE,
and nMAPE, which is equal to 0.02. This excellent performance, as mentioned earlier, is
attributed to the ability of the model to reconstruct the inputs into a better representation in
addition to extracting the temporal features. The LSTM and GRU models come are in second
place while the CNN model delivered the worst results. With time-series data, the temporal
features are the most important features, and these cannot be captured by the CNN model.
However, the CNN-BiLSTM model is the worst model for Caracas and Toronto according
to the MAE and RMSE results. In contrast, according to nMAPE metric, the CNN-BiLSTM
model outperformed the LSTM-AE with four out of ten datasets (Al-Khafji, Arar, Tabuk, and
Wadi-Addwasir) and both models achieved the same value with Al-Jouf.

Looking at the performance from the location perspective (refer to Figures 23–25),
we can see that the best nMAE, nRMSE, and nMAPE results for all models are mostly
associated with the Wadi-Addwasir dataset. On the other hand, the worst results are linked
with the Toronto and Caracas datasets. As mentioned earlier, the high performance related
to the Wadi-Addwasir dataset might be attributed to the completeness of this dataset
compared to other Saudi datasets since it has the least number of missing days and the
largest training set size (see Table 6). The second-best performance is associated with the
Tabuk dataset. Despite the high number of missing records, it has the highest percentage of
sunny hours and the lowest percentage of cloudy hours among other datasets (see Figure 9).
In contrast, the low performance associated with the Toronto and Caracas datasets might
be attributed to the high percentage of cloudy hours (or unclear sky condition) compared
to the other Saudi locations (see Figure 9). This in turn means that GHI varies from time
to time and is hard to predict. We can infer that the most important factor that affects the
performance of the different models is the climate of the dataset source, followed by the
completeness of the dataset to help the model learn the GHI variations accurately.

4.1.3. Effect of Sunny and Cloudy Weather on Forecasting

To examine the effect of weather type on the performance of the different models,
in Figure 27 we plot the actual vs. predicted GHI of one sunny and one cloudy day by
all the five models for five locations: Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas, and
Toronto. The first three hours of GHI values after sunrise were used as inputs to the models.
Therefore, the prediction starts from 11:00 am or 10:00 am depending on the sunrise time in
the location of the data source. Similarly, the last time is 18:00 or 17:00 depending on the



Energies 2022, 15, 6659 30 of 55

sunset time, which is the last time for GHI prediction of the day. From Figure 27, we can
observe that predicting GHI on sunny days is more accurate than on cloudy days. It is also
noticed that the LSTM-AE model is the most accurate model on sunny and cloudy days.
Even if it is not very accurate as in the case of Toronto’s cloudy days, it is able to capture
the trend line closely. In contrast, the CNN-BiLSTM model sometimes achieved a closer
prediction than the LSTM-AE model, but it could not capture the trend line accurately as
the LSTM-AE model as shown in the case of Toronto’s cloudy days. On the other hand, the
CNN model delivered the worst prediction, especially on cloudy days.

4.1.4. Effect of Summer and Winter Seasons on Forecasting

To examine the effect of seasons on the performance of the different models, we first
show, in Figure 28, the actual vs. predicted GHI of the coldest and hottest months (January
and August) for all models in five locations: Al-Jouf, Al-Khafji, Wadi-Addawasir, Caracas,
and Toronto. Just as in the sunny and cloudy results, we found that the LSTM-AE model is
the most accurate in January and August whereas the CNN model is the least accurate. It
can be seen also that the CNN-BiLSTM model performs poorly with specific datasets, as
in the case of Caracas and Toronto because the GHI readings are not stationary. Figure 29
shows the MAE for summer and winter for each dataset. The MAE metric was selected
for no specific reason, we could have plotted using RMSE and other metrics, or all the
metrics considered in this paper. However, we plotted with one metric for the sake of
brevity. We divided the year into two seasons for simplification and because Saudi Arabia
does not experience four seasons. Summer includes May, June, July, August, September,
and October, and winter includes the remaining months. From Figure 29, we can see that
the winter MAE is higher than the summer in all the datasets, except for Taif, Caracas, and
Toronto, where MAE is higher in summer. Another observation is that the CNN model
and the CNN-BiLSTM model have the largest difference in MAE from summer to winter
whereas the LSTM-AE model has a very slight difference.

4.1.5. Digging Deeper into Forecasting Error for Each GHI Prediction

The forecasting error is defined earlier (see Equation (4)). To depict the forecasting error
distribution and outliers of the five models for all datasets, a boxplot of the forecasting error is
displayed in Figure 30. Note that the plot for each location contains forecasting errors for each
data item in the testing dataset that is used for prediction (see Table 6 for details about the
testing sets sizes). All models’ forecasting error interquartile range is below 100, except for the
Caracas dataset. It is clear from the figure that the forecasting error of the LSTM-AE model has
the smallest interquartile range with the fewest outliers. Model-wise, the forecasting error of
the CNN-BiLSTM model has the highest number of outliers, while dataset-wise, the Toronto
and Taif datasets have the highest number of outliers.

The forecasting error is used to determine the “best model” label of each record in the
testing datasets of all locations. The best model is one that achieves the least forecasting
error for each record. Figure 31 shows the achieved percentage of all the five models as the
“best model” based on the forecasting error. The percentage is calculated by dividing the
number of records in which a model is the best by the total number of records. It is clear
from the pie chart that the LSTM-AE model is the best model for 54% of the records while
the CNN-BiLSTM model comes in second place with 17%. The LSTM and GRU models
achieved the least forecasting error for 11% of the records whereas the CNN model does so
for 7% only.
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Figure 28. Summer vs. winter—actual vs. predicted GHI of 5 models for: (a) Al-Jouf Jan; (b) Al-Jouf
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Jan; (h) Caracas Aug; (i) Toronto Jan; (j) Toronto Aug.

4.2. SENERGY: Auto-Selective Model Prediction Engine Performance

In Section 4.1, we compared the performances of the five forecasters on ten datasets
and found that according to MAE and RMSE results, the LSTM-AE model is the best
forecaster without competition. However, according to the MAPE metric, the LSTM-AE
model is the best forecaster with half of the datasets while the CNN-BiLSTM model is
the best with the other half. We also compared the five forecasters’ performances using
the forecasting error of each individual record (see Equation (4)), and we found that the
LSTM-AE model is the best model for 54% of the total records while the CNN-BiLSTM
model is the best for 17%. The remaining models CNN, GRU, and LSTM together achieved
only 29% (see Figure 31). This imbalance in the data that comes from the variation in the
performance of the forecasting models affects the classifier training negatively. Considering
both the overall performance of the forecasters represented in the MAPE metric and the
item-wise performance represented in the forecasting error, we decided to use only two
models LSTM-AE and CNN-BiLSTM in the SENERGY tool to mitigate the imbalanced data
issue. Accordingly, we built an auto-selective model prediction engine that chooses one out
of the best two models based on the same inputs used for forecasting. In the future, we will
incorporate in the tool additional models for GHI forecasting. A description of the auto-
selective model prediction engine’s structure is given in Section 3.4.1. Figure 32 shows the
confusion matrix of the engine. As shown by the matrix, correctly classified CNN-BiLSTM
records account for 8.4% of the total records, while correctly classified LSTM-AE records
account for 72.57% of the total records.
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Table 10 presents the classification report of the auto-selective model prediction engine.
It shows the precision, recall, F1-score, and support of both models the CNN-BiLSTM and
LSTM-AE models separately as well as the classification accuracy of the engine. The total
number of records used for testing the engine is 3500 as shown in the Support column. Of
these records, the CNN-BiLSTM model accounts for 23% (809/3500), and the LSTM-AE
model accounts for 77% (2691/3500). The percentage of correctly classified records of each
model is shown in the recall column. The CNN-BiLSTM model’s recall is 36% while the
LSTM-AE model’s recall is 94%. This large difference between both models’ accuracy is
mainly attributed to data imbalance, which in turn renders the overall engine accuracy to
81% (F1-score in the third row).

Table 10. Auto-selective model prediction engine classification report.

Model Precision Recall F1-score Support

CNN-BiLSTM 66% 36% 47% 809
LSTM-AE 83% 94% 88% 2691
Accuracy 81% 3500

Macro average 75% 65% 68% 3500
Weighted average 79% 81% 79% 3500

Figure 33 shows the feature importance using the random forest classifier method.
Random forest is used here not to make a prediction or eliminate features, but rather to
provide insights about features’ ranking. The most important feature for classification is
the solar zenith angle followed by the DHI value with a lag of one. The least important
features are time-related features, such as DS, DC, MS, MC, and HS. In contrast, HS and
HC are important features for forecasting (refer to Section 3.3).
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Our objective in this paper is to introduce our deep learning-based auto-selective
approach to predicting the best performing machine learning model for GHI forecasting.
We will investigate and improve the data balancing and other approaches in the future to
improve the performance of the proposed auto-selective approach.



Energies 2022, 15, 6659 38 of 55

In the coming sections, the classification results are analyzed from three aspects:
climate and location (Section 4.2.1), sunny and cloudy weathers (Section 4.2.2), and summer
and winter seasons (Section 4.2.3).

4.2.1. Model Prediction: Climate and Location

To further analyze the classification results, we first calculated the auto-selective model
prediction engine accuracy for each location as presented in Figure 34. The number of
total records is also incorporated in the figure to see its effect on accuracy. The highest
classification accuracy is 90%, and this is associated with Caracas and Toronto due to a large
number of records for both locations. The lowest classification accuracy is 69%, associated
with Tabuk, due to a low number of records and the close forecasting performance of both
forecasting models for this location (see Section 4.1.2).
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Figure 34. Classification accuracy of model prediction engine based on location with total records.

We also calculated the recall of both the CNN-BiLSTM and LSTM-AE models for
each location as shown in Figure 35. The recall percentage for the LSTM-AE model is
90% or higher for all locations except for Al-khafji, which is 59%. On the other hand, the
recall percentage for the CNN-BiLSTM model ranges from 9% to 44% except for Al-khafji,
which is 86%. The reason for the greater accuracy of the CNN-BiLSTM model over the
LSTM-AE model in relation to the Al-khafji data is the imbalance in both models with 133
versus 97, unlike other datasets in which the total records of the LSTM-AE model is always
higher than the CNN-BiLSTM model. This, in turn, is explained by the high variation in
forecasting performance between the CNN-BiLSTM model with MAPE of around 16% and
the LSTM-AE model with MAPE around 35% for the Al-khafji dataset (see Figure 25).

4.2.2. Model Prediction: Sunny and Cloudy Weathers

The classification accuracy of the model prediction engine is 75% for sunny days and
86% for cloudy days. The total number of records for sunny days is higher than for cloudy
days by 28%. These results contradict forecasting results in which forecasting on sunny
days is more accurate than on cloudy days. The reason for this is the close prediction
for both the CNN-BiLSTM and LSTM-AE forecasting models in sunny weather, which
makes it difficult for the classifier to pick one model. On the other hand, the LSTM-AE
model shows superior forecasting performance on cloudy days, which makes it easy for
the classifier to pick the best model on cloudy days Figure 36 shows the recall for each
model in sunny versus cloudy weather. Notably, the CNN-BiLSTM model’s recall in cloudy
weather is better than in sunny weather with 38%, whereas the LSTM-AE model’s recall in
sunny weather is 2% better than in cloudy weather. As explained earlier, on sunny days
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the CNN-BiLSTM and LSTM-AE models make very similar predictions that causes the
classifier to misclassify CNN-BiLSTM records as LSTM-AE.
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Figure 36. Recall of the two forecasting models (sunny vs. cloudy) in model prediction engine.

4.2.3. Model Prediction: Summer and Winter Seasons

The classification accuracy of the model prediction engine is 82% in summer and 80%
in winter, even though the total number of records for summer is less than for winter by
14%. This slight difference in the performance between seasons is aligned with the same
trend found in the forecasting results. Figure 37 shows the recall for each model in summer
versus winter. It is notable that the CNN-BiLSTM model’s recall in summer is better than
in winter, with a 7% difference while the LSTM-AE model’s recall is almost the same in
both seasons.
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4.3. SENERGY: Performance Gain and Loss
4.3.1. Actual Gains and Losses

To understand the benefits of using SENERGY, we calculated the performance gain (G)
or loss (L) for the tool versus a model (m) as follows: the difference between the forecasting
error of a model (CNN-BiLSTM, LSTM-AE) and the forecasting error of the model chosen
by the tool.

G or L = FEm − FEt (11)

A positive value indicates a gain, and a negative value indicates a loss. The gain or
loss is calculated for each record in the testing set of model prediction engine (total of
3500 records) using Equation (11). Table 11 shows an example of gain or loss calculation
for three real records. As shown in the first row, the forecasting error of the CNN-BiLSTM
is 67.73 and that of the LSTM-AE model is 4.83. The tool was able to correctly choose the
best model for this record. Thus, the achieved forecasting error is 4.83. To measure the
gain over the CNN-BiLSTM model, we calculate the difference between 67.73 and 4.83,
which is 62.90. Therefore, we can say that the tool achieved a gain in performance equal
to 62.90 over the CNN-BiLSTM model for this record. On the other hand, no gain was
achieved for the tool over the LSTM-AE model, because it is the best regardless. Similarly,
in the second record, the forecasting error of the CNN-BiLSTM model is 128.60 and that
of the LSTM-AE model is 44.41. The tool failed to choose the best model correctly for this
record. Thus, the achieved forecasting error is 128.60. There is no gain for the tool over
the CNN-BiLSTM model in this case. The difference between the forecasting error for the
LSTM-AE model and the forecasting error for the wrong best model chosen by the tool
is 84.19. It is a negative number, and thus it represents a loss in tool performance for the
LSTM-AE model for this record.

Table 11. An example of Gain/Loss of SENERGY over two models.

FE
CNN-BiLSTM

FE
LSTM-AE

FE
Best Model

G/L
CNN-BiLSTM

G/L
LSTM-AE

67.73 4.83 4.83 62.90 0
128.60 44.41 128.60 0 −84.19

0.47 29.12 29.12 −28.65 0

Figure 38 shows the gain or loss of SENERGY versus the CNN-BiLSTM model for
each record. Gains are positive and thus above the zero line, and losses are negative and
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thus below the zero line. Locations’ records are differentiated by colors. As noted, the gain
is large in general because the LSTM-AE model provides far better forecasting than the
CNN-BiLSTM model. In contrast, the loss is small because when the CNN-BiLSTM model
achieves better forecasting than the LSTM-AE model, the difference is small. Looking at
gain or loss from a location perspective, the largest gains are achieved with the Caracas
and Toronto datasets, whereas the smallest gains are achieved with the Wadi-Addawasir
dataset, which is compatible with the forecasting results discussed in Section 4.1.2.
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Figure 39 shows the gain or loss of SENERGY versus the LSTM-AE model for each
record. Locations’ records are differentiated by colors. The gain is small in general because,
as we mentioned earlier, when the CNN-BiLSTM model achieves better forecasting than
the LSTM-AE model, the difference is small. In contrast, misclassifying records for which
the best model is LSTM-AE as CNN-BiLSTM results in a large loss because LSTM-AE
accomplishes smaller forecasting error in general (refer to Table 11 for an example). Looking
at gain or loss from a location perspective, the largest gains are achieved with the Saudi
datasets, whereas the largest losses occur with the Caracas and Toronto datasets, which is
compatible with the forecasting results discussed in Section 4.1.2.
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Note that despite the large losses, the SENERGY tool still offers gains over the LSTM-
AE method. These low gains and high losses are because the LSTM-AE method provides
significantly better performance compared to any other method, causing the LSTM-AE
forecasting method to own most of the labels in the classification dataset (2691 out of
3500) as the best performing forecasting method, and this created a major data imbalance
problem causing poor classification accuracy. Partly, to some extent, the performance of
the LSTM-AE method could be attributed to the fact that we used a relatively optimized
lagged feature for the LSTM-AE method, giving LSTM-AE an advantage over the other
four forecasting methods (see Section 4.1.1). It is possible to incorporate in SYNERGY a
set of different features (e.g., Lag1, Lag2, Lag3), treat each pair of a distinct feature (from
this feature set) and a forecasting model as a separate forecasting engine (or model), and
train the SYNERGY model prediction engine to predict a feature-model pair. This will
allow SYNERGY to predict the best combination of a feature and model for a given GHI
prediction instead of pre-defined fixed input features. The same approach can be extended
to hyperparameter optimizations and other parameters in the machine learning forecasting
pipeline. These feature-related and parameter-related aspects of the SYNERGY approach
should be investigated further before robust conclusions can be drawn. In addition, the use
of additional meteorological datasets with high climate and data diversity and additional
forecasting methods, coupled with solutions for data imbalance problems could create a
more balanced classification dataset and allow improvements in the classification error
leading to significantly better forecasting accuracies and gains.

The next section explains, through graphical data, what is potentially possible with the
proposed SENERGY approach if the data imbalance problem can be solved. The exciting
fact about this tool is that it would provide higher gains for higher diversity datasets while
usually, the opposite is true for a single forecasting method. Additionally, as explained
earlier, the approach allows selecting different models optimized for different climates
rather than optimizing a model for multiple climates that may provide an optimally average
performance for diverse climates. Moreover, further investigations into this approach could
allow further understanding of optimal models for specific climates and weather leading
to a better understanding of climates and forecasting methods and eventually developing
better renewable energy forecasting approaches.

Figure 40 displays the average gain or loss of the SENERGY tool for each record.
Locations’ records are differentiated by colors. The average is calculated by summing both
models’ gain/loss values and dividing the sum by two.
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4.3.2. Potential Performance

In the previous section, we demonstrated the gain and loss of SENERGY, which can
choose the best forecasting model between the two models only. However, in an ideal
situation, SENERGY would choose the best forecaster from the five models included in this
work or even more models in the future. Therefore, the potential gain or loss is calculated
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here assuming that SENERGY can choose the best out of five forecasting models with 100%
classification accuracy.

Figure 41 shows the gain of SENERGY over the LSTM and GRU models in an ideal
situation. There is no loss here because as mentioned before, the classification accuracy
is 100%. It is noted that the gain over both models is almost the same for all locations
because the forecasting performances of both models are convergent (refer to Section 4.1.2).
Location-wise, the largest gains of both models come with the Caracas and Toronto datasets,
whereas the lowest gains occur with Al-Khafji and Wadi-Addawsir.

Energies 2022, 15, x FOR PEER REVIEW 57 of 72 
 

 

 

  
(a) (b) 

Figure 41. Gain of SENERGY over: (a) LSTM; (b) GRU. 

Figure 42 shows the gain of SENERGY over the CNN and CNN-BiLSTM models in 
an ideal situation. There is no loss here because as mentioned before, the classification 
accuracy is 100%. Gain over the CNN model is the same as gain over the CNN-BiLSTM 
model, although the latter has more outliers. Looking at the gain from a location perspec-
tive, the largest gains are achieved with the Caracas and Toronto datasets, whereas the 
lowest are with the Al-Khafji and Wadi-Addawsir datasets. 

  

Figure 41. Gain of SENERGY over: (a) LSTM; (b) GRU.

Figure 42 shows the gain of SENERGY over the CNN and CNN-BiLSTM models in an
ideal situation. There is no loss here because as mentioned before, the classification accuracy
is 100%. Gain over the CNN model is the same as gain over the CNN-BiLSTM model,
although the latter has more outliers. Looking at the gain from a location perspective, the
largest gains are achieved with the Caracas and Toronto datasets, whereas the lowest are
with the Al-Khafji and Wadi-Addawsir datasets.
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Figure 42. Gain of SENERGY over: (a) CNN; (b) CNN-BiLSTM.

Figure 43a shows the gain of SENERGY over the LSTM-AE model. Unlike other
models, the largest gains are achieved with Al-Khafji. On the other hand, the lowest
gains are related to Wadi-Addawsir, as with other models. Figure 43b shows the gain
of SENERGY over all the five models as a boxplot. It is obvious that the largest gain is
achieved with the CNN and CNN-BiLSTM models. Additionally, gain over the LSTM and
GRU models is similar, whereas gain over the LSTM-AE model is very small since it is the
best forecaster for most of the records.
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4.4. SENERGY: Comparison with Other Works

To the best of our knowledge, no work in the literature suggests a similar tool to com-
bine deep learning for forecasting and classification to improve solar radiation forecasting
performance and generalizability. Therefore, the comparison here will be mainly based
on the forecasting results. The works that we have selected in this section for compar-
ison with our tool SENERGY are based on two criteria. Firstly, these compared works
propose models for forecasting next-hour GHI. Secondly, they use multiple datasets from
different climates. For the reasons explained, the works such as [26,42–46,77,78] are ex-
cluded from the comparison because the datasets used are for one climate only. Works
such as [23,29,47,48,72,79–83] are also excluded from the comparison because they propose
forecasting models for different time horizons, such as day-ahead or monthly GHI, whereas
is the focus of our work in this paper is next-hour GHI.

The results comparison in this section includes MAE, RMSE, MAPE results, and their
normalized values of all locations datasets used in each work whenever they are reported.
The comparison also includes the forecasting skill metric FSMAE and FSRMSE. Equations of
all these metrics are provided in Section 3.5. Moreover, GHI mean and standard deviation
are added to the comparison to show the variation among locations.

Table 12 presents a comparison of SENERGY to six works that met the aforementioned
selection criteria. The comparison in the table is based first on information that shows the
data variation aspect: data source location, GHI mean and standard deviation, climate
classification of the location, and the use of weather parameters in addition to historical
values of GHI in inputs. The second aspect of the comparison is the model used for
forecasting. For example, in reference [21], data from three locations in India, representing
three different climate classes (Cwa, Cwb, Bsh) are used. GHI mean and SD are not
provided. Weather data, in addition to GHI historical values, are used to develop the
proposed ensemble model of XGBF-DNN. The third aspect of comparison is performance
metric results, which are compared later in multiple figures.

Table 12. Comparison of SENERGY to related works.

Ref No. Location GHI Mean GHI SD Climate Weather Data Model

[21]
Jaipur

NA NA
• Cwa
• Cwb
• Bsh

4
Ensemble model of

XGBF-DNN
New Delhi
Gangtok

[24]

Los Angeles 217.37 291.73 • Csb,
• BSk
• Af
• BWk

7
Hybrid model of

CEEMDAN-CNN-
LSTM

Denver 203.33 276.40
Hawaii’s Big Island 220.12 307.79

Tamanrasset 269.98 361.83
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Table 12. Cont.

Ref No. Location GHI Mean GHI SD Climate Weather Data Model

[25]
Ajaccio

NA NA
• Csa
• Csb 7

ARMA
RF

Tilos
Odeillo

[27]

CA

NA NA

• BSk
• Cfa
• Cfb
• Am
• Dfb
• Dfa

4
Generalized random

forest

TX
WA
FL
PA
MN

[28]

Bondville 398.04 284.66
• Cfa
• BWk
• BSk
• Cfb
• Dfa

7

68 machine learning
algorithms (Cubist
model is the best in

most cases)

Desert Rock 517.72 314.73
Fort Peck 368.17 277.33

Goodwin Creek 442.77 289
Penn. State Uni 384.31 277.24

Sioux Falls 406.94 277.55
Table Mountain 412.19 287.97

[30]

Tucson 532.5

NA

• Bsh
• Cfa
• A
• Dfc

7 ELM

Bermuda 417.1
Brasilia 475.6

Sonnblick 347.2
Solar Village 580.9

Golden 459.4
Darwin 516.4

Ny-Alesund 184.3
Toravere 256.9
Lerwick 198.3

This work

Al-Baha 582.09 311.16

• BWh
• A
• Dfb

4

LSTM
GRU
CNN

CNN-BiLSTM
LSTM-AE

Al-Jouf 528.14 296.47
Al-Khafji 486.59 275.73

Arar 485.46 295.04
Hail 543.77 303.82

Tabuk 498.03 261.73
Taif 567.62 308.47

Wadi-Addawasir 578.02 301.69
Caracas 366.77 271.11
Toronto 524.82 297.12

Ref [30] has 20 locations, we present data from 10 locations from various climates for simplicity.
NA: Not available.

A fair comparison of the performance of the models in the literature is a challenging
task because there is great variation in the results reported by researchers. Additionally, it
is difficult to find the best-performing model by comparing various statistical measures,
such as RMSE, MAE, and MAPE, etc., at the same time. For example, to compare six works
included in this section, we need four figures. Some metrics are reported in these six papers
and others are not. Sometimes, normalized metrics’ results are not given in a paper, but the
GHI mean of each location is given. Therefore, we calculated normalized metrics in this
case. Hence, we could not include all the six works in these figures. This highlights the
need to standardize the performance metrics used to report results. Each boxplot in the
following figures represents a performance metric result of several locations. Performance
metrics results are averages calculated for a whole dataset. The desirable outcome is a low
box that shows a small error and a short box that shows a small variation between the
different locations. The number of locations is ten for this work, and it is shown beside
the authors’ names in the legend for other works. SENERGY results reported in the next
figures are calculated, assuming it can choose the best out of five forecasting models with
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100% classification accuracy. To elaborate, our proposed approach has the potential to
provide better performance than any forecasting model alone. Therefore, we have reported
the results for the ideal situation.

In Figure 44a, MAE results from Gao et al. [24] and Fouilloy et al. [25] are compared
to MAE results of five forecasting models and SENERGY in this work. It is noted that
reference [25] has the worst MAE results in terms of high value and large variation between
the three locations. On the other hand, the LSTM-AE model and SENERGY show the best
performance in terms of both the lowest MAE values and low variations for ten locations.
The work of Gao et al. [24] appears to show the next-best performance; however, this is
because the results are for four locations only. In Figure 44b, the nMAE results are compared.
Reference [25] is excluded because nMAE is not reported there. We see how normalization
made the box of Gao et al. [24] bigger. Thus, it is fair to say that the LSTM, GRU, LSTM-AE
models, and SENERGY show better performance, even with a larger number of locations.
For both MAE and nMAE, the LSTM-AE model and SENERGY show the same performance
because according to these metrics (averaged over each of the ten location datasets), the
best model is always LSTM-AE for all locations (refer to Figure 23).
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In Figure 45a, the RMSE results of four works (Kumari and Toshniwal [21], Gao et al. [24],
Lee et al. [27], and Bouzgou and Gueymard [30]) are compared with the RMSE results of
the five forecasting models and the SENERGY results in this work. The LSTM-AE model
and SENERGY achieved the best performance in terms of the lowest RMSE and smallest
variation among ten locations. The work of Gao et al. [24] comes next; however, it includes
four locations only compared to six and twenty in other works. The worst performance
in terms of value is associated with the work of Bouzgou and Gueymard [30], while the
worst based on variation among locations is associated with the work of Lee et al. [27]
with six locations. In Figure 45b, the nRMSE results of this work are compared to four
other works. Since nRMSE is not reported in references [21] and [27], they are excluded
in (b) and another two works are added: Fouilloy et al. [25] and Yagli et al. [28]. The best
nRMSE results are achieved by the LSTM-AE model and SENERGY, whereas the worst are
related to Yagli et al. [28] in terms of low value and Fouilloy et al. [25] in terms of large
variation among locations. Comparing (a) and (b), we can see the benefit of normalization
in providing a fair comparison. For example, in (a) Gao et al. [24], the box is smaller and
lower than the LSTM, GRU, CNN, and CNN-BiLSTM models, but after normalization, it
becomes higher than all of them. In both (a) and (b), the LSTM-AE model and SENERGY
achieved the best performance in terms of lowest value and smallest variation. Again,
SENERGY shows the same performance as the LSTM-AE model, because according to the
RMSE and nRMSE results, the best model is always LSTM-AE for all locations (refer to
Figure 24).
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Figure 45. Comparison of multiple works based on: (a) RMSE; (b) nRMSE.

In Figure 46a, the MAPE results of Lee et al. [27], and Bouzgou and Gueymard [30]
are compared to the five forecasting models and SENERGY results in this work. SENERGY
achieves the lowest error with the smallest variation between ten locations, whereas the
CNN model is the worst. In Figure 46b, the comparison is based on the nMAPE results
and the same observation about the best and worst performance is true. The work of Lee
et al. [27] is eliminated in (b), since GHI mean is not reported and thus nMAPE cannot be
calculated. From (a) and (b), we can see the normalization effect on the work of Bouzgou
and Gueymard [30]. In (a), it shows better performance than the LSTM, GRU, and CNN-
BiLSTM models, whereas in (b) it becomes worse than all of them in value or variation
among locations. Unlike the MAE and RMSE results, SENERGY outperforms the LSTM-AE
model based on MAPE and nMAPE, because the latter is not the best model for all locations
according to these metrics (refer to Figure 25).
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In Figure 47a, FSMAE results of Gao et al. [24] are compared to the five forecasting
models and the SENERGY results in this work. In this figure, the highest value is the best.
It can be seen that the LSTM-AE model and SENERGY have the highest value and the
lowest variation between locations, whereas the CNN model is the worst in terms of value
and the CNN-BiLSTM model is the worst in terms of variation among locations. In (b),
the FSRMSE results of three works, Gao et al. [24], Fouilloy et al. [25], and Bouzgou and
Gueymard [30], are compared to the five forecasting models and SENERGY results in this
work. Again, the LSTM-AE model and SENERGY have the highest value and the lowest
variation between locations. The second best performance is achieved by the work of Gao
et al. [24]. However, they only include the results of four locations, compared to ten and
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twenty in other works. On the other hand, Bouzgou and Gueymard [30] has the worst
value and the largest variation between locations, since it includes twenty results. As in the
MAE and RMSE results, SENERGY does not show better performance than the LSTM-AE
model in (a) or (b) because on both metrics, the latter is the best model for all locations
(refer to Figure 26).
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Figure 48 compares SENERGY’s performance with the five forecasting models in terms
of the forecasting error (refer to Equation (4)). As we mentioned earlier, the comparison in
this section is based on the assumption that SENERGY can choose the best among the five
forecasting models with 100% accuracy. In this figure, the forecasting error is calculated
and represented for each data item in the testing datasets of all locations together (a total
of 24,676 record, as shown in Table 6). Therefore, the number of outliers for each model is
higher compared to the earlier figures in this section (those figures plot average statistics
for each dataset). No other work is compared in this figure because we do not have such
precision results available from other researchers’ published works. From (a), we can see
the improvement of SENERGY’s performance over the five models comes from the ability
of the tool to choose the model that achieves the least error for each data input of the five
models. Similarly, in (b) the forecasting error is divided by actual GHI to get the relative
error. Both in (a) and (b), SENERGY has the least error with fewer outliers and the CNN
model is the worst.
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From all the figures shown in this section, the difficulty of comparing works when
different metrics are reported and not all the needed information for a fair comparison is
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given is evident. There is a need to improve, consolidate, and standardize international
efforts on transparent and extensive testing of the proposed models for renewable energy
forecasting [12]. One approach could be for researchers to make the complete results data
openly available for comparison purposes. The boxplot used in this work provides the
results at a higher granularity compared to the aggregate or average metrics. Particularly,
the boxplots for the forecasting error and the relative forecasting error provide a more de-
tailed account of the performance because these results are plotted for each GHI prediction
compared to the other performance metrics that show performance at a lower granularity
of dataset levels.

4.5. Results Summary

In Section 4.1, we evaluated the performance of the forecasting engine component
of the SENERGY tool (we can also say that we evaluated the performance of the five
forecasting models). Firstly, in Section 4.1.1, we studied the effect of lagged features on
the forecasting results. Based on the MAE and RMSE results, a lag of two features have
only improved the results of two models CNN-BiLSTM and LSTM-AE. Regarding MAPE
results, a lag of three features only improved the results of GRU and LSTM-AE models.
On the other hand, a lag of three features only improved the MAE and RMSE results of
the LSTM-AE model as well as MAPE results of all models, except the CNN model. Next,
in Section 4.1.2, we studied the effect of climate and location on the forecasting results.
We found that the LSTM-AE model outperformed the other four forecasting models and
achieved the best results (nMAE = 0.02, nRMSE = 0.02, and nMAPE = 0.02). This excellent
performance is attributed to the ability of the model to reconstruct the inputs into a better
representation in addition to extracting the temporal features. In addition, we found that
the best forecasting results for all models are mostly associated with the Wadi-Addwasir
dataset and the worst results are linked with the Toronto and Caracas datasets. From
these results, we inferred that the most important factor that affects the performance of the
different models is the climate of the dataset source (sunny or cloudy), followed by the
completeness of the dataset. In Section 4.1.3, we studied the effect of sunny and cloudy
weather on the forecasting results. We observed that predicting GHI on sunny days is more
accurate than on cloudy days and the LSTM-AE model is the most accurate model among
the five models in both conditions. In Section 4.1.4, we studied the effect of the summer
and winter seasons on the forecasting results. We noticed that forecasting in the summer
was generally more accurate than in the winter and the LSTM-AE model had a very slight
difference in MAE results for both seasons. Finally, in Section 4.1.5, we examined the
forecasting error of all five forecasting models (Section 4.1.5). We found that the LSTM-AE
model achieved the least forecasting error for 54% of the records while the CNN-BiLSTM
model achieved the least forecasting error for 17% of the records.

In Section 4.2, we evaluated the performance of the auto-selective model prediction
engine of the SENERGY tool. First, in Section 4.2.1, we compared the classification accuracy
of the model prediction engine based on climate and location. We found that the highest
classification accuracy was 90%, and this was associated with Caracas and Toronto due to
a relatively larger number of records for both locations compared to the other locations.
Next, in Section 4.2.2, we compared the classification accuracy based on sunny and cloudy
weather. We observed that the classification accuracy was 75% for sunny days and 86% for
cloudy days. The reason for the lower accuracy in sunny weather was the close prediction
for both the CNN-BiLSTM and LSTM-AE forecasting models, which made it difficult for
the classifier to pick one of these models as the best model. Third, we compared the
classification accuracy in the summer and winter seasons in Section 4.2.3. We found that
the classification accuracy was 82% in summer and 80% in winter, which was in alignment
with the trend found in the forecasting results.

In Section 4.3, we evaluated the performance of the SENERGY tool in terms of gain and
loss in comparison to using a single forecasting model for forecasting. We first examined the
actual gain and loss of SENERGY versus two forecasting models CNN-BiLSTM and LSTM-



Energies 2022, 15, 6659 50 of 55

AE in Section 4.3.1. We noted that the SENERGY gain versus CNN-BiLSTM was relatively
large, because the tool would choose the LSTM-AE model for forecasting, which provided
far better forecasting than the CNN-BiLSTM model. On the other hand, the SENERGY gain
versus the LSTM-AE model was relatively small in general because when the CNN-BiLSTM
model achieved better forecasting than the LSTM-AE model, the difference, and thus the
gain, was small. Subsequently, we examined the potential gain and loss of SENERGY
versus five forecasting models in Section 4.3.2. We found that assuming 100% accuracy of
the classifier, the SENERGY tool would provide considerable gain over all the forecasting
models with no loss.

Finally, in Section 4.4, we compared the performance of the SENERGY tool with other
related works from the literature and we provided a performance comparison of models
based on MAE, RMSE, MAPE results, their normalized versions, and FSMAE and FSRMSE
values. The results establish that SENERGY provides superior performance overall based
on all the different results.

5. Conclusions and Future Work

This paper introduced SENERGY, a novel deep learning-based auto-selective approach
and a tool that predicts the best-performing deep learning model for GHI forecasting in
terms of forecasting error rather than generalizing a specific model for all climates. The
approach is based on carefully devised deep learning methods and feature sets created
through an extensive analysis of deep learning forecasting and classification methods
using ten meteorological datasets from three continents. We analyzed the tool in great
detail through a variety of metrics and means for performance analysis, visualization,
and comparison of solar forecasting methods. SENERGY outperforms existing methods
in all performance metrics including MAE, RMSE, MAPE, nMAE, nRMSE, nMAPE, FS,
and relative forecasting error. In all weather conditions, LSTM-AE is the most accurate.
Prediction for sunny days is more accurate than the prediction for cloudy days; the same
is true for the summer season versus the winter season. SYNERGY can predict the best
forecasting model with 81% accuracy.

Future work would aim to make improvements in different aspects of the SENERGY
tool design. For instance, the current performance of the SENERGY tool is suboptimal
because the LSTM-AE method outperforms all other methods, causing the LSTM-AE
forecasting method to own the majority of the labels in the classification dataset as the best
performing forecasting method, resulting in a major data imbalance problem and poor
classification accuracy. The LSTM-AE method’s performance could be attributed in part
to the fact that we used a relatively optimized lagged feature for the LSTM-AE method,
giving LSTM-AE an advantage over the other four forecasting methods. It is possible to
include a set of different features (for example, Lag1, Lag2, Lag3) in SYNERGY and treat
each pair of a distinct feature (from this feature set) and a forecasting model as a separate
forecasting engine (or model) and train the SYNERGY model prediction engine to predict
a feature-model pair. Instead of predefined fixed input features, SYNERGY will be able
to predict the best combination of a feature and model for a given GHI prediction. The
same approach can be used to optimize hyperparameters and other parameters in the
machine learning forecasting pipeline. These feature- and parameter-related aspects of
the SYNERGY approach should be investigated further before drawing firm conclusions.
Furthermore, the use of additional meteorological datasets with high climate and data
diversity, as well as additional forecasting methods, in conjunction with solutions to data
imbalance problems, could result in a more balanced classification dataset and allow for
improvements in classification error, resulting in significantly better forecasting accuracies
and gains.

Finally, in order to predict the best-performing deep learning model for GHI forecast-
ing, the proposed auto-selective approach currently considers minimum forecasting error.
It can be extended to predict forecasting models based on additional criteria such as the
amount of energy required or the speed with which the model is executed, different input
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features, different optimizations of the same models, or other user preferences. To improve
the tool’s performance and diversity, additional deep learning models for classification (to
auto-select) or forecasting solar radiation can be incorporated. The method can be applied
to other renewable energy sources and problems, such as wind energy forecasting.
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NWP Numerical Weather Prediction
RNN Recurrent Neural Network
ANN Artificial neural network
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MI Mutual Information
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ARMA Autoregressive Moving Average
WT Wavelet Transform
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SVM Support Vector Machine
RMSE Root Mean Square Error
nRMSE Normalized Root Mean Square Error
MAPE Mean Absolute Percentage Error
nMAPE Normalized Mean Absolute Percentage Error
MAE Mean Absolute Error
nMAE normalized Mean Absolute Error
MSE Mean Squared Error loss
WS Wind Speed
AT Air Temperature
RH Relative Humidity
ML Machine Learning
CNN Convolutional Neural Network
PV Photovoltaic
AI Artificial Intelligence
SVR Support Vector machine Regression
FFNN Feed Forward Neural Network
GHI Global Horizontal Irradiation
RF Random Forest
DNN Deep Neural Network
ELM Extreme Learning Machine
BPNN Back Propagation Neural Network
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DHI Diffuse Horizontal Irradiation
DNI Direct Normal Irradiance
BiLSTM Bidirectional LSTM
FS Forecast Skill
XGBoost eXtreme Gradient Boosting
ACF Autocorrelation Function
PACF Partial Autocorrelation Function
WD Wind Direction
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