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Abstract: A regulating valve is a key control element in the coal liquefaction industry, whose flow
field distribution is related to the entropy production. In order to make a quantitative evaluation
of the energy loss in the cavitation flow and calculate the magnitude and location of the hydraulic
loss in the flow field more accurately, entropy production theory is employed to analyze the flow
field in the regulating valve numerically. The entropy production under cavitation condition and
its influence on steady-state flow force are also discussed. When the opening of the valve increases,
the entropy production and energy loss change dramatically. The entropy production rate (EPR) is
mainly distributed at the orifice and downstream of the regulating valve, the entropy production
rate (EPR) reaches the maximum value at the orifice, and turbulent pulsation entropy production
(TPEP) is the main part of the total entropy production for flow. When the valve’s opening increases
from 40% to 70%, the total entropy production (TEP) increases from 467.14 W/K to 630.04 W/K.
The entropy production by cavitation (EPC) increases firstly and then decreases. The smallest value
of EPC is 0.103 W/K at the 40% opening, while the maximum value is 0.119 W/K at 60% opening.
Furthermore, the relationship between total entropy production (TEP) and steady-state flow force
can be approximated by an exponential distribution. When the steady-state flow force increases, the
total entropy production for flow also increases. Cavitation effect on the steady-state flow force is
strengthened firstly and then weakened with increasing the valve’s opening. Finally, a discriminant
method based on the change of the steady-state flow force is proposed to detect whether cavitation
occurs in the valve or not. The results in this paper could provided a directional and quantitative
evaluation of energy loss in the regulating valve, which is help for the structural shape optimization
and service life extension combining with external characteristics of the valve and internal flow field.

Keywords: regulating valve; entropy production; flow force; cavitation

1. Introduction

A regulating valve is one of the key control elements in the coal liquefaction industry,
there is often energy loss that occurs during its operation, whose short life and high price
have restricted the production efficiency of the direct coal liquefaction process system [1].
The regulating valve in the coal liquefaction industry mainly depends on import, our
country spent about hundreds of millions to import them ever year. Although many
active steps were adopted, such as material upgrade, added wear resistant layer and
structure optimization, to make the lifetime of the valve exceed 2700 h. More effort still
needs to be addressed to improve the performance of the valve. Cavitation is a common
phenomenon in the valves, which often cause structural deformation and spalling of flow
channel [2], and reduce valve lifetime and increase replacement costs [3]. Serious cavitation
damage often occurs when the valves are used under high temperature and high-pressure
conditions, Duan [4] pointed that the phase transformation rate could be used to predict
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the cavitation damage region. Chern [5] pointed that cavitation could be prevented when
two cages are installed in the globe valve. Zhang [6] pointed that increasing back pressure
appropriately improves the flow capacity of the valve, so as to improve the performance
of the valve. Wu [7] reported an optimized structure of the relief valve could decrease the
maximum/total vapor volume of the cavitation flow in the channel. Trivedi [8] predicted
the location of the cavitation in the valve by identifying the low pressure and high velocity
regions, and valves’ hydraulic loss coefficient was also calculated. However, it is difficult
to evaluate the energy loss in the flow field experimentally because it is difficult to obtain
very detailed information inside the valve. To evaluated energy loss quantitatively and
find the key part where the flow deteriorating is of great significance for the optimization
of the valve, and thus prolong the working life and improve the valve’s working efficiency.

The occurrence of cavitation flow will also result in energy loss in the hydraulic sys-
tem [8], which are studied mainly in the perspective of fluid dynamics, but the magnitude
and position of hydraulic losses in the valve are not precise positioning. The CFD method
could obtain the distribution of pressure and velocity [9–11], and the energy loss could
only be indirectly analyzed. Energy efficiency represents one of the main requisites in
mechanical design [12]. Entropy production theory which derives from the second law
of thermodynamics, describing energy is converted from mechanical energy to unusable
energy, which could be used to evaluate the flow field. Yu [13] applied five kinds of entropy
production terms such as direct dissipation, turbulent dissipation, wall shear stress, mean
and fluctuating temperature gradients in order to understand the interactions between
unsteady cavitating flow and entropy around NACA0015 hydrofoil at 343 K. Kock [14]
analyzed entropy production in incompressible turbulent shear flows of Newtonian fluids
systematically. Entropy production theory is used in the design and optimization of hy-
draulic machinery recently [15,16]. Soltanmohamadi [17] demonstrated a 26.02% average
decrease in entropy generation of the optimal design of Wells turbines throughout the
full operating range. Sciacovelli [18] pointed that entropy generation analysis could be a
popular thermodynamic method for the design and the optimization of less unsustainable
systems. Yu [19] pointed that the hydraulic loss of a hydraulic turbine is closely related
to flow separation, vortex and reflux, and the entropy production of the diversion tube is
the largest, followed by the flow passage. Based on entropy production theory, Liu [20]
analyzed the pressure and entropy production distribution of the internal flow field, which
revealed the flow mechanism of vortex recession frequency in the reduction of metering
characteristics by the throttling effect of compressed air. Ghorani [21] showed that turbu-
lence entropy is the main cause of hydraulic loss, while shock waves at the blade inlet, flow
deviation at blade outlet, flow separation, reflux and passage vortex are the main causes
of entropy and irreversible hydraulic loss in PAT. Osman [22] evaluated turbulent dissi-
pation by the entropy production method to characterize flow losses. However, entropy
production theory is seldom used for the analysis of the flow field in the valve illustrat-
ing the perfect degree of energy conversion and utilization, especially in the analysis of
cavitation flow.

When the oil flows through the orifice in the regulate valve of the coal liquefaction
industry, there will always some energy inevitably converted into the internal energy of the
oil and accompanied by the occurrence of entropy. Due to its viscous force and Reynolds
stress, part of mechanical energy is irreversibly converted into internal energy dissipation.
However, few studies focus on the flow loss in the valve by using entropy generation
theory, part of them focus on the turbine and pump. The evaluation of energy loss in
cavitation flow field is still lacking in-depth research. For reliability analysis of complicated
flow in the regulate valve of the coal liquefaction industry, entropy generation theory can
display the distribution of energy loss in the flow field visually and quantitatively, so as
to make optimization design for flow deterioration area, which is of great significance
for the performance improvement of hydraulic machinery. Therefore, the value of energy
loss in the regulate valve will be evaluated through the pressure and velocity of the flow
field inside the valve. The relationship between energy loss in cavitation flow and entropy



Energies 2022, 15, 6480 3 of 18

production of the regulating valve will be discussed in this paper. The flow loss in the flow
passage is evaluated, and the relationship between the total entropy production of the flow
in the regulating valve and the steady-state flow force are also discussed. The results in
this paper is help the structural optimization by combining with external characteristics
and internal flow field in the valve, and the extension of its service life.

2. Entropy Production Theory

When the oil flows in the regulating valve, it is turbulent flow. From the perspective
of thermodynamics, entropy production could be used to measure the energy dissipation
in the regulating valve, so as to calculate the hydraulic loss.

The Entropy Production Rate (EPR) [15] in per unit volume of fluid could be defined
as follows:

•
S

m

D =

•
Q
T

(1)

where
.

Q represents the heat conduction of fluid per unit volume in unit time, T represents
the temperature, and

.
sm

D represents the local entropy production rate in the cavity.
In Reynolds time-mean equation, the fluid motion is divided into time-mean motion

and pulsation motion. Therefore, entropy production rate also includes time-mean en-
tropy production (TMEP) and pulsation entropy production (TPEP) in the flow process.
The entropy production rate caused by the time-average velocity (TMEPR) [15] could be
calculated by the following formula

:
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Here µ is the effective dynamic viscosity of fluid medium.
The entropy production rate caused by pulsation velocity (TPEPR) [15] could be

calculated as follows:
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(3)

Cavitation will occur in the regulating valve when a volume of liquid is subjected to a
pressure that falls below a “cavitation threshold” [23]. It is in the gas and liquid phases; the
effective dynamic viscosity of the flow could be expressed as follows:

µ = µl(1− αv) + µvαv (4)

Here µl is the viscosity of liquid, µv is the viscosity of gas, and αv is the volume fraction
of gas.

The partial derivative in the Equations (2) and (3) cannot directly calculate the entropy
generation caused by turbulent pulsation velocity numerically. Herwig [24] numerically
analyzed and calculated the dissipation rate of turbulence pulsation, and proposed a
calculation method of entropy production based on the turbulence model. The entropy
production rate caused by the pulsation velocity (TPEPR) could be calculated as follows:

•
S′′′m =

ρε

T
(5)

Here ε is the dissipation rate of turbulent kinetic energy.
By integrating the above entropy production rate (EPR), the total entropy production

(TEP) in the regulating valve can be obtained:

•
SS =

∫
V

•
S′′′S dV (6)
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•
Sm =

∫
V

•
S′′′m dV (7)

The total entropy production of direct dissipation (TMEP) and turbulent dissipation
(TPEP) is calculated as:

•
SD =

∫
V

•
S′′′S dV +

∫
V

•
S′′′m dV (8)

The entropy production rate of any particle in the flow channel and the total flow
entropy production of the whole flow channel could be obtained by analyzing the flow
field in the valve numerically. Further, the energy loss also could obtain accurately, which
could give a theoretically reference for optimization design of regulating valve.

According to reference [13], when there is cavitation flow in the regulate valve, the
cavitation flow and entropy production are close. The entropy production rate by cavitation
(EPRC) effect could be expressed as follows:

•
S′′′σ = −2

3
µ

T

[
•
m(

1
ρl
− 1

ρv
)

]2
(9)

Here
.

m is the mass transfer rate during the phase transition between liquid and gas, ρl
is the density of the liquid, and ρv is the density of the gas.

If no cavitation could be found at that working condition, the result of Equation (9) is
equal to zero. Therefore, the change of entropy generated by cavitation is a good reference
for investigating cavitation flow in the regulating valve. By integrating Equation (9), the
total entropy production by cavitation (TEPC) in the regulating valve could be obtained:

•
Sσ =

∫
V

•
S′′′σ dV (10)

3. Numerical Methods of Regulating Valve

According to the structure of the regulating valve in practical project, the simplified
structure is shown in Figure 1. As discussed in Refs. [25,26], this two-dimensional axisym-
metric model was used could save calculation time and reduce the complexity of numerical
simulation. The simplified geometric structure of the regulating valve is mainly composed
of upstream flow channel, throttling part and expansion section.
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Figure 1. The model of simulation calculation of regulating valve.

The mesh is divided into a tetrahedral mesh by ICEM software, the boundary layer on
the wall is treated. The divided grid model is shown in the Figure 2. Structural mesh is
applied to divide the geometric model of the regulating valve in this paper, including the
flow channel upstream, the throat part, the diffusion section and outlet port. Due to the
higher flow velocity and larger pressure drop, the local grid refinement is used to obtain the
flow field near the orifice in the regulating valve more accurately, and the region of interest
is subdivided into an unstructured grid. The mass flow rate at the inlet of the regulating
valve is calculated to verify the grid independence. As shown in Figure 3, when the number
of grids reaches 100,000, the mass flow rate remains stable. Therefore, the number of grids
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for the regulating valve model is 100,000, most of the near wall y+ of the channel grid is
between 30 and 150, which could meet the requirements of calculation speed, calculation
accuracy and wall function.
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Figure 3. Grid independence verification.

In the simulation, the relative movement between liquid and gas is neglected, the wall
condition is set as non-slip wall, the influence of gravity and heat transfer performance
are also ignored, and the hydraulic oil is assumed to be isothermal and incompressible. In
addition, to employ the law of mass conservation, momentum conservation and energy
conservation in the fluid, cavitation phenomenon often occur near the orifice of the regulat-
ing valve, so Schnerr-Sauer model was used for modelling and computation of unsteady
cavitation flows in the valve, which is shown as:

∂

∂t
(αvρv) +∇(αvρv

→
V) =

ρvρl
ρ

Dαv

Dt
(11)

The phase transition rate is:

R′ =
ρvρl

ρ

dαv

dt
(12)
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The volume fraction of vapor phase is:

αv =
n× ( 3

4 πR3
B)

1 + n× ( 3
4 πR3

B)
(13)

Here RB is the bubble radius:

RB = (
αv

1− αv

3
4π

1
n0

) (14)

Finally, the evaporation phase Re and the condensation phase Rc could be expressed
as follows:

Re =
ρlρv

ρm
αv(1− αv)

3
RB

(
2
3

Pv − P
ρl

)1/2
; P ≤ Pv (15)

Rc =
ρlρv

ρm
αv(1− αv)

3
RB

(
2
3

P− Pv

ρl

)1/2
; P ≥ Pv (16)

Here P is the pressure in the flow field and Pv is the saturated vapor pressure of
the fluid.

Furthermore, the RNG k-ε model in turbulent flow is used to study the flow in the
regulating valve [27,28], because the Reynolds number is much greater than the critical
Reynolds number, which are shows are follows:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(
αkµe f f

∂k
∂xj

)
+ Gk + Gb − ρε−YM + Sk (17)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

(
αεue f f

∂ε

∂xj

)
+

C1ε

k
ε(Gk + C3εGb)− C2ερ

ε2

k
− Rε + Sε (18)

Here Gk represents the generation of turbulence kinetic energy due to the mean velocity
gradients, Gb is the generation of turbulence kinetic energy due to buoyancy, ε is the fluid’s
turbulent dissipation rate. σk and σε are the inverse effective Prandtl numbers for k and ε,
respectively. C1ε, C2ε, and C3ε are constants. Sk and Sε are user-defined source terms.

4. Results and Discussion
4.1. Model Validation

When the oil flowing through the orifice, the momentum change, and the steady-state
flow force could be found. The steady-state flow force and the velocity of change is closely
related to the pressure and velocity inside the valve. The pressure distribution on the
surface of the valve could be obtained numerically and experimentally, so as to obtain
the steady-state flow force [27]. A force measurement system, which is consisted of a
displacement sensor and a micro-force sensor, could be used to measure the flow force. The
detailed experimental process have been shown in Ref [27]. Figure 4 shows the comparison
between the numerical simulation and experimental results of the steady-state flow force
under different openings, while the inlet pressure is 2.2 MPa, and the outlet pressure is
1 MPa. Figure 4 shows that the steady-state flow force increases firstly and then gradually
decreases with the increase of the opening, which is also mentioned in Ref [29]. Due to the
friction resistance, the machining error in the experiment, the influence of gravity and heat
transfer performance being ignored in the simulation, there is a small deviation between
the experimental and the simulation values. However, the overall trend of them are almost
the same, so the numerical framework in this paper could describe the cavitation flow in
the regulating valve well.
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4.2. Entropy Production in Regulating Valve

Velocity gradients and phase change are two dominate factors controlling entropy
change [13]. Figure 5 shows the distribution of TPEPR and TMEPR in the regulating valve,
and analysis have done on by using ANSYS-15.0(FLUENT), in which the inlet pressure is
3 MPa and the outlet pressure is 1 MPa. It could be found that the TPEPR mainly exist in the
orifice and the downstream channel, while the TMEPR mainly exist in the orifice. Because
the velocity of oil change drastically near the orifice, and the speed is larger. Furthermore,
the turbulence is stronger in the downstream channel, and the formation of vortex leads
to complex change in velocity, and the value of velocity is lower than it is in the orifice.
In addition, the TPEPR is large, which is the main part in the total entropy production
rate, indicating that turbulence is the main reason for energy dissipation in the regulating
valve [30].
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Figure 6 shows the distribution of TEPR in regulating valve under different opening.
When the opening increases from 40% to 70%, the distribution of TEPR near the head of
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valve core becomes smaller, while the distribution of TEPR near the valve seat gradually
moves toward downstream. Because the increasing opening so as to the increasing flow
area will slow down the flow in the orifice, and the high-speed area of the oil becomes
larger, resulting in greater entropy production rate in the flow channel.
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In order to quantitatively analyze the influence of the opening on entropy production,
TEP in the regulating valve under different opening is calculated in Figure 7. While the
opening increases from 40% to 70%, TPEP increase, and the range of turbulence vortex in
the flow channel increases, and the intensity and range of turbulence flow near the valve
seat increase, while the intensity and range of turbulence flow in the head of the valve core
decrease with the increase of the opening. Therefore, the opening of the regulating valve
increases from 40% to 70%, the TEP in the regulating valve will increase.
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4.3. Characteristics of Entropy Production Analysis in Two-Phase Cavitation Flows

Figure 8 shows EPRC and gas volume fraction under different openings. When
the opening increases from 40% to 70%, the EPRC increases firstly and then decreases.
Cavitation occurs near the head of the valve core and the downstream of the valve seat,
whose distribution is closely related to the gas phase volume fraction in the valve as shown
in Refs. [1,4], resulting in increased entropy production. The EPRC in the head of the
valve core decreases slowly with the opening increasing. The EPRC near the downstream
of the valve seat increases with the increasing opening, so the total entropy production
rate of these two places increases firstly and then decreases. The larger EPRC occurs near
the gas–liquid exchange region in the flow passage, not in the center of cavitation region.
The formation of cavitation will aggravate the generation of entropy [13]. It is consistent
with the distribution law of gas phase volume fraction, revealing the process of cavitation
occurrence, separation and collapse in the valve.
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In order to further analyze the changing of EPRC in regulating valve, the data of EPRC
and gas phase volume fraction with 0.1 mm away from the valve seat were extracted, as
shown in Figure 9. Figure 10 shows the distribution of gas phase volume fraction and
EPRC at the selected curve with different openings. With the increasing opening, the value
and scope of gas phase volume fraction are gradually increasing, which shows the length
and intensity of cavitation increases gradually so as the rising rate of gas phase volume,
this results are in accordance with the reports in Refs [1,4]. Furthermore, the distribution
of EPRC is in good agreement with the distribution of gas phase volume fraction. The
occurrence of gas phase could lead to the entropy production, the growth rates of EPRC
is larger than the growth rate of the gas phase volume fraction. Because EPRC is mainly
produced in gas–liquid exchange region, which is smaller than the whole cavitation region,
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leading to a sharp increase in EPRC, and then a decrease later. With the increasing opening,
the axial distance of EPRC in the rising stage is almost the same which is near the throttle
orifice. In addition, the decreasing range of EPRC develops gradually downstream with the
increasing cavitation range. In addition, there are some fluctuations near the downstream
of the valve wall, because the tail of the cavitation region is also in the gas–liquid exchange
region, which will produce some EPRC. However, this part is far away from the orifice, the
cavitation intensity is weak, so the increase of EPRC is small. In a word, with the increasing
opening of regulating valve, the cavitation intensity near the downstream of the valve seat
will increase so as the EPRC.
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In order to quantitatively analyze the influence of the openings on EPC, Figure 11
shows the distribution of total EPC in the valve with different openings. EPC increases
firstly and then decreases with the increasing openings. As discussed above, cavitation
in the flow passage is mainly distributed near the spool head and the downstream of the
valve seat, resulting in entropy production in both places. With the increase of the openings,
cavitation will gradually decrease in the spool head, but cavitation in the downstream
of the seat slowly rises. In addition, EPC reduced gradually near the spool head, which
increased gradually near the downstream wall. Finally, the total entropy production rise
firstly and then decreases with the increase of the openings.
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4.4. Study on Steady-State Flow Force of Regulating Valve Based on Entropy Production Analysis

The change law of entropy production caused by cavitation flow in the flow passage
of regulating valve is discussed above. The entropy production is closely related to the
velocity in the flow field, which will result in the change of the steady-state flow force.
Therefore, the relationship between the entropy production and flow force should be
discussed. Figure 12 presented the relationship among TPEP, TMEP and steady-state flow
force at different openings. It shows that the change law between entropy production
and steady-state flow force is closely related although the openings is different. With the
increasing steady-state flow force, the value of TPEP and the value of TMEP in the flow
passage of regulating valve will increase, and the increasing amplitude of TPEP and TMEP
is almost the same. The increasing steady-state flow force indicates that the momentum
transformation in the flow passage will be strengthened, the flow will be more intensely.
So, the energy loss will be larger, and the entropy production will increase.
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Figure 12. Relationship between entropy production and flow force under different openings.

Figure 13 shows the relationship between TEP and steady-state flow force in the
flow passage of the regulating valve under different openings. It shows that although the
openings of regulating valve are different, the variation laws of TEP and steady-state flow
force could be fitted as y = eax2+bx+c, and the fitting degree is as R2 > 99%, which indicates
a high fitting degree. The coefficients a, b and c of this formula are different with different
openings. That is to say, the relationship between the TEP and the steady-state flow force
could be approximated expressed by an exponential relationship. As the steady-state flow
force increases, the TEP in the flow process also increases.
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4.5. Influence of Cavitation Effect on Steady-State Flow Force

Figure 14 shows the change of steady-state flow force of the regulating valve under
different inlet pressures and the opening, while the outlet pressure is 1 MPa. It could be
seen that the openings have an obviously influence on the steady-state flow force. With the
increase of the inlet pressure, the steady-state flow force in regulating valve will gradually
increase, but the increase magnitude is different, which is the same as the experimental
results reported in Ref [31]. The red dotted line is the fitting curve of steady-state flow
force of single-phase flow without cavitation. When cavitation occurs, the rising trend of
the steady-state flow force will become smaller, that is to say, the generation of cavitation
reduces the steady-state flow force. When the opening is 40%, the increasing trend of the
steady-state flow force of single-phase flow and two-phase flow is close to linear. The
cavitation intensity is small, so the influence of cavitation on the steady-state flow force is
small. With the increase of the opening, the steady-state flow force increases slowly because
the increase of the opening leads to the cavitation strengthening so as to the decreasing
steady-state flow force. Further, when the opening reaches to 70%, the increasing trend of
the steady-state flow force decreases under cavitation condition, which is smaller than it
is at 60% opening. Because the cavitation intensity is slightly weakened than it is at 60%
opening. Therefore, the effect of cavitation on the steady-state flow force under increasing
opening increased firstly and then weakened. Cavitation reduces the steady-state flow force
which is affected by the valve core. The stronger the cavitation, the greater the pressure
fluctuation of the valve core.

The severity of cavitation has some effect on steady-state flow force [32]. There is an
obviously demarcation point between cavitation and non-cavitation in Figure 14, which
maybe used to judge whether there is cavitation or not. The inlet pressure corresponding to
the above demarcation point under different openings are calculated as shown in Table 1.
As the opening increase from 40% to 70%, the inlet pressure at the demarcation point
decreased firstly and then increased.
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Table 1. Demarcation point under different openings with or without cavitation.

Opening 40% 50% 60% 70%

Inlet pressure 1.68 MPa 1.63 MPa 1.62 MPa 1.64 MPa

Figure 15 is the gas volume fraction in the valve based on the calculated inlet pressure
in Table 1. The gas volume fraction is an important parameter to illustrate the cavitation
intensity. Although the openings increase from 40% to 70%, the gas volume fraction is
small, and the cavitation area is small. That is to say, the inlet pressure calculated according
to the change point of the steady-flow force could be used as the critical value to judge
whether cavitation occurs in the regulating valve or not.
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5. Conclusions

In this paper, the flow loss in the regulating valve is studied based on the entropy
production analysis, and the relationship between the total entropy production of the
cavitation flow in the regulating valve and the steady-state flow force is also discussed. The
main conclusions are as follows:

(1) The EPR is mainly distributed in the throat region of the regulating valve and the
downstream of the valve core. The change of the EPRC in the regulating valve reflects the
change in the fluid flow velocity. The velocity changes most dramatically and the entropy
production reaches the maximum. TPEP is the main part of the TEP of flow. When the
opening increases, the distribution area of EPR in the core head becomes smaller and moves
closer towards the core head. At the same time, the distribution of EPR near the valve seat
gradually moves downstream, and TEP increases. Furthermore, the relationship between
TEP in the cavity and the steady-state flow force could be approximated as an exponential
relationship. The steady-state flow force increases with the increasing TEP.

(2) EPRC reveals the process of cavitation generation, separation and collapse in
the valve, which could be used to explain and analyze the cavitation phenomenon. As
the opening increases from 40% to 70%, the cavitation area near the core head gradually
decreases, while it increases gradually and develops downstream near the valve seat. EPC
increases, while the total cavitation entropy production by cavitation increases firstly and
then decreases. The smallest value of EPC is 0.103 W/K at the 40% opening, while the
maximum value is 0.119 W/K at 60% opening. The area where the larger EPRC occurs
is near the gas-liquid exchange area in the flow passage, rather than the center of the
cavitation region.

(3) When the inlet pressure increases from 1 MPa to 3 MPa, the steady-state flow
force in regulating valve increase from about 0.5 N to 30 N, whose concrete numbers
is closely linked to the opening. In addition, the relationship between the TEP and the
steady-state flow force could be approximated expressed by an exponential relationship.
As the steady-state flow force increases, the TEP in the flow process also increases. In
addition, the cavitation also has an important effect on the steady-state flow force, there
is an obviously demarcation point between cavitation and non-cavitation on the curve
of steady-state flow force vs the inlet pressure. The inlet pressure corresponding to the



Energies 2022, 15, 6480 16 of 18

appearance of cavitation decrease from 1.68 MPa to 1.62 MPa, when the opening increase
from 40% to 60%, then increase to 1.64 MPa at 70% opening. This cavitation discrimination
method based on the steady-state flow force is proposed, which could be used to judge
whether there is cavitation or not.

Entropy generation theory can not only be used to analyze the overall energy loss of
each component in the regulate valve of coal liquefaction industry, but also could be used
to map exactly where the location and spatial distribution of energy loss, which can provide
information for the performance analysis of the regulate valve. It is of great significance
for the optimization of hydraulic machinery to protect the flow deterioration area, so as to
extend the service life of the coal liquefaction control valve and ensure the stable operation
of the coal liquefaction system.
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Nomenclature

•
S′′′D Local entropy yield in cavity (W/m3·K)
µ Effective dynamic viscosity of flowing medium (Pa·s)
µl Viscosity of liquid (m2/s)
µv Viscosity of gas (m2/s)
αv Gas phase volume fraction
•

S′′′S Entropy yield caused by time average velocity (W/m3·K)
•

S′′′m Entropy yield caused by pulsating velocity (W/m3·K)
•
SS Total entropy production caused by time average velocity in flow channel (W/K)
•
Sm Total entropy yield caused by pulsating velocity in flow channel (W/m3·K)
•
SD Total entropy production in flow channel (W/K)
.
S

m
σ Entropy production rate by cavitation (W/m3·K)
•
Sσ Total entropy production by cavitation (W/K)
ε turbulent dissipation rate
αl Volume fraction of fluid
ρv Gas density (kg/m3)

ρl Liquid density (kg/m3)
R′ Phase transition transmissivity
Re Evaporation phase
Rc Condensed phase
Pv Saturated vapor pressure of fluid medium (Pa)
RB Radius of cavitation (mm)
Re Reynolds number
Gk Generation term of turbulent kinetic energy k caused by average velocity gradient
Gb Generation term of turbulent kinetic energy k caused by buoyancy
YM Wave caused by diffusion in turbulence
C1ε Empirical constant
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C2ε Empirical constant
C3ε Empirical constant
Rε Additional items
Sk User defined source items
Sε User defined source items
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