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Abstract: This study proposes an optimisation approach to improve multiple-criteria aspiration-level
public transportation performance by combining public transport criteria matrix analytic hierarchy
process (PTCM-AHP) models and multi-aspiration-level goal programming. The approach uses the
PTCM-AHP to calculate the system weights. Based on the weight values, the approach combines the
multi-aspiration goal-level selection process in three different ways. The proposed approach was
used to optimise public transportation networks in Bayswater, Cockburn, and Stonnington, Australia,
to demonstrate the public transportation network performance optimisation process. By controlling
the criteria goal value interval, this new approach combines decision-making plans and strategies
to optimise various scenarios. The optimisation outcomes can be applied to provide guidelines for
improving the performance of public transportation networks.

Keywords: case selection; criterion aspiration-level; optimal solution; optimisation process; public
transport network

1. Introduction

Governments of various countries have policies to guide the development of public
transportation network performance; however, many scenarios may be far from optimal
solutions. Increasing the performance of one criterion may have an impact on the perfor-
mance of the others. A preference-based scheme was created to address multi-criteria public
transportation network performance optimisation issues that aimed to identify the best
solution by balancing multiple goals [1]. The goal programming (GP) and criteria weighting
methods are two common methods for determining the optimal solution. Through the
decision maker’s (DM’s) preference structure, these methods combine multiple criteria into
a single criterion [1,2]. However, the criteria may include more than one aspiration-level.
The current GP method is unable to solve the problem of multiple criteria aspiration levels.
To solve this problem in practice, it is critical to use a multi-aspiration-level GP method
combined with a criterion weighting method, which assigns weights to multiple criteria
and combines them.

1.1. Literature Review

In recent years, the analytic hierarchy process (AHP) has frequently been used to
calculate weights to address multiple-criteria decision-making (MCDM) problems. The
ideal solution for multi-objective problems for DMs is to set the optimal objective value for
each objective [3]. There are two popular methods for solving multi-objective problems:
GP and fuzzy GP approaches [3]. The weights for the criteria can be assigned using the
AHP, and they can then be used to optimise the scenario using the GP objective function [2].
Furthermore, the weighting approach has extensively been combined with the GP model
to improve public transportation [2,4].

Energies 2022, 15, 6479. https://doi.org/10.3390/en15176479 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15176479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2905-4363
https://orcid.org/0000-0003-3212-2080
https://doi.org/10.3390/en15176479
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15176479?type=check_update&version=2


Energies 2022, 15, 6479 2 of 16

The criteria weighting method and GP have previously been used to solve multi-
criterion problems. To solve the housing location selection problem, Ho et al. (2013)
proposed AHP and multi-choice goal programming (MCGP) models [5]. Lin et al. (2014)
combined AHP and MCGP to assist DMs in using the most appropriate online IT tools [6].
The AHP and GP models were utilised to solve problems regarding rail system project
selection in Istanbul [4,7]. Moreover, Cyril et al. (2019) developed AHP and GP models to
improve public transportation performance from the perspective of users and operators [2].

Most studies on improving public transportation performance have considered a single
aspiration level for each criterion; however, in practice, these criteria frequently involve
multiple goals and levels of aspiration. Chang (2007, 2008, 2011) proposed the MCGP
model to assist DMs to set multiple levels of aspiration or goals for each criterion [8–10].
The model solves the problem regarding to multiple aspiration levels, but the aspiration
level of the criteria may be needed to choose among different aspiration-level cases in
public transportation performance optimisation.

In the recent literature, several mathematical models have been used to optimise the
public transport performance. A public transportation timetable optimisation model has
been developed to minimise transfer waiting time [11]. By changing the bus lines offset, this
optimisation model was also applied with different criteria by many researchers [12–14].
Niu and Zhou (2013) further developed a public transport (PT) timetable optimisation
model by considering the situation of crowded station passengers boarding [15]. Guihaire
and Hao (2010) proposed an optimisation model to optimise the quantity and quality
of passenger transfer opportunities [16]. Parbo et al. (2014) utilised a bi-level timetable
optimisation model to optimise PT timetable from the user’s perspectives [17]. Heyken
Soares et al. (2019) applied genetic algorithms (GA) to scale down the network in order
to optimise PT routes [18]. The GA model has also been used to propose a zone-based
optimisation procedure for PT route optimisation [19]. Faizrahnemoon et al. (2015) de-
scribed a Markov-chain-based model to optimise the efficiency of a public transportation
network [20]. However, these PT optimisation models focused on a single aspect, such as
timetable, PT route, or efficiency.

1.2. Contribution

Several aspects of improving public transportation performance have been overlooked;
consequently, developing a comprehensive tool for optimising public transportation perfor-
mance at multiple levels of aspiration is critical. Hence, this study aims to develop a suitable
optimisation method for the performance of a variety of criteria with multiple aspiration
levels for public transportation networks. The novelty of this paper is twofold. First, this
paper develops an innovative AHP-dependent multi-aspiration-level GP approach, which
is applied to public transportation networks. Second, this paper focuses on comprehensive
public transportation performance with multiple levels of aspiration. In this study, we
consider the priority structure and specified goals using public transport criteria matrix
(PTCM)-AHP models, which were described by Lin et al. (2021) [21].

The remainder of this paper is organised as follows: in Section 2, the AHP method
is explained, followed by the mathematical formulations for the GP and MCGP models.
Section 3 proposes the multi-aspiration-level GP approach dependent on PTCM-AHP
models, followed by three examples in Section 4. Section 5 discusses the results of three
case study areas and the application of the model. Section 6 presents conclusions and future
research directions.

2. Materials and Methods
2.1. AHP Model

AHP, as an MCDM method, enables DMs to solve complex issues involving conflicting
criteria and numerous objectives [22,23]. The problem is decomposed into various levels
in the AHP model. Pairwise comparisons are used to create level objectives, and weights
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are assigned to each criterion [22]. The three principles of the AHP model are summarised
below [24].

1. Calculate the criteria priority weight for the model structure.
2. Create the comparative judgement matrix for comparing criteria and sub-criteria.
3. Generate the weight for each objective using a pairwise comparison process.

The weighting method AHP defines the priorities of the GP’s objective function
criteria [2]. The AHP algorithm’s main steps are as follows [21]:

(1) Identify the research problem and establish criteria. A model structure of the prob-
lem, comprising various criteria and sub-criteria, is constructed in a hierarchical fashion.

(2) Perform pairwise comparisons between criteria in a binary manner. The coefficient
Cig represents the importance from 1 to 9 of criteria i and g [25]. The pairwise comparison
matrix C =

(
Cig

)
is formulated.

(3) Evaluate the weights of the criteria and sub-criteria. The pairwise comparison
matrix is normalised. Matrix C is transformed into matrix D =

(
dig

)
, calculated as

dig =
cig

∑n
i=1 Cig

(1)

where n is the number of decision criteria.
The rows of the normalised matrix D will be obtained to compute the prioritisation

vector w,

w =
∑n

g=1 dig

n
(2)

(4) Determine the consistency index and ratio for all criteria and sub-criteria. Thus,
expert evaluations must be verified. The consistency index (CI) and consistency ratio (CR)
are determined for each comparison matrix C as follows:

CI =
Tmax − n

n− 1
(3)

CR =
CI
RI

(4)

(5) Let Tmax be the highest eigenvalue of the matrix. Tmax is approximated by:

Cw = Tmaxw and Tmax ≈ T =
∑n

i=1 Ti

n
. (5)

Perform the weight calculation. After the calculation of CR, the comparisons are
deemed internally coherent when CR ≤ 10%. Otherwise, the comparisons are considered
inconsistent [26].

2.2. GP Approach

GP helps DMs solve MCDM issues and find a set of satisfactory solutions [8,27].
The aim of GP is to minimise the deviation between aspiration levels and achievement
of the goal [8,27]. GP can achieve many criteria goals specified by DMs and can be
applied to multiple user-defined criteria priorities [1,2,4]. Furthermore, governments
often set a goal or target level for criteria, rather than pursuing the optimal solution. GP
enables DMs to optimise the criteria performance and aims to propose a solution that
best meets their goals [1]. Furthermore, GP can provide solutions for DMs to implement.
The main advantage of GP is that it offers DMs optimal processes and control over their
preferences [3].

GP is an optimisation process that minimises the objective function by selecting inputs
from various input values [2]. Most recent research on GP has been applied to project
selection, supplier selection, and budget scenario optimisation [3]. Few studies have been
conducted on the performance optimisation of PT. Cyril et al. (2019) proposed an AHP-GP
model to optimise PT performance related to operation and user aspects [2].
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To model PT network performance, we rate each criterion as coefficients of the objective
function [2]. Details of the objective function and constraints are presented below.

We define the following notations:

i: number of goals, i = 1, 2, . . . n,
s: number of criteria, s = 1, 2, . . . e,
Ri: ith priority,
xs: sth criteria,
bis: coefficient of the ith goal and sth criteria,
di: goal value for goal i,
pi: positive deviation,
qi: negative deviation.

The optimisation problem of the PT network performance can be formulated as follows:

min ∑n
i=1 Ri(pi + qi) (6)

subject to
∑e

s=1 bisxs−pi + qi= di, (7)

pi, qi, xs≥ 0, (8)

where Ri is the rating and value of the ith decision variable.

2.3. MCGP Approach

The MCGP approach enables DMs to specify a series of values instead of a single scalar
target level or select multiple aspiration levels for each criterion [3,8,28]. This approach is
more favourable than GP, because the DMs can choose multiple aspiration levels or goals
for each criterion [3,28].

The basic concept of MCGP is to set multiple aspiration levels for criteria, because
the criteria may have several desired target values for each goal [29]. In MCGP modelling,
these aspiration levels provide multiple choices to find a satisfactory solution set during
the optimisation process [29].

The GP optimisation approach relies on choosing a goal at a single aspiration level.
However, a goal may involve multiple choice aspiration levels [8,28]. The original GP
method cannot solve multiple choice aspiration-level issues; thus, MCGP was proposed to
solve this problem. The details of the MCGP model consists of the objective function (6)
and the constraints:

∑e
s=1 bisxs − pi + qi= ∑m

j=1 gijSij(B), (9)

Sij(B) ∈ Ri(x), pi, qi, xs ≥ 0, (10)

where gij is the jth aspiration level of the ith objective, gij−1 ≤ gij ≤ gij+1, and Sij(B)
represents a binary serial function attached to multiple aspiration levels for each objective
and is based on the restriction Ri(x) [3,8]. Sij(B) ensures that each objective selects one of
the multiple goals [3,8].

3. AHP-Dependent Multi-Aspiration-Level GP

AHP is often combined with GP models to solve performance optimisation issues. In
a real situation, the model has multiple choices for each criterion. However, the criteria
aspiration level may have different aspiration-level cases. The DM requires the model to be
able to select an aspiration level among different cases. The current MCGP model in PT
performance optimisation lacks consideration in the selection process of different aspiration
level cases. Hence, this research proposes an AHP-dependent multi-aspiration-level GP
model to address this issue. The input of the model was derived from current data collected
from relevant government websites. The details of the model are as follows.

The proposed model consists of three steps:
(1) As mentioned in Section 2.1, the weights for the model are obtained from the

PTCM-AHP model [21].
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(2) The formulated constraints consider the upper and lower bounds of the criteria by
assigning positive and negative deviations in the form of inequalities. The model considers
three cases for the aspiration level selection criterion.

(3) The model uses the selected aspiration levels as constraints to establish the objective
function and calculate the optimal solution.

The approach minimises the sum of the deviations in which the optimal values are
close to the goal value. A flowchart of the model is shown in Figure 1.
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3.1. AHP

The proposed model applies the PTCM-AHP model to determine the weights of the
criteria. The model identifies the weights by studying the local council policies of the
case study areas [21]. Based on the AHP, the PTCM-AHP model considers the basic PT
infrastructure, PT services, economic benefits, and sustainable development levels. These
criteria are further divided into 15 factors. Details of the 15 sub-criteria can be found in
Lin et al. (2021) [21]. The 15 decision variables are the PT network ratio (X1), PT coverage
ratio (X2), green PT vehicle rate (X3), PT energy intensity (X4), PT priority lane setting ratio
(X5), PT land area per capita (X6), PT on-time rate (X7), passenger freight rate (X8), coverage
rate (X9), peak hours intersection blocking rate (X10), harbour-type bus stop setting ratio
(X11), bus ownership rate (X12), PT utilisation rate (X13), PT driving accident rate (X14), and
intact car rate (X15). Based on the established AHP model, the weights for the criteria are
used in the multi-aspiration-level GP objective function. The weights for each sub-criterion
are listed in Table A1.

3.2. Criteria Aspiration-level Case Selection

Criterion case selection was based on the criterion of aspiration levels. Table A2
presents the level grades for all the sub-criteria according to Lin et al. (2021) [20]. This
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study utilises Levels 1–5 to represent Levels E–A. The aspiration level selection for the cases
is listed in Figure 2.
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Case 1:
If the actual value of the ith criterion is higher than di,max, then the actual value

becomes the ith criterion aspiration goal value.
Case 2:
If the ith criterion’s actual value is higher than di,4 but less than di,max, the ith crite-

rion’s aspiration goal value should be higher than the actual value but less than di,max.
Case 3:
If the ith criterion’s actual value belongs to levels 1, 2, 3, or 4, the aspiration level of the

ith criterion becomes the (i + 1)th goal level. After the case selection process, the formulas
for the three cases are as given in Section 3.3.

3.3. Establish Multi-Aspiration-Level GP

This model focuses on the criteria index value interval selection that enables the
government to control the optimisation process.

Let di be the ith criterion grade level, i = 1, 2 . . . 5. The new multi-aspiration-level GP
is described below.

Case 1: When the goal value is greater than di,max,

di ≥ di,max , (11)

where the aspiration level of di is the actual value of the criterion.
Case 2: When the goal value is less than di,max but higher than di,4,

di,4 ≤ di ≤ di,max , (12)

where the constraints of di are selected between the actual value of the criterion and di,max.
Case 3: When the goal value is less than di,max but the actual value is less than di,4,

di,min ≤ di ≤ di,max , (13)

where the constraints of di are selected from the next level of the criterion goal value. For
example, if the actual value of di achieves goal 1, then goal 2 should be the aspiration level
for di.

Further aspiration levels can be added by DMs to define the relationships between
each goal for multiple criteria performance optimisation problems.

4. Illustrative Examples

To explain the process and outcome of the proposed model, this study used the
PTCM-AHP model-based multi-aspiration-level GP model on three case studies. The case
studies were used to explain how the multi-aspiration-level GP model is able to optimise
PT network performance in three cities in Australia, considering basic PT infrastructure,
PT services, economic benefits, and sustainable development levels. The goal value of the
case study areas is to choose the selection process of the aspiration level for optimisation
based on the actual value.

The formulated constraints were different for each of the three case study areas. The
constraints of the objective function were based on the criteria-level grade selection (for
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details, see Table A2). Hence, this study assumed the conditions for three case studies in
which the DMs optimise the performance based on the criteria aspiration level. The details
of the actual values and goals are listed in Tables 1–3. The formulations are as follows:

Table 1. Bayswater’s actual and goal values for decision variables.

Variable Criteria Actual Value Goal Value

X1 PT network ratio 17.64 50–55

X2 PT coverage ratio 46.82 50–55

X3 Green PT vehicle rate 100 100

X4 PT energy intensity 25.45 0–25.45

X5 PT priority lane setting ratio 0 10–15

X6 PT land area per capita 20.47 20.47

X7 PT on-time rate 91.03 95–100

X8 Passenger freight rate 1.75 1.75

X9 Coverage rate 98.8 100

X10 Peak hours intersection blocking rate 21 8–11

X11 Harbour-type bus stop setting ratio 19.04 25–35

X12 Bus ownership rate 7 18–19

X13 PT utilisation rate 0.8 0.8–2

X14 PT driving accident rate 2.38 1.5–2

X15 Intact car rate 100 100

Table 2. Cockburn’s actual and goal values for decision variables.

Variable Criteria Actual Value Goal Value

X1 PT network ratio 19.21 50–55

X2 PT coverage ratio 50.42 55–100

X3 Green PT vehicle rate 100 100

X4 PT energy intensity 25.45 0–25.45

X5 PT priority lane setting ratio 0.31 10–15

X6 PT land area per capita 26.23 26.23

X7 PT on-time rate 91.03 95–100

X8 Passenger freight rate 1.75 1.75

X9 Coverage rate 98.8 100

X10 Peak hours intersection blocking rate 8.1 5–8

X11 Harbour-type bus stop setting ratio 9.2 15–25

X12 Bus ownership rate 7 18–19

X13 PT utilisation rate 0.8 0.8–2

X14 PT driving accident rate 2.38 1.5–2

X15 Intact car rate 100 100
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Table 3. Stonnington’s actual and goal values for decision variables.

Variable Criteria Actual Value Goal Value

X1 PT network ratio 60.78 60.78–70

X2 PT coverage ratio 83.72 83.72

X3 Green PT vehicle rate 100 100

X4 PT energy intensity 83.59 30–80

X5 PT priority lane setting ratio 25.38 25.38–30

X6 PT land area per capita 9.28 11–14

X7 PT on-time rate 84.68 85–95

X8 Passenger freight rate 2.33 2.33

X9 Coverage rate 101.5 150–200

X10 Peak hours intersection blocking rate 1.5 0–1.5

X11 Harbour-type bus stop setting ratio 26.71 35–100

X12 Bus ownership rate 7.36 18–19

X13 PT utilisation rate 0.78 0.78–2

X14 PT driving accident rate 4.54 2.5–3

X15 Intact car rate 100 100

Objective function for Bayswater:

min 14.3p1 + 14.3q1 + 14.3p2 + 14.3q2 + 9p3 + 9q3 + 7.9p4 + 7.9q4 + 6.5p5 + 6.5q5 + 5.5p6 + 5.5q6
+5.05p7 + 4.6p8 + 4.6q8 + 4.5p9 + 4.5q9 + 4.3p10 + 4.3q10 + 2.25p11 + 2.25q11

Constraints for Bayswater:
Constraint 1: Improve PT network ratio

X1 + p1 = 55

X1 − q1 = 50

Constraint 2: Increase PT coverage ratio

X2 + p2 = 55

X2 − q2 = 50

Constraint 3: Minimise PT energy intensity and increase green PT vehicle rate

X3 + X4 + p3 = 125.45

X3 + X4 − q3 = 100

Constraint 4: Maximise PT priority lane setting ratio

X5 + p5 = 15

X5 − q5 = 10

Constraint 5: Improve PT on-time rate
X7 + p5 = 100

X7 − q5 = 95

Constraint 6: Improve PT utilisation rate and increase PT land area per capita

X6 + X13 + p6 = 22.47

X6 + X13 − q6 = 21.27
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Constraint 7: Optimise financial resources by decreasing passenger freight rate and
increasing coverage rate

X8 + X9 + p7 = 101.75

Constraint 8: Reduce peak hours intersection blocking rate

X10 + p8 = 11

X10 − q8 = 8

Constraint 9: Increase harbour-type bus stop setting ratio

X11 + p9 = 35

X11 − q9 = 25

Constraint 10: Maximise bus ownership rate

X12 + p10 = 19

X12 − q10 = 18

Constraint 11: Maximise intact car rate and reducing PT driving accident rate

X14 + X15 + p11 = 102

X14 + X15 − q11 = 101.5

The objective function for Cockburn is the same as that of Bayswater.
Constraints for Cockburn:
Constraints 1, 3, 4, 5, 7, 10, and 11 are the same as those for Bayswater.
Constraint 2: Increase PT coverage ratio

X2 + p2 = 100

X2 − q2 = 55

Constraint 6: Improve PT utilisation rate and increase PT land area per capita

X6 + X13 + p6 = 28.23

X6 + X13 − q6 = 27.03

Constraint 8: Reduce peak hours intersection blocking rate

X10 + p8 = 8

X10 − q8 = 5

Constraint 9: Increase harbour-type bus stop setting ratio

X11 + p9 = 25

X11 − q9 = 15

Objective function for Stonnington:

min 14.3p1 + 14.3q1 + 9p2 + 9q2 + 7.9p3 + 7.9q3 + 7.8p4 + 7.8q4 + 6.5p5 + 6.5q5 + 5.05p6 + 5.05q6+
4.6p7 + 4.6q7 + 4.5p8 + 4.5q8 + 4.3p9 + 4.3q9 + 3.2p10 + 3.2q10 + 2.25p11 + 2.25q11

Constraints for Stonnington:
Constraint 1: Maximise accessibility by improving PT network and coverage ratios

X1 + X2 + p1 = 153.72

X1 + X2 − q1 = 144.5

Constraint 2: Minimise PT energy intensity and increase green PT vehicle rate

X3 + X4 + p2 = 180

X3 + X4 − q2 = 130

Constraint 3: Maximise PT priority lane setting ratio
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X5 + p3 = 30

X5 − q3 = 25.38

Constraint 4: Increasing PT land area per capita

X6 + p4 = 14

X6 − q4 = 11

Constraint 5: Improve PT on-time rate

X7 + p5 = 95

X7 − q5 = 85

Constraint 6: Optimise financial resources by decreasing passenger freight rate and
increasing coverage rate

X8 + X9 + p6 = 202.33
X8 + X9 − q6 = 152.33

Constraint 7: Reduce peak hours intersection blocking rate

X10 + p7 = 1.5

X10 − q7 = 0

Constraint 8: Increase harbour-type bus stop setting ratio

X11 + p8 = 100

X11 − q8 = 35

Constraint 9: Maximise bus ownership rate

X12 + p9 = 19

X12 − q9 = 18

Constraint 10: Improve PT utilisation rate

X13 + p10 = 2

X13 − q10 = 0.78

Constraint 11: Maximise intact car rate and reducing PT driving accident rate

X14 + X15 + p11 = 103

X14 + X15 − q11 = 102.5

The optimisation results were obtained using MATLAB to obtain the optimal solution
for the case study areas which are shown in Tables 4–6.

Table 4. Optimal solution for Bayswater.

Decision Variable Criteria Actual Value Optimal Value Increase/Decrease Percentage

X1 PT network ratio 17.64 50 183.34

X2 PT coverage ratio 46.82 50 6.79

X3 Green PT vehicle rate 100 100 0

X4 PT energy intensity 25.45 0 -

X5 PT priority lane setting ratio 0 10 -

X6 PT land area per capita 20.47 20.47 0

X7 PT on-time rate 91.03 95 4.36

X8 Passenger freight rate 1.75 1.75 0



Energies 2022, 15, 6479 11 of 16

Table 4. Cont.

Decision Variable Criteria Actual Value Optimal Value Increase/Decrease Percentage

X9 Coverage rate 98.8 100 1.21

X10
Peak hours intersection

blocking rate 21 8 −61.9

X11 Harbour-type bus stop setting ratio 19.04 25 31.3

X12 Bus ownership rate 7 18 157.14

X13 PT utilisation rate 0.8 0.8 0

X14 PT driving accident rate 2.38 1.5 −36.97

X15 Intact car rate 100 100 0

Table 5. Optimal solution for Cockburn.

Decision Variable Criteria Actual Value Optimal Value Increase/Decrease Percentage

X1 PT network ratio 19.21 50 160.28

X2 PT coverage ratio 50.42 55 9.08

X3 Green PT vehicle rate 100 100 0

X4 PT energy intensity 25.45 0 -

X5 PT priority lane setting ratio 0.31 10 3125.8

X6 PT land area per capita 26.23 26.23 0

X7 PT on-time rate 91.03 95 4.36

X8 Passenger freight rate 1.75 1.75 0

X9 Coverage rate 98.8 100 1.21

X10
Peak hours intersection

blocking rate
8.1 8 −1.23

X11 Harbour-type bus stop setting ratio 9.2 15 63.04

X12 Bus ownership rate 7 18 157.14

X13 PT utilisation rate 0.8 0.8 0

X14 PT driving accident rate 2.38 1.5 −36.97

X15 Intact car rate 100 100 0

Table 6. Optimal solution for Stonnington.

Decision Variable Criteria Actual Value Optimal Value Increase/Decrease Percentage

X1 PT network ratio 60.78 60.78 0

X2 PT coverage ratio 83.72 83.72 0

X3 Green PT vehicle rate 100 100 0

X4 PT energy intensity 83.59 30 −64.11

X5 PT priority lane setting ratio 25.38 25.38 0

X6 PT land area per capita 9.28 11 18.53

X7 PT on-time rate 84.68 85 0.37

X8 Passenger freight rate 2.33 2.33 0

X9 Coverage rate 101.5 150 47.78

X10
Peak hours intersection

blocking rate 1.5 0 -
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Table 6. Cont.

Decision Variable Criteria Actual Value Optimal Value Increase/Decrease Percentage

X11 Harbour-type bus stop setting ratio 26.71 35 31.03

X12 Bus ownership rate 7.36 18 144.56

X13 PT utilisation rate 0.78 0.78 0

X14 PT driving accident rate 4.54 2.5 −44.93

X15 Intact car rate 100 100 0

5. Discussion

The optimal solutions for the three cities are presented in Tables 4–6. These scenarios
indicate that the criteria performances significantly improved, such as the PT network ratio,
PT coverage ratio, PT energy intensity, PT priority lane setting ratio, PT on-time rate having
a higher priority than coverage rate, peak hours intersection blocking rate, harbour type
bus stop setting ratio, bus ownership rate, and PT driving accident rate.

The optimal solutions for Bayswater are listed in Table 4. At the basic PT infrastructure
level, an increase of 183.34, 6.79, and 31.3% in the PT network, PT coverage, and harbour-
type bus stop setting ratios, respectively, would improve the PT network performance for
Bayswater. Reducing the peak hours intersection blocking rate by 61.9%, decreasing the
PT driving accident rate by 36.97%, and improving the PT on-time rate by 4.36% would
improve the PT service level in Bayswater. Improving the coverage rate by 1.21% and bus
ownership rate by 157.14% would optimise Bayswater’s economic benefit level.

Table 5 shows that increasing the PT network, PT coverage, and harbour-type bus stop
setting ratios by 160.28, 9.08, and 63.04%, respectively, would improve Cockburn’s basic
PT infrastructure level. In terms of Cockburn’s PT service level, increasing the PT on-time
rate to 95%, decreasing the peak hours intersection blocking rate by 1.23%, and reducing
the PT driving accident rate to 1.5 times per million kilometres would help to achieve the
optimal PT service level scenario. Increasing the coverage rate to 100% and bus ownership
rate to eighteen cars per ten thousand people would improve Cockburn’s economic benefit
level. Both Bayswater and Cockburn’s optimal solution suggests decreasing the PT energy
intensity to 0 g standard coal per person-kilometre and improving the PT priority lane
setting ratio to 10%.

The optimal solutions for Stonnington are listed in Table 6. In terms of the PT infras-
tructure level, increasing the harbour-type bus stop setting ratio by 31.03% would improve
PT network performance. An increase in the PT on-time rate of 0.37% and a reduction of
44.93% in the PT driving accident rate would improve Stonnington’s PT service level. The
optimal solution was achieved with an intersection blocking rate of 0% during peak hours.
Increasing the coverage rate by 47.78% and bus ownership rate by 144.56% would improve
the economic benefit level. A reduction of 64.11% in PT energy intensity and an increase
of 18.53% in PT land area per capita would improve the optimal value for the sustainable
development level.

PT performance optimisation can offer an optimal solution for the government to
implement. The optimal model shows that the PTCM-AHP model-based multi-aspiration-
level GP approach enables DMs to propose an optimal solution for PT network performance
incorporating the criteria of basic PT infrastructure, PT service, economic benefit, and
sustainable development levels. DMs can consider multi-aspiration levels or interval goals
while considering relative importance criteria. Furthermore, the governments may propose
the new policy and strategy. DMs can adjust and change the criteria importance and the
selection process of the aspiration-level to optimise PT network performance. In addition,
the model can also add more constraints for the optimisation process which are based on
DMs’ requirements.
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6. Conclusions

The proposed model was formulated as a multi-aspiration-level GP model for PT
network performance optimisation. The proposed model is a further development of
the GP and MCGP models. The criteria for optimising a PT network’s performance often
contains multiple aspiration levels. Hence, this study considered optimising the PT network
performance with criteria with multiple aspiration levels. The PTCM-AHP model-based
multi-aspiration-level GP approach involves three steps. First, the DM’s criteria preferences
are implemented to express each criterion weight. Subsequently, the DM grades the criteria
performance based on the level grade for all sub-criteria and finds each criterion aspiration
level for performance optimisation. Finally, the multi-aspiration-level GP method is used
to optimise the city’s PT network performance and provide an optimal solution.

Compared to the GP and MCGP approaches, this study combined the multi-aspiration
goal-level selection process in three different situations to create a PTCM-AHP model-
based multi-aspiration-level GP approach. The three examples illustrated the PT network
performance optimisation process. This model combines the DM’s plans and strategies
for optimising the scenario by controlling the criteria goal value interval. The proposed
model can be used to provide guidelines for optimising PT network performance scenarios.
GP model can also consider and add new requirements and constraints to control the PT
network performance optimisation.

The future research work is planned as follows: (1) We will consider more suitable
criteria and sub-criteria for performance optimisation for the real requirements. (2) During
the performance optimisation process, there is uncertainty regarding the performance
optimisation in a real situation. This uncertainty will be considered for the optimisation
problem. The uncertainty management model can combine with the current model which
mitigate the influence of uncertainty.
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Appendix A

Table A1. The distribution matrix of city score [21].

Criteria Local Weight (%) Global Weight (%)

Basic PT infrastructure level: 41%

PT network ratio 35 14.3

PT coverage ratio 35 14.3

Harbour-type bus stop setting ratio 11 4.5

PT priority lane setting ratio 19 7.9

PT service level: 19%

PT on-time rate 34 6.5

Peak hours intersection blocking rate 24 4.6
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Table A1. Cont.

Criteria Local Weight (%) Global Weight (%)

Passenger freight rate 28 5.3

PT driving accident rate 14 2.6

Economic benefit level: 11%

Coverage rate 44 4.8

Bus ownership rate 39 4.3

Intact car rate 17 1.9

Sustainable development level: 29%

PT land area per capita 27 7.8

PT utilisation rate 11 3.2

Green PT vehicle rate 31 9

PT energy intensity 31 9

Appendix B

Table A2. Level grade for all sub-criteria [30–34].

Level Grade Level A Level B Level C Level D Level E

PT network ratio (unit: %)
Index value interval [60, 70] [55, 60) [50, 55) [0, 50) —

Score interval [90, 100] [75, 90) [60, 75) [0, 60) —

PT coverage ratio (unit: %)
Index value interval ≥55 [50, 55) [45, 50) [35, 45) <35

Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)

Harbour-type bus stop setting
ratio (unit: %)

Index value interval [35, 100) [25, 35) [15, 25) [0, 15) —

Score interval [90, 100] [75, 90) [60, 75) [0, 60) —

PT priority lane setting ratio
(unit: %)

Index value interval ≥ 25 [20, 25) [15, 20) [10, 15) [0, 10)

Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)

PT on-time rate (unit: %)
Index value interval [95, 100] [85, 95) [70, 85) [0, 70) —

Score interval [90, 100] [75, 90) [60, 75) [0, 60) —

Peak hours intersection
blocking rate (unit: %)

Index value interval [0, 2] (2, 5] (5, 8] (8, 11] >11

Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)

Passenger freight rate (unit: %)
Index value interval <3.5 [3.5, 4.5) [4.5, 5.5) [5.5, 6.5) ≥6.5

Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)

PT driving accident rate (unit:
times /million kilometres)

Index value interval [0, 1.5] [1.5, 2) [2, 2.5) [2.5, 3) >3

Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)

Coverage rate (unit: %)
Index value interval >150 (100, 150] = 100 [50, 100) <50

Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)

Bus ownership rate (unit:
car/10,000)

Index value interval [20, 25] [19, 20) [18, 19) [0, 18) —

Score interval [90, 100] [75, 90) [60, 75) [0, 60) —

Intact car rate (unit: %)
Index value interval ≥ 92 [88, 92) [84, 88) [80, 84) <80

Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)

PT land area per capita (unit:
m2/person)

Index value interval ≥11 [8, 11) [6, 8) [4, 6) <4

Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)
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Table A2. Cont.

Level Grade Level A Level B Level C Level D Level E

Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)
Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)
Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)
Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)
Score interval [90, 100] [75, 90) [60, 75) [0, 60) —

PT utilisation rate (unit: %)

Index value interval [0.17, 2) [0.14, 0.17) [0.11, 0.14) [0.08, 0.11) <0.08

Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)

Green PT vehicle rate (unit: %)
Index value interval ≥ 95 [95, 92) [88, 92) [85, 88) <85

Score interval [90, 100] [80, 90) [70, 80) [60, 70) [0, 60)

PT energy intensity (unit: g
standard coal/person-km)

Index value interval [0, 30) [30, 80) [80, 130) [130, 200) —

Score interval [90, 100] [75, 90) [60, 75) [0, 60) —
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7. Hamurcu, M.; Alağaş, H.M.; Eren, T. Selection of rail system projects with analytic hierarchy process and goal programming.

Sigma J. Eng. Nat. Sci. 2017, 8, 291–302. Available online: https://eds.yildiz.edu.tr/ArticleContent/Journal/sigma/Volumes/20
17/Issues/6/YTUJENS-2017-8-4.3350.pdf (accessed on 1 May 2021).

8. Chang, C.T. Multi-choice goal programming. Omega 2007, 35, 389–396. [CrossRef]
9. Chang, C.T. Revised multi-choice goal programming. Appl. Math. Model. 2008, 32, 2587–2595. [CrossRef]
10. Chang, C.T. Multi-choice goal programming with utility functions. Eur. J. Oper. Res. 2011, 215, 439–445. [CrossRef]
11. Wong, R.C.; Yuen, T.W.; Fung, K.W.; Leung, J.M. Optimizing timetable synchronization for rail mass transit. Transport. Sci. 2008,

42, 57–69. [CrossRef]
12. Cevallos, F.; Zhao, F. Minimizing transfer times in public transit network with genetic algorithm. Transp. Res. Record. 2006,

1971, 74–79. [CrossRef]
13. Hadas, Y.; Ceder, A.A. Optimal coordination of public-transit vehicles using operational tactics examined by simulation. Transport.

Res. C-Emer. 2010, 18, 879–895. [CrossRef]
14. Petersen, H.L.; Larsen, A.; Madsen, O.B.; Petersen, B.; Ropke, S. The simultaneous vehicle scheduling and passenger service

problem. Transport. Sci. 2012, 47, 603–616. [CrossRef]
15. Niu, H.; Zhou, X. Optimizing urban rail timetable under time-dependent demand and oversaturated conditions. Transport. Sci.

2013, 36, 212–230. [CrossRef]
16. Guihaire, V.; Hao, J.K. Improving timetable quality in scheduled transit networks. In Proceedings of the International Conference

on Industrial, Engineering and Other Applications of Applied Intelligent Systems 2010, Cordoba, Spain, 1–4 June 2010.
17. Parbo, J.; Nielsen, O.A.; Prato, C.G. User perspectives in public transport timetable optimisation. Transport. Res. C-Emer. 2014, 48,

269–284. [CrossRef]
18. Heyken Soares, P.; Mumford, C.L.; Amponsah, K.; Mao, Y. An adaptive scaled network for public transport route optimisation.

Public Transport. 2019, 11, 379–412. [CrossRef]
19. Heyken Soares, P. Zone-based public transport route optimisation in an urban network. Public Transport. 2021, 13, 197–231.

[CrossRef]
20. Faizrahnemoon, M.; Schlote, A.; Maggi, L.; Crisostomi, E.; Shorten, R. A big-data model for multi-modal public transportation

with application to macroscopic control and optimisation. Int. J. Control 2015, 88, 2354–2368. [CrossRef]

http://doi.org/10.1016/j.eswa.2011.09.118
http://doi.org/10.1007/s40864-019-0103-2
http://doi.org/10.1016/j.apm.2014.12.022
https://dergipark.org.tr/en/download/article-file/522658
http://doi.org/10.1080/00207721.2011.581397
http://doi.org/10.2190/EC.50.1.g
https://eds.yildiz.edu.tr/ArticleContent/Journal/sigma/Volumes/2017/Issues/6/YTUJENS-2017-8-4.3350.pdf
https://eds.yildiz.edu.tr/ArticleContent/Journal/sigma/Volumes/2017/Issues/6/YTUJENS-2017-8-4.3350.pdf
http://doi.org/10.1016/j.omega.2005.07.009
http://doi.org/10.1016/j.apm.2007.09.008
http://doi.org/10.1016/j.ejor.2011.06.041
http://doi.org/10.1287/trsc.1070.0200
http://doi.org/10.1177/0361198106197100109
http://doi.org/10.1016/j.trc.2010.04.002
http://doi.org/10.1287/trsc.1120.0429
http://doi.org/10.1016/j.trc.2013.08.016
http://doi.org/10.1016/j.trc.2014.09.005
http://doi.org/10.1007/s12469-019-00208-x
http://doi.org/10.1007/s12469-020-00242-0
http://doi.org/10.1080/00207179.2015.1043582


Energies 2022, 15, 6479 16 of 16

21. Lin, G.; Wang, S.; Lin, C.; Bu, L.; Xu, H. Evaluating performance of public transport networks by using public transport criteria
matrix analytic hierarchy process models—Case study of Stonnington, Bayswater, and Cockburn public transport network.
Sustainability 2021, 13, 6949. [CrossRef]

22. Jain, S.; Aggarwal, P.; Kumar, P.; Singhal, S.; Sharma, P. Identifying public preferences using multi-criteria decision making for
assessing the shift of urban commuters from private to public transport: A case study of Delhi. Transp. Res. F 2014, 24, 60–70.
[CrossRef]

23. Boujelbene, Y.; Derbel, A. The performance analysis of public transport operators in Tunisia using AHP method. Procedia Comput.
Sci. 2015, 73, 498–508. [CrossRef]

24. Nassereddine, M.; Eskandari, H. An integrated MCDM approach to evaluate public transportation systems in Tehran. Transp. Res.
A 2017, 106, 427–439. [CrossRef]

25. Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [CrossRef]
26. Sadeghi, M.; Ameli, A. An AHP decision making model for optimal allocation of energy subsidy among socio-economic subsectors

in Iran. Energy Policy 2012, 45, 24–32. [CrossRef]
27. Larbani, M.; Aouni, B. A new approach for generating efficient solutions within the goal programming model. J. Oper. Res. Soc.

2011, 62, 175–182. [CrossRef]
28. Ho, H.P. The supplier selection problem of a manufacturing company using the weighted multi-choice goal programming and

MINMAX multi-choice goal programming. Appl. Math. Model. 2019, 75, 819–836. [CrossRef]
29. Hocine, A.; Zhuang, Z.Y.; Kouaissah, N.; Li, D.C. Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for

supporting renewable energy site selection decisions. Eur. J. Oper. Res. 2020, 285, 642–654. [CrossRef]
30. GB50220-1995; Code for Transport Planning on Urban Road. Available online: https://wenku.baidu.com/view/fa103f6b0b4c2e3

f57276369.html (accessed on 1 May 2021).
31. Evaluation Index System of Public Transportation City Assessment. Available online: https://wenku.baidu.com/view/1015f2

8a360cba1aa811dac1.html (accessed on 1 May 2021).
32. GBT 22484-2016; Passenger Transport Services Specifications for Urban Bus/Trolleybus. Available online: https://pan.baidu.

com/s/1eSeT2N4 (accessed on 1 May 2021).
33. GB/T22484-2008; Passenger Transport Services for Bus/Trolleybus. Available online: https://wenku.baidu.com/view/9c31952

8e2bd960590c677e6.html (accessed on 1 May 2021).
34. Urban Road Traffic Management Evaluation Index System 2012 Edition. Available online: https://wenku.baidu.com/view/20e4

368f84868762caaed5a1.html (accessed on 1 May 2021).

http://doi.org/10.3390/su13126949
http://doi.org/10.1016/j.trf.2014.03.007
http://doi.org/10.1016/j.procs.2015.12.039
http://doi.org/10.1016/j.tra.2017.10.013
http://doi.org/10.1016/0022-2496(77)90033-5
http://doi.org/10.1016/j.enpol.2011.12.045
http://doi.org/10.1057/jors.2009.185
http://doi.org/10.1016/j.apm.2019.06.001
http://doi.org/10.1016/j.ejor.2020.02.009
https://wenku.baidu.com/view/fa103f6b0b4c2e3f57276369.html
https://wenku.baidu.com/view/fa103f6b0b4c2e3f57276369.html
https://wenku.baidu.com/view/1015f28a360cba1aa811dac1.html
https://wenku.baidu.com/view/1015f28a360cba1aa811dac1.html
https://pan.baidu.com/s/1eSeT2N4
https://pan.baidu.com/s/1eSeT2N4
https://wenku.baidu.com/view/9c319528e2bd960590c677e6.html
https://wenku.baidu.com/view/9c319528e2bd960590c677e6.html
https://wenku.baidu.com/view/20e4368f84868762caaed5a1.html
https://wenku.baidu.com/view/20e4368f84868762caaed5a1.html

	Introduction 
	Literature Review 
	Contribution 

	Materials and Methods 
	AHP Model 
	GP Approach 
	MCGP Approach 

	AHP-Dependent Multi-Aspiration-Level GP 
	AHP 
	Criteria Aspiration-level Case Selection 
	Establish Multi-Aspiration-Level GP 

	Illustrative Examples 
	Discussion 
	Conclusions 
	Appendix A
	Appendix B
	References

