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Abstract: The optimal operation of District Heating Networks (DHNs) is a challenging task. Current
or future optimal dispatch energy management systems attempt to optimize objectives, such as
monetary cost minimization, emission reduction, or social welfare maximization. Typically, this
requires highly nonlinear models and has a substantial computational cost, especially for large
DHNs. Consequently, it is difficult to solve the resulting nonlinear programming problem in real
time. In particular, as typical applications allow for no more than several minutes of computation
time. However, a distributed optimization approach may provide real time performance. Thereby,
the solution of the central optimization problem is obtained by solving a set of small-scale, coupled
optimization problems in parallel. At runtime, information is exchanged between the small-scale
problems during the iterative solution procedure. A well-known approach of this class of distributed
optimization algorithms is Optimality Condition Decomposition (OCD). Important advantages of
this approach are the low amount of information exchange needed between the small-scale problems
and that it does not require the tuning of parameters, which can be challenging. However, the DHNs
model equation structure brings along many difficulties that hamper the application of the OCD
approach. Simulation results demonstrate the applicability range of the presented method.

Keywords: district heating networks; optimal dispatch; nonlinear optimization; distributed optimization;
optimality condition decomposition; electric power networks

1. Introduction

Optimal operation of District Heating Networks (DHNs) is a major task to lower
emissions, operation costs, network losses or to maximize the social welfare in market-
based forms of DHN operation. Thereby, the optimal DHN operation regarded within
this work is understood as a form of dispatch for producers and flexible loads, which is
performed after a previously applied unit commitment (unit commitment is not within the
scope of this work); see, e.g., [1] for operation and control hierarchies in DHN operation.
The operational optimization problem is formulated as a Nonlinear Programming (NLP)
problem, and an overview on the kinds of operational optimization problems used for
DHNs is given in [2].

The most efficient form of DHN operation comprises variables mass flows [3], Variable
Mass Flow Directions (VMFDs) [4] and variable temperatures [5]. Thereby, the operation
points of pumps, valves and the heat power injection and demand of all flexible network
participants are set by an Energy Management System (EMS). Note that these flexible
network participants can be producers, consumers, energy converters or thermal storage
systems. When representing the physics of variable flows and variable temperatures in a
mathematical model for operational optimization in an EMS, the computational burden
becomes high for large real-world DHNs [6]. In certain cases, the resulting calculation
times can surpass the desired time interval used for the operational optimization.

Simulations performed by the authors of this work, using a rolling horizon approach,
where the operational NLP problem was implemented in GAMS and solved by the IPOPT
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solver, for one of the 15 largest DHNs in Germany, showed calculation times above 15 min
for prediction horizons larger than four time steps. Since prediction horizons in this range
are low compared with the thermal transient propagation of temperature fronts throughout
the DHN, the results of the optimizations can therefore most likely be increased for larger
optimization horizons.

As time step intervals used in energy management systems for market and control
frameworks for these kinds of systems are often within 15 min [7], further measures are
needed to enable real time capability of the EMSs. The demand for further measures to
reduce calculation times for future network operation becomes even more apparent in the
light of an increasing number of flexible network participants needing to be coordinated in
future DHNs [8]. These result from the necessity to decarbonize future heat supplies, and
thus, increasingly, small producers, such as renewable energy sources, heat pumps, power-
to-heat devices or waste heat suppliers (such as data centers, refrigerated warehouses and
purification plants), are being connected to DHNs [8], replacing the earlier centralized
power plants.

A well-known measure to reduce calculation times is the parallelization of computa-
tions by decomposing the original central operational optimization problem into multiple
coupled small-scale subproblems, which are then solved in a coordinated manner. Different
approaches for parallelization are presented in [9,10]. A large field of literature is provided
for the distributed optimization of electric power networks or coupled electric power and
district heating networks [11–19]. Most of the distributed optimal operation approaches use
the Alternating Direction Method of Multipliers (ADMM) [20] or the Optimality Condition
Decomposition (OCD) [21] algorithms.

All the stated approaches decompose the operational optimization problems for the
energy systems into small-scale subproblems, by dividing the energy network models into
multiple zones, which are then optimized in parallel by multiple EMSs. However, the
mentioned approaches all decompose the energy networks within electric power networks
or at the boundary of electric power and district heating networks. Thus far, almost no work
exists that decomposes the DHNs themselves into subproblems. Important advantages
of the OCD approach are the low amount of information exchange needed between the
small-scale problems and that it does not require the tuning of parameters, which can be
challenging [16]. These tuning procedures are needed for ADMM approaches [9]. Further,
the OCD approach enables real parallelization, while ADMM uses sequential calculations
in its standard form [20].

Note that these sequential calculations also include computations by a central coor-
dinating instance for ADMM approaches. Thus, three sequential calculations need to be
performed for every iteration of the ADMM algorithm [20]. Furthermore, a convergence
criterion is provided in the literature for OCD [21], which enables to compare different
forms of decomposition by convergence speed. This criterion can be used to compare
different forms of network decomposition with each other [22].

Through the symmetrical flow conditions in DHNs in the supply and return networks,
the coupling of the subproblems arising from a certain decomposition is inherently large in
DHNs. This impedes the straight-forward application of the OCD approach, as strong cou-
plings between the subproblems prevent fulfillment of the convergence condition. Thus, an
adequate reformulation of the operational optimization model is needed, which represents
the physical effects with similar precision but reduces the coupling of the subproblems.

To the best of the authors’ knowledge, thus far, the field of distributed optimization
of DHNs is barely researched. An approach for distributed optimization of DHNs based
on the ADMM is presented in [23]. As far as we know, the literature does not provide
any approaches applying OCD to DHNs. Thus, we would like to bridge that gap and
provide a distributed optimization approach that can be solved in parallel. Therefore, the
contributions of this paper are:

• A new approach for the distributed optimal operation of DHNs based on OCD.
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• In order to enable the application of OCD, the inherently strong coupling of small
scale subproblems needs to be reduced by an adequate model reformulation. Thereby,
the relevant physical effects are further accurately described.

1.1. Notation

Column vectors x ∈ Rn are represented with boldface lowercase letters, matrices
A ∈ Rn×n with boldface capital letters. For simplicity, we represent a vector composed
of two stacked column vectors as x = [x1, x2]. The notation ∇x f is defined as the partial
derivative of f w.r.t. x. We denote x> as the transpose of vector x.

1.2. Structure

The rest of this paper is organized as follows: Section 2 explains the basic principles and
properties of the OCD algorithm. Further, Section 3 provides the operational optimization
model of the DHN, the reformulation needed for OCD and the final OCD approach for
DHN operation. A proof of principle is given based on the simulation results in Section 4.
Finally, a discussion is found in Section 5.

2. Optimality Condition Decomposition

In this section, the OCD algorithm first presented in [21] is briefly reviewed. The
decomposition approach of OCD is presented here without loss of generality for the case of
two subproblems/operational zones, marked with the superscripts za and zb below. An
exemplary central optimization problem used to illustrate the approach is given as [10]:

min
xza,xzb

f za(xza)+ f zb(xzb) (1a)

subject to

hza(xza, xzb) = 0, (1b)

hzb(xza, xzb) = 0 (1c)

with the equality constraints divided into two parts, hza and hza. We assume the global
objective function is the sum of the objective functions of the operational zones, as these
represent cost, and we aim to minimize the sum of all costs. Note that the optimization
problem cannot be solved separately by the two operational zones, since the optimization
problems are coupled through the coupling constraints (1b) and (1c) (also called complicat-
ing constraints). For reasons of simplicity, we neglect constraints that depend on one group
of variables only, since they can be readily included [10,21]. Then, the Lagrangian of (1) is
defined as:

L
(

xza, xzb, λza, λzb) = f za(xza)+ f zb(xzb)
+ (λza)>hza(xza, xzb)+ (λzb)>hzb(xza, xzb). (2)

Setting up the Karush–Kuhn–Tucker (KKT) conditions and applying the Newton–
Raphson method leads to the following set of equations that is solved for every Newton
iteration ν [16]: [

KKTza KKTzb,za

KKTza,zb KKTzb

]
︸ ︷︷ ︸

KKT

[
∆cent,za

∆cent,zb

]
︸ ︷︷ ︸

∆cent

= −
[
∇[xza,λza]L
∇

[xzb,λzb]
L

]
︸ ︷︷ ︸

∇L

, (3)

with the Nabla operator ∇ and the search directions of the central problem given by
∆cent,za =

[
∆xcent,za, ∆λcent,za] and ∆cent,zb =

[
∆xcent,zb, ∆λcent,zb]. Further, the KKT matri-

ces are defined as [10]:
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KKTza =

[
∇2

xza,xzaL
(
∇xza hza)>

∇xza hza 0

]
, KKTzb,za =

[
∇2

xzb,xzaL
(
∇xza hzb)>

∇xzb hza 0

]
,

KKTza,zb =
(
KKTzb,za)>, KKTzb =

[
∇2

xzb,xzbL
(
∇xzb hzb)>

∇xzb hzb 0

]
. (4)

The OCD approach decomposes the optimization problem (1) in a special manner into
the following two subproblems, for Zone a:

min
xza

f za(xza)+ (λzb)>hhb(xza, xzb) (5a)

subject to

hza(xza, xzb) = 0, (5b)

and Zone b:

min
xzb

f zb(xzb)+ (λza)>hza(xza, xzb) (6a)

subject to

hzb(xza, xzb) = 0 (6b)

where the � operator indicates that these (dual) variables are constant and considered as pa-
rameters in the respective subproblem. The complicating constraint of the other operational
zone is included in the objective function of the regarded operational zone. All variables and
constraints have been assigned to a certain operational zone, while, for the objective func-
tion, each operational zone only considers its own objective function. Further, (5b) and (6b)
represent complicating constraints.

Complicating constraints are not only considered within their proper operational zone
by the approach but also as soft constraints within the objectives of the other operational
zones related through the complicating constraint, see (5) and (6). In either case, the
respective � parameters are obtained from the (dual) variables of the other operational
zone from the last Newton iteration v− 1. This indicates the basic OCD algorithm for every
Newton iteration ν:

1. Perform one Newton iteration of the two subproblems (5) and (6).
2. Exchange the parameters between the subproblems/operational zones, here xza, xzb,

λ
za

and λ
zb

.
3. Check if the stopping criterion is fulfilled. If it is not met yet, then calculate the next

Newton iteration v + 1 in step 1.

Different stopping criteria are stated in the given literature [16,21]. Computing these
distributed subproblems with Newton’s method is equal to solving the following set of
equations within every Newton iteration [16]:[

KKTza 0
0 KKTzb

]
︸ ︷︷ ︸

KKT

[
∆dist,za

∆dist,zb

]
︸ ︷︷ ︸

∆dist

= −
[
∇[xza,λza]L
∇

[xzb,λzb]
L

]
, (7)

with the distributed search directions ∆dist,za =
[
∆xdist,za, ∆λdist,za]and ∆dist,zb =

[
∆xdist,zb, ∆λdist,zb]

as well as the approximated KKT matrix KKT. By comparing (7) with (3), it is understood
that KKT is obtained from KKT by setting the matrices on the secondary diagonals to 0.
Now, convergence of the distributed solution towards the central solution of (1) can be
shown if, at the provided second-order KKT point y∗ =

[
xza, xzb, λza, λzb], the following

holds [21]:



Energies 2022, 15, 6605 5 of 21

Assumption 1. The second-order derivatives of f za, f zb, hza and hzb are Lipschitz continuous.

Assumption 2. The Jacobian matrix of the equality constraints of (1), precisely
[
(∇hza)>, (∇hzb)>

]>
provides full row rank.

Note that Assumption 2 is fulfilled if the gradients of the constraints are linearly
independent. This is not fulfilled if the system has, e.g., identical, parallel lines be-
tween two nodes. Last but not least, the condition for convergence given below needs to
hold at y∗ [21]:

Condition 1.

ρocd,∗ = ρ

(
I −

(
KKT∗

)−1KKT∗
)
< 1, (8)

with ρ(�) defining the spectral radius, which equals the absolute value of the maximal
eigenvalue of the given matrix. Further, KKT∗ represents the KKT matrix at the optimal
solution. If Assumptions 1 and 2 are fulfilled, and Condition 1 is fulfilled as well, then
iteratively solving (5) and (6) will converge towards y∗ with at least linear rate ρocd,∗ for
all starting points y0 sufficiently close to y∗. The literature often refers to ρocd,∗ as the
coupling factor. As can be understood from Equation (8), the coupling factor is smaller for
decompositions possessing less coupling, since then less non zero entries on the secondary
diagonals of the KKT block matrix KKTza,zb and KKTzb,za are neglected in KKT∗. In the
context of optimal dispatch of energy systems, this refers to less tie lines or pipelines
connecting the decoupled operational zones [16].

Within the following remarks further important aspects of the OCD approach w.r.t.
the present work are described.

Remark 1. The OCD approach, which was presented here for the simple case of an optimization
problem with complicating constraints, can be simply expanded to the case of additional non
complicating equality and inequality constraints, which only include variables of the respective
operational zone. Furthermore, complicating inequality constraints, such as flow limits over border
edges, can be readily included in the same manner as complicating equality constraints [24].

Remark 2. There are indications that symmetrically decomposed problems are more likely to fulfill
Condition 1. Symmetrical decomposition means that a complicating constraint in both operational
zones is present, which has an identical part and incorporates the same (parameterized) variables.
The first indication is that the majority of the published applications of OCD to energy system
dispatch problems decompose the central problems in a symmetrical form. For example, in optimal
power flow problems, the power flow over a tie line Pflow

i,j is part of the power flow constraints, of
both border nodes in the two adjacent operational zones and given by:

Pflow
i,j = ViVj[Bbus

i,j sin(θi − θj) + Gbus
i,j cos(θi − θj)] (9)

This power flow is dependent on the voltage angle θ and voltage amplitude V of the bordering
nodes i and j, which are thus part of both complicating constraints [16,25]. The parameters Bbus and
Gbus represent the susceptance and conductance of the nodal admittance matrix used to model the
electric power network for alternating current power flow calculations. Furthermore, it becomes clear
by comparing the structure of the KKT and KKT matrices that the distributed search directions
∆dist in (7) will most likely be closer to the central search direction ∆cent in (3) if all operational zones
take information of the other (bordering) operational zones into account, while calculating ∆dist.

Remark 3. The decomposition of a central optimization problem into many coupled but smaller
subproblems achieves a considerable reduction of the computation time. In [21], it is shown that
even solving the small scale subproblems sequentially on only one processor, the computation time is
less than computing the solution of the central problem directly. Note that this computation time
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can be lowered by orders of magnitude by further parallelizing the subproblems and solving them
in a coordinated manner. This is due to the bad scaling of the computation time with the number
of optimization variables in nonlinear programming; it is more efficient to solve many small scale
problems sequentially.

3. Optimal Dispatch of District Heating Networks Using Optimality
Condition Decomposition

This section first introduces the central optimization problem used in this work to
optimize DHN operation. Based on this, the model reformulation needed to reduce the
coupling of the subproblems when applying OCD is presented next. Finally, the application
of OCD to the resulting problem is provided including the complicating constraints and the
resulting objective functions arising from the OCD approach for each zone are provided.

3.1. Central Optimization Problem for Optimal Dispatch of District Heating Networks

The nonlinear programming problem used for operational optimization of DHNs used
within this paper is given in the following. This comprises the objective function, the equal-
ity constraints, as well as box constraints limiting the permissible range of all variables.

3.1.1. Objective Function

The objective function f , which can, in general, represent emissions, operation costs,
network losses or renewable energy sources curtailment, which should by minimized. A
further possibility that is used in this work is to maximize the social welfare in a market-
based form of DHN operation, such as those provided in [26].

3.1.2. Equality Constraints

This section briefly describes the DHN models used within this work. In particular, the
hydraulic and thermal models of nodes, pipelines, consumers and producers are provided.
The DHN network graph is spanned by the node edge incidence matrix, defined as (cf. [27])

Ai,e =


1, if e is directed towards i

−1, if e is directed away from i

0, if e is not connected to i.

∀ i ∈ Si, e ∈ Se (10)

where i represents a node from the set of all network nodes Si, and e is a respective edge
from all edges Se.

Hydraulic Model

The models of all typical hydraulic elements are given below. For all components
representing DHN edges e, a general stationary relation of the mass flow ṁ and the pressure
difference ∆p can be defined for all regarded time steps k ∈ Sk as:

∆pe,k = − ∑
i∈Si

Ai,e pi,k = βe,k + µe,kṁe,k|ṁe,k|∆ε ∀ e ∈ Se, k ∈ Sk (11)

where β and µ are the variable component coefficients and pi represents the nodal pressure
at node i. For pipelines, the values of β and µ are calculated as given in [4], and the
Prandtl–Colebrook equation is simplified using the Haaland approximation [28]. Thereby,
turbulent flow conditions are assumed [4]. For consumers, we assume β = 0 and µ is to be
within the box constraints, which are defined by the parameters of the valve and the heat
exchanger within the consumer. Further, producers are assumed to contain a pump, a heat
exchanger and a valve. The pumps can vary the value of the box constrained β, while the
rest of the producers are modeled as consumers, thus, with a constrained value µ. Note
that (11) is continuously differentiable as the absolute value function of the mass flow ṁ is
replaced by a continuous differentiable approximation given by:
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|ṁe,k|∆ε =
√

∆ε + (ṁe,k)2 (12)

wherein ∆ε > 0 is a sufficiently small parameter. In case of a predefined positive flow
direction (positive flow direction equals the edge orientation), when the e is not element of
the set of all edges with VMFDs, Svmfd

e , (11) can be written as

− ∑
i∈Sht

i

Ai,e pi,k = βe,k + µe,k(ṁe,k)
2 ∀ e ∈ Se, e /∈ Svmfd

e , k ∈ Sk (13)

The law of conservation of mass is represented by (14) for all mass flows entering and
leaving a node i:

∑
e∈Se

Ai,eṁe,k = 0 ∀ i ∈ Si, k ∈ Sk (14)

Thermal Model

For all nodes Svmfd
i ⊂ Si where, at least on one connected edge, a flow direction

change can take place, the node temperature Ti is calculated by the heat balance equation,
considering all possible flow conditions as given in [4]:

Ti,k ∑
e∈Se

(
A−i,e max (ṁe,k, 0) + A+

i,e max (−ṁe,k, 0)
)

= ∑
e∈Se

(
A+

i,e max(ṁe,k, 0)Tout
e,k + A−i,e max(−ṁe,k, 0)Tin

e,k

)
∀ i ∈ Svmfd

i , k ∈ Sk

(15)

The right-hand side of Equation (15) contains the sum of all temperatures entering
this node and leaving the respective edge Tout

e , or Tin
e in the case of negative flow, weighted

by their mass flows ṁ. This has to equal the node temperature Ti, which is multiplied
by the mass flows leaving the node. All possible cases, based on the varying mass flow
directions in the pipelines, are distinguished by combining the incoming and leaving node
edge incidence matrix elements A+

i,e and A−i,e and the approximated maximum operator.
The approximation is analogous to the absolute value function approximation in (12) and
is defined as:

max(ṁe,k, 0) ≈
∣∣ṁe,k

∣∣
∆ε

+ ṁe,k

2
=

√
∆ε + ṁ2

e,k + ṁe,k

2
(16)

The elements of the incoming and leaving edge node incidence matrices A+ and A−

of the DHN are defined as:

A+
i,e =

{
1, if Ai,e = +1
0, otherwise

∀ i ∈ Si, e ∈ Se

A−i,e =

{
1, if Ai,e = −1
0, otherwise

∀ i ∈ Si, e ∈ Se

(17)

For nodes without edges with VMFDs entering the node, the model Equation (15) is
simplified to the form, e.g., found in [29].

Consumer and Producer

The heat power supply or demand Φ of producers and consumers is defined by the
following equation throughout the existing literature, such as those given in [30]:

Φe,k = cwṁe,k(Tout
e,k − Tin

e,k) ∀ e ∈ Sexch
e , k ∈ Sk (18)
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Pipelines are modeled as in [31] (Node Method Version 1b); thereby, we neglect the
steal core model, as future DHN will not possess steal cores due to lower temperature
operation values [8], and we precalculate the values y, z (in [31], y and z are written as n
and m, which are already in use for other symbols in this paper), R and S before every
optimization based on the mass flow values from the last optimization.

This precalculation of the respective parameters enables reducing the obtained mixed
integer nonlinear programming to a nonlinear programming problem [32]. Further, the
length of stay is calculated based on the formula presented in [32] and a predefined flow
direction is assumed for model simplicity reasons. Note that pipelines crossing zone
borders will be differently modeled in Section 3.3.

3.2. Model Reformulation for OCD

In the following, the necessity of the reformulation of the model presented in Section 3.1.2
is provided. Before starting, the following definition is provided. For the spatial form of
decomposition applied in this work, all network elements will be assigned to a specific
operational zone. Thereby, the following special network elements are defined:

Definition 1.

• Border edge: An edge e crossing the border of two neighboring operational zones, e.g., Zone
a and Zone b. Thereby, this border edge will be defined as a border edge in both neighboring
operational zones a and b.

• Border node: A node i connected to a border edge e.
• Border loop: Border loops are loops l that have edges e in multiple operational zones.

Condition 1 is easily violated when OCD is applied to DHNs. This comes from the
fact that decomposing DHN optimization model constraints as provided in Section 3.1.2
into subproblems directly results in multiple complicating constraints in every zone. This
becomes clear with regard to the small example DHN presented in Figure 1. A naive
decomposition into two operational areas Zone a and Zone b applied in this example,
yields four complicating constraints for every zone in every time step.

This is due to the complicating constraints arising from (14) and (15) for both nodes in
every zone. Based on the model presented in Section 3.1.2, the pipeline model equations
would also bring along a complicating constraint. However, this can be prevented by
using the Assumption 4, which enables replacing the thermal pipeline model by an identity
function mapping the input temperature to the output temperature.

e1

e4

C
ons

2

e2

C
ons

3

e5

Prod
1

e6

Prod
4

i1 i2

i3 i4e3

Zone a Zone b

Figure 1. Example: four-node network. DHN with four nodes decomposed into Zones a and b.

From this example, it can be understood that the inherent strong coupling of DHNs
results from the topology of DHNs, including the supply and a return network. In general, a
stronger coupling of the subproblems, which is increased by every complicating constraint,
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leads to higher values of ρocd,∗; see the paragraph on OCD in Section 2. Thus, the more
complicating constraints exist, the more likely it is that Condition 1 is not met.

In contrast to DHNs, applying OCD to electric power networks only leads to a single
complicating constraint in every zone for every border node [16], which is why OCD has
been applied successfully for distributed optimization of electric power systems. From
now on, we will restrict ourselves to the case of two zones, to reduce the notational burden
and facilitate understanding of the provided methodology.

To reduce the coupling of the given problem, the hydraulic node Equation (14) of the
border nodes in the return network, i3 and i4 in Figure 1 are omitted. Thereby, two com-
plicating constraints of the form (21)—introduced and explained later on—are eliminated.
However, by neglecting the hydraulic border nodes of the return networks, the model
becomes incomplete, as the relation between mass flows and differential pressure of supply
and return network on the border edges is not incorporated in the model anymore.

This gap is bridged by explicitly introducing the equality ∆p1 = ∆p3 for Figure 1,
which can be notated as p1 − p2 = p4 − p3 or sorted by zones as p1 + p3 = p4 + p2 into the
model. This also implies ṁ1 = ṁ3, based on (11). Using the loop edge incidence matrix
B [27], this can be notated as:

∑
e∈Sza

e
e/∈Sbe,za

e

∑
i∈Sbi,za

i

|Bl,e||Ai,e|pi,k = ∑
e∈Szb

e
e/∈Sbe,zb

e

∑
i∈Sbi,zb

i

|Bl,e||Ai,e|pi,k ∀ l ∈ Sbl
l , k ∈ Sk (19)

where the border loops are given in Sbl
l , and the border edges of Zone a Sbe,za

e represent a
subset of the edges of Zone a given in Sza

e . The same notation is used for edges of Zone b,
equivalently. If more then four nodes are found in the regarded border loop l, the relevant
border nodes are found through |Bl,e||Ai,e| = 1 by checking this condition for all border
nodes i ∈ Sbi

i and edges e, which are no border edges (all border edges are given in e ∈ Sbe
e )

e ∈ Se, e /∈ Sbe
e of the respective zone. For example, the left side of (19) can be simplified to

∑i∈Sbi,za
i

pi,k if only one point of coupling/border edge (in the return and supply network)

to another zone exists as in Figure 1.
A further key aspect represents the artificial extension of the optimization problem

used to enable a symmetrical form of decomposition in the following. Applying OCD to
a central optimization problem with (19) as a complicating constraint would lead to an
unsymmetrical decomposition, as this single equation is assigned either to Zone a or Zone b.
Furthermore, representing the exact same Equation (19) twice in the central problem would
lead to an undesired rank deficiency of the KKT matrix as explained in Assumption 2. This
can be overcome by replacing (19) through the following two equations:

∑
e∈Sza

e ,e/∈Sbe,za
e

∑
i∈Sbi,za

i

|Bl,e||Ai,e|pi,k = ppre

∑
e∈Szb

e ,e/∈Sbe,zb
e

∑
i∈Sbi,zb

i

|Bl,e||Ai,e|pi,k = ppre ∀ l ∈ Sbl
l , k ∈ Sk (20)

A comparison of these Equations (20) with the initial form (19) shows that the pres-
sure potentials pi of the nodes in the bordering zone have been replaced by the constant
predefined pressure value ppre. As ppre is equal in both equations of (20), every solution
fulfilling (20) will also satisfy Equation (19), since (20) is a special case of (19). The benefits
of this new formulation are that the two equations in (20) are naturally assigned to their
respective zones without creating further complicating constraints and thus reducing the
coupling of the subproblems once more. Additionally, this procedure yields symmetrically
decomposed subproblems. Further, the directions of the border edges are slightly varied as
explained in the following remark.
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Remark 4. The decomposition only becomes fully symmetrical in the resulting border node
Equations (21), (26), (29) and (31) outlaid below, by changing the edge directions of the border
edges. As shown in Figure 1, edge e1 is directed away from node i1 and i2, leading to Ai1,e1

= −1
and Ai2,e1

= −1. Analogously, e3 is directed towards i3 and i4. Visually speaking, every zone
calculates its solution with its own border edge directions, where the supply network border edge is
directed away from the border node of the respective zone and the return network edge is directed to
the proper border node of this zone. This is a deviation from the standard notation of the directed
graph spanning up the DHN, where every edge is directed away from the start node and towards the
end node. Still, the resulting system of equations is equivalent, as the differential pressure over the
border edges ∆pe is defined using absolute values of Ai,e; see (23).

3.3. Distributed Optimal Dispatch of DHNs Based on OCD

The following shows how optimal operation problems for DHNs can be solved in
parallel by applying the OCD approach to the reformulated central optimization problem
provided above within this Section 3.

The presented approach is based on the following assumptions, used for simplicity reasons:

Assumption 3. Pipelines with VMFDs are the only component types for which edges can become
border edges. These pipelines are not part of a mesh in the return or supply network. Furthermore,
no control paths reach across zone borders.

This is a valid assumption, as pipelines are the most common components in DHNs;
thus, the limitations in finding possible decompositions for this assumption are manageable.
Furthermore, as discussed after the upcoming assumption, the edges over which the
approach decomposes the DHN can also be virtual pipelines.

Assumption 4. The pipelines representing the border edges are regarded as negligibly short,
and thus transmission delay, temperature losses and pressure potential differences due to height
differences ∆h (leading to β > 0 in the hydraulic pipeline model) are neglected here, as ∆h = 0
is assumed.

If this assumption would lead to unwanted deviations, due to a non negligible length
of the pipeline, two artificial nodes and pipelines, one in the return and one in the supply
network, could be introduced into the model in one of the zones at the end of the current
border edge. Thereby, all parameters of the old border edge pipelines are kept the same,
and the newly inserted pipelines, which are set as the new border edges, have the same
parameters except for the pipeline length L, which is chosen as negligibly short.

For notational brevity, only the optimization problem of Zone a is fully stated, while
the NLP of Zone b is directly evolvable thereof. All equations for every area, except the
ones replaced by the complicating constraints and the new objectives stated here, stay the
same as given in the previous subsections of Section 3.

The new hydraulic node equation, replacing (14) for supply network border nodes
in Zone a, is given as (the extensive superscripts of h stand for: district heating network,
hydraulic, supply network, border node and Zone a):

hhydr,sn,bi,za
i,k = ∑

e∈Se
e/∈Sbe

e

Ai,eṁe,k + ∑
e∈Sbe

e

Ai,eṁe,k = 0 ∀ i ∈ Ssn,bi,za
i , k ∈ Sk (21)

The main difference here to (14) is that border edges e ∈ Sbe
e and “normal” edges

e ∈ Se, e /∈ Sbe
e are distinguished. Border edge mass flows can then be expressed in depen-

dence of pressure potentials p as stated below. Thereby, taking into account Assumption 4,
which entails ∆h = 0 and thus βe,k = 0 in Equation (11):
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ṁe,k ≈ sgn∆ε

(
∆pe,k

)√ |∆pe,k|∆ε

µe,k(ṁe,k)
=

1√
µe,k(ṁe,k)

∆pe,k√
|∆pe,k|∆ε

∀ e ∈ Sbe,za
e , k ∈ Sk (22)

The dependency of the pressure coefficient on the border edge mass flow µe,k(ṁe,k)
is eliminated by using a predefined pressure coefficient µ

pre
e,k . Alternatively, this pressure

coefficient can be precalculated, based on the border edge mass flow of the previous
optimization and (11), thus, using a similar procedure as effectively applied for the thermal
pipeline model. Further, the differential pressure ∆pe,k over the considered border edge
e can be replaced by the difference of the pressure potential of the two connected border
nodes i, from which one is in Zone a and the other in Zone b. Thus, the differential pressure
over the border edge connected to a border node i of Zone a can be written as:

∆pe,k = ∑
i∈Sbi,za

i

(
|Ai,e|pi,k −∑

i′ 6=i,i′∈Si

|Ai′ ,e|pi′ ,k

)
∀ e ∈ Sbe,za

e , k ∈ Sk. (23)

By inserting (23) in (22) and exchanging the variable µe,k(ṁe,k) by the parameter µ
pre
e,k ,

the mass flow on the border edge e itself is defined as:

ṁe,k ≈
1√
µ

pre
e,k

∑
i∈Sbi,za

i

(
|Ai,e|pi,k −∑

i′ 6=i,i′∈Si

|Ai′ ,e|pi′ ,k

)
√√√√√
∣∣∣∣∣ ∑

i∈Sbi,za
i

(
|Ai,e|pi,k −∑

i′ 6=i,i′∈Si

|Ai′ ,e|pi′ ,k

)∣∣∣∣∣
∆ε

∀ e ∈ Sbe,za
e , k ∈ Sk (24)

For the network shown in Figure 1, Equation (23) is given by ∆pe1,k = pi1,k − pi2,k for
Edge e1 in Zone a. Based on this, the border edge mass flow ṁe1,k for Zone a stemming
from Equation (24) results in:

ṁe1,k ≈
1√
µ

pre
e1,k

pi1,k − pi2,k√∣∣pi1,k − pi2,k
∣∣
∆ε

∀ k ∈ Sk (25)

The thermal node equation, replacing (15) for border nodes, is formulated as follows
(note that the border nodes are written separately to simplify the derivation of (31)):

htherm,bi,za
i,k =Ti,k

[
∑

e∈Sza
e

e/∈Sza,be
e

(
A−i,e max

(
ṁe,k, 0

)
+ A+

i,e max
(
− ṁe,k, 0

))
+

∑
e∈Sza,be

e

(
A−i,e max

(
ṁe,k, 0

)
+ A+

i,e max
(
− ṁe,k, 0

))]

−
[

∑
e∈Sza

e
e/∈Sza,be

e

(
A+

i,e max
(
ṁe,k, 0

)
Tout

e,k + A−i,e max
(
− ṁe,k, 0

)
Tin

e,k

)
+

∑
e∈Sza,be

e

((
A+

i,e max
(
ṁe,k, 0

)
+ A−i,e max

(
− ṁe,k, 0

))
∑
i′ 6=i
i′∈Si

|Ai,e||Ai′ ,e|Ti′ ,k

)
]
= 0 ∀ i ∈ Sbi,za

i , k ∈ Sk (26)

Similarly to (21), the border mass flows are also defined by (24) in (26) above. With
Assumption 4, supposing negligibly short pipelines between zones, the thermal pipeline
model reduces to an identity function mapping the input temperature to the output temper-
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ature here, Ti,k = Ti′ ,k (however, more detailed models, such as a static pipeline model or a
symmetric dynamic thermal pipeline model, could also be considered in the thermal node
Equation (26)). For Node i1 in Zone a in the DHN in Figure 1, Equation (26) is written as

Ti1,k

[
max

(
ṁe1,k, 0

)
+ max

(
ṁe4,k, 0

)
+ max

(
− ṁe5,k, 0

)]
−
[

max
(
− ṁe4,k, 0

)
Tin

e4,k + max
(
ṁe5,k, 0

)
Tout

e5,k + max
(
− ṁe1,k, 0

)
Ti2,k

]
= 0

∀ k ∈ Sk (27)

The resulting objective function for Zone a f za, is defined as given below:

f za = f rest,za + ∑
k∈Sk

(
∑

i∈Ssn,bi,zb
i

λ
hydr,sn,bi,zb
i,k hobj,hydr,sn,bi,zb

i,k

+ ∑
i∈Sbi,zb

i

λtherm,bi,zb
i,k hobj,therm,bi,zb

i,k

)
(28)

This objective function f za is composed of two parts. The first describes the decom-
posed objective of a central EMS f (x). This comprises the objective f ′(x) resulting from
a modification term δ · I with a small parameter δ and the identity matrix I added to the
Hessian of the Lagrangian of the centralized and the distributed optimization problems
to enhance convergence properties [33] (p. 574). The objective resulting from this modi-
fication is defined here as f rest,za for Zone a. The second part is constituted by the sum
of the products of the Lagrange multipliers λ and the complicating constraints h coming
from Zone b.

As indicated by the superscripts, the Lagrange multipliers come from Zone b of
the last OCD iteration from the complicating constraints hhydr,sn,bi,zb

i,k and htherm,bi,zb
i,k of

the respective border nodes. The complicating constraints itself are utilized in the slight
modified form given below in (29)–(31) with the additional obj superscript. In comparison
to (22), (24) and (26), all variables become OCD parameters and vice versa. Furthermore,
all sets that were based on Zone a now become dependent on Zone b and the other way
around. This leads to the following definitions:

hobj,hydr,sn,bi,zb
i,k = ∑

e∈Se
e/∈Sbe

e

Ai,eṁe,k + ∑
e∈Sbe

e

Ai,eṁe,k = 0 ∀ i ∈ Ssn,bi,z
i , k ∈ Sk (29)

where the border edge mass flow is defined similarly as in (24) by:

ṁe,k ≈
1√
µ

pre
e,k

∑
i∈Sbi,zb

i

(
|Ai,e|pi,k −∑

i′ 6=i∈Si

|Ai′ ,e|pi′ ,k

)
√√√√∣∣∣∣ ∑

i∈Sbi,zb
i

(
|Ai,e|pi,k −∑

i′ 6=i∈Si

|Ai′ ,e|pi′ ,k

)∣∣∣∣
∆ε

∀ e ∈ Sbe,zb
e , k ∈ Sk (30)
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The thermal node equation is formulated as follows for border nodes:

hobj,therm,bi,zb
i,k =Ti,k

[
∑

e∈Szb
e

e/∈Szb,be
e

(
A−i,e max

(
ṁe,k, 0

)
+ A+

i,e max
(
− ṁe,k, 0

))
+

∑
e∈Szb,be

e

(
A−i,e max

(
ṁe,k, 0

)
+ A+

i,e max
(
− ṁe,k, 0

))]

−
[

∑
e∈Szb

e
e/∈Szb,be

e

(
A+

i,e max
(
ṁe,k, 0

)
Tout

e,k + A−i,e max
(
− ṁe,k, 0

)
Tin

e,k

)
+

∑
e∈Szb,be

e

((
A+

i,e max
(
ṁe,k, 0

)
+ A−i,e max

(
− ṁe,k, 0

))
∑
i′ 6=i
i′∈Si

|Ai,e||Ai′ ,e|Ti′ ,k

)
]
= 0 ∀ i ∈ Sbi,zb

i , k ∈ Sk (31)

Therein, the border mass flows are defined by (30).
The overall subproblem for Zone a then comprises the objective function (28), the

complicating constraints (21) and (26) for the respective border nodes of Zone a, the equality
constraints listed in Section 3.1.2 for all other network components in Zone a, as well as
box constraints limiting the solution set.

4. Results

Two examples demonstrating the applicability range of the described method to the
distributed optimal operation of DHNs are considered. The eight-node network, as depicted
in Figure 2, extends the four-node network introduced in Section 3.2 and depicted in Figure 1,
by modeling the thermal properties of the pipes dynamically. Each example network
was solved in both a centralized and a distributed manner using OCD. We found that
distributed and central optimization problems converged to identical solutions in both
considered examples. However, the OCD convergence properties for the eight-node network
is highly dependent on the used parameter set.

e1

e4

C
ons

2

e2

C
ons

3

e5

Prod
1

e6

Prod
4

i1 i2

i3 i4e3

Zone a Zone b

i5

i6

i7

i8

Figure 2. Example: eight-node network. DHN with eight nodes and dynamic elements decomposed
into Zones a and b.

The central problem was solved using the Interior Point Optimizer (IPOPT) [34]. The
steps of the OCD procedure were implemented as optimization problems with an iteration
limit of one, calling IPOPT once per step and zone.
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4.1. Parameterization

The the values and bounds of the variables used in the following examples are given
in Table 1. The Lagrangian modification parameter δ ensures a non-singular Hessian of the
Lagrangian by adding δI to the aforementioned.

Table 1. The parameters used for simulation. The values are equal for all time steps k ∈ Sk.

(a) Constants

Description Symbol Value

Constant predefined pressure ppre 3 bar

Lagrangian modification parameter δ 1× 10−11

Predefined quadratic component coefficient µ
pre
e1,k 100 bar s2 kg−2

Quadratic component coefficients µe5,k 0
µe6,k

Constant component coefficients βe2,k 0
βe4,k

Marginal bid prices

ce2,k 5
ce4,k 8
ce5,k 1
ce6,k 10

(b) Bounded Variables

Description Symbol Minimum Maximum

Nodal pressures pi,k 0 ppre

Mass flow rates ṁe,k 0 2 kg s−1

Inlet temperatures Tin
e,k 70 °C 100 °C

Outlet temperatures Tout
e,k 70 °C 100 °C

Nodal temperatures Ti,k 70 °C 100 °C

Thermal power supply (producers) Φe2,k 0 40 kWΦe4,k

Thermal power demand (consumers) Φe5,k −40 kW 0Φe6,k

Quadratic component coefficient µe,k 0.9 bar s2 kg−2 1.1 bar s2 kg−2

In addition to the parameters given in Table 1, the eight-node network considers identical
pipes of diameter 100 mm with a surface roughness of 0.4 mm. The pipe length is set to 50 m.

All parameters are equal for all times steps k. Therefore, it is sufficient to consider a
single time step in the four-node network; however, the dynamic elements in the eight-node
network warrant the consideration of multiple time steps. The following considers six time
steps of 5 min each.

4.2. Dimensionality Reduction

The four-node network problem optimizes a total of 28 variables, the eight-node network
a total of 432. Thus, the results must be presented in aggregated form. This subsection
introduces the methods used to do so.

4.2.1. Maximum Infeasibility

Given the optimization variables x and the the active constraints h(x) = 0, the
maximum infeasibility at x is defined as the `∞-norm of h(x). Note, that for any v ∈ RN , its
`∞-norm is given by ‖v‖∞ = max{v1, . . . , vN}. By definition a solution to any optimization
problem must satisfy its constraints corresponding to a maximum infeasibility of zero. In
practice, a value of zero is difficult to obtain numerically; thus, the following will be content
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with small values. An initial point may, and in the following does, violate the constraints
yielding a non-zero maximum infeasibility.

4.2.2. Representative Pressures

Note that (20) allows the definition of pi3,k and pi4,k in terms of pi1,k and pi2,k and the
combination of (14) and (11) gives an injective relationship between the nodal pressures
pi,k and the mass flow rates ṁe,k. Therefore, pi1,k and pi2,k are sufficient for the study of any
feasible hydraulic state of either example network without loss of generality. As shown in
Figure 3, intermediate states may be infeasible in some steps of the iteration process.

0 5 10 15 20 25 30 35 40

10−3

10−1

101

OCD Iteration

M
ax

In
fe

as
ab

ili
ty

Zone a
Zone b

Figure 3. Maximum infeasibility per zone when solving the four-node network using flat initialization.

4.2.3. Mean Square Error

The Mean Square Error (MSE) was used as a metric for measuring the difference of a
central and distributed solution unifying all relevant variables in a single metric according
to the definition

MSE =
1
n ∑

k∈Sk

∑
e∈Se

∑
i∈Si

((
∆ṁe,k

2 kg s−1

)2
+

(
∆pi,k

3 bar

)2
+

(
∆Ti,k

30 K

)2
+

(
∆Φe,k

40 kW

)2
)

(32)

where ∆ denotes the difference of the central and distributed solutions in the corresponding
variable. Any edges that are neither consumers nor producers do not define a thermal
power Φe,k and are therefor ignored. Division by the number of variables summed in
n, with n = |Sk|

(
|Se|+ 2|Si|+

∣∣Sexch
e

∣∣), produces values on a similar order of magnitude
independent of network size. The normalization constants correspond to the ranges set for
the respective variables as defined in Table 1b, ensuring that individual variables will not
typically dominate the value of the MSE and guaranteeing unit-less results. Note that this
definition does neither assume nor require feasibility.

4.3. Initialization

The four-node network was solved with all optimization variables initially set to zero.
This flat initialization ignores any constraints placed on the variables. Convergence to
the central solution was reached after 28 iterations. If the hydraulic equations contained
in the model are solved beforehand in a so called hydraulic pre-calculation the obtained
starting point can reduce the number of iterations needed. In the four-node network example
this reduces the number of iterations to 25. The eight-node network requires a hydraulic
pre-calculation as it does not converge using flat initialization, which is known in the
literature, see, e.g., [4] for similar observations.

4.4. Four Node Network with Flat Initialization

Figure 4a shows the nodal pressures p1,1 and p2,1 in the four-node network, and therefore
it is in a hydraulic state. The dashed line indicates the central solution. As depicted,
the distributed solution converges to the central solution in 32 iterations. IPOPT took
28 iterations to solve the central problem. Figure 4b shows the thermal powers of the



Energies 2022, 15, 6605 16 of 21

consumers and producers, demonstrating that convergence is not isolated to the hydraulic
variables. Figure 4c aggregates all relevant variables according to (32).

As shown in Figure 3, the initial point is infeasible. Throughout the OCD steps, the
maximum infeasibility tends to decrease.
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Figure 4. Four-node network from Figure 1 solved from an initial point with all variables set to zero.
(a) Pressures at nodes one and two; (b) Thermal power output/consumption of consumers and
producers; (c) Mean Square Error as defined in (32).

4.5. Eight Node Network with Hydraulic Pre-Calculation

Figure 5 shows that the eight-node network example converges in 126 iterations. IPOPT
required 69 iterations to solve the central problem.

0 20 40 60 80 100 120 140
0

5 · 10−2

0.1

OCD Iteration

M
SE

Figure 5. MSE while solving the eight-node network from Figure 2 using initialization based on
hydraulic pre-calculation.

4.6. Computation Time

An Intel i7-10700T CPU was used at a clock speed of 4.5 GHz to test the run time of
the given examples. Table 2 summarizes the obtained results. The time given is the total
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time spend evaluating objective functions, constraints, their derivatives and completing
optimization steps in IPOPT but excluding any boilerplate code for setting up, progress
monitoring and switching zones.

In the OCD approach the zones where optimized sequentially to avoid zones influ-
encing each others performance by accessing the same cash but the time given in Table 2
assumes parallel execution. The computation time depends on the specifics of the machine
used for testing, however the ratio of the run times for the OCD and central approaches
as given in Table 2 stays ruffly constant across differing hardware and is therefore more
meaningful than absolute computation times. Knowledge of the central solution was used
to terminate the OCD iteration as soon as the MSE fell below 3× 10−10.

Table 2. Computation time and iteration counts for the considered examples.

Example Central/OCD Iterations Time in ms OCD Time
Central Time

Four Node Network Central 28 13 9.0OCD 32 117

Eight Node Network Central 69 495 2.5OCD 126 1248

As shown in Table 2 the OCD solution is significantly slower as the central solution.
However the advantage of the central solution is smaller for the larger example considered.
This matches the results obtained in [22], where OCD becomes much faster as the central
solution for larger networks. Hence, this leads to the assumption that OCD will be faster
for a sufficiently large network.

4.7. Other Solutions

With other parameter sets, the decomposed problem was observed to converge to
other solutions. For example, increasing the marginal bid price of the consumer on e4 from
5 to 6 produces the results shown in Figure 6 and caused the OCD approach to converge
to a solution distinct from that of the central approach. The MSE was found to plateau
after 100 iterations at a value of 0.08. The final objective value of the distributed solution
was 0.35 % better than in the central case; however, while the central solution solves all
constraints to an infeasibility of at least 1× 10−13 the distributed solution shows maximum
infeasibilites in the order of 1× 10−4.

The results of further increasing the marginal bid price of the consumer e4 to 12 are
shown in Figure 7 and causes the OCD approach to fail as no convergence is observed with
even the best set of values reached through out the OCD procedure violating the constraints
by an infeasibility of at least 1× 10−2. After iteration 130 the MSE oscillated around a value
of 0.075 corresponding to a 4.9 % better objective value compared to the central case.

While the OCD approach converged to the central solution for the prevailing amount of
parameters tested in the four-node network, the distributed solution of the eight-node network
only converged toward the central solution in a minority of the considered parameter
sets. A potential explanation for this result is that the eight-node network case, which in
contrast to the four-node network includes the thermal pipeline models, Condition 1 might
be violated regularly.
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Figure 6. Eight-node network with the marginal bid price ce4 increased to 6. Initialization based on
Hydraulic Pre-Calculation. (a) MSE as defined in (32); (b) Maximum infeasability per zone.
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Figure 7. Eight-node network with the marginal bid price ce4 increased to 12. Initialization based on
Hydraulic Pre-Calculation. (a) MSE as defined in (32). (b) Maximum infeasability per zone.

5. Discussion

The presented approach shows how OCD can be applied to the optimal operation of
DHNs. As explained, several difficulties need to be overcome to enable the application of
OCD to DHNs. This includes the strong coupling of the subproblems resulting from the
symmetric flow conditions in supply and return networks in DHNs. While the concept
shows good convergence properties for the four-node network for the majority of the tested
parameter sets, the results indicate that further work is needed to enhance the convergence
of the distributed solution towards the central solution for the regarded dynamic eight-node
network and thus likely also for networks with even more components. Hence, the presented
ideas to circumvent the strong coupling of the subproblems appearing from the application
of the OCD method to DHNs may need to be further extended for large-scale DHNs.

Author Contributions: Conceptualization, J.M. and S.H.; methodology, J.M.; software, J.M. and J.I.;
validation, J.M., J.I. and P.J.S.; formal analysis, J.M., J.I., P.J.S. and S.H.; investigation, J.M. and J.I.;
resources, S.H.; writing—original draft preparation, J.M.; writing—review and editing, J.I., P.J.S. and
S.H.; visualization, J.M. and J.I.; supervision, S.H.; project administration, S.H.; funding acquisition,
S.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the Helmholtz Association and by Germany’s Federal Ministry
for Economic Affairs and Energy within the project RegEnZell (0350062A). We acknowledge support
by the KIT-Publication Fund of the Karlsruhe Institute of Technology.

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2022, 15, 6605 19 of 21

Abbreviations
The following abbreviations are used in this manuscript:

ADMM Alternating Direction Method of Multipliers
DHN District Heating Network
EMS Energy Management System
KKT Karush–Kuhn–Tucker
MSE Mean Square Error
NLP Nonlinear Programming
OCD Optimality Condition Decomposition
VMFD Variable Mass Flow Direction

Nomenclature
Symbols
A Node edge incidence matrix
A− Node leaving edge incidence matrix
A+ Node incoming edge incidence matrix
β Constant component coefficient
Bbus Susceptance of nodal admittance matrix element
c Bid/Offer price per unit
cw Specific heat capacity of water
δ Lagrangian modification parameter
∆ε Small positive parameter
∆h Height difference
∆λcent Vector of change of dual variables within two iterations for the central case
∆λdist Vector of change of dual variables within two iterations for the distributed case
∆p Pressure Difference
∆xcent Vector of change of optimization variables within two iterations for the central case

∆xdist Vector of change of optimization variables within two iterations for the distributed
case

f Objectiv function
f rest Part of objective function not resulting from OCD approach
Gbus Conductance of nodal admittance matrix element
h Equality constraints
h Vector of equality constraints
I Identity matrix
KKT Karush-Kuhn-Tucker (KKT) matrix
KKT Approximated Karush-Kuhn-Tucker (KKT) matrix
λ Vector of dual variables
ṁ Mass flow
µ Quadratic component coefficient
n Number of variables in MSE
∇h Jacobian matrix of the equality constraints
∇L Jacobian matrix of the Lagrangian
Pflow Real power flow between two buses
Φ Heat power
p Pressure potential

ρocd,∗ Least linear congervence rate of Optimality Condition Decomposition (OCD)
approach

R, S, y, z Precalculated values in thermal pipeline model
S Set
T Temperature
θ Voltage angle
Tin Input temperature
Tout Outlet temperature
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V Voltage amplitude
x Variable vector
y0 Starting point for optimization
y∗ Second-order Karush-Kuhn-Tucker (KKT) point
Indices
0 Initial state
e Edge
i Node
k Time step
l Loop
ν Iteration of distributed optimization approach
+ Incoming edge, positive flow direction
− Leaving edge, negative flow direction
be Border edge
bi Border node
bl Border loop
cent Central
dist Distributed
exch Heat exchanger
flow (Line) Flow
hydr Hydraulic
in Input of edge
max Maximum
min Minimum
obj Objective
ocd Optimality Condition Decomposition (OCD)
out Outlet of edge
pre Predefined before optimization
rn Return network
sn Supply network
∗ (At) Optimal point
vmfd Variable Mass Flow Direction (VMFD)
w Water
za Zone a
zb Zone b
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