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Abstract: Under the “carbon peaking and carbon neutrality” goal, Shanxi Province adjusts the power
supply structure and promotes the development of a high proportion of new energy, which has a
certain impact on the demand for thermal coal. Therefore, constructing a reasonable forecasting
model for thermal coal demand can play a role in stabilizing coal supply and demand. This paper
analyzes various factors related to coal demand, and uses Pearson coefficient to screen out six
variables with strong correlation. Then, based on the scenario analysis method, combined with the
“14th Five-Year Plan” of Shanxi Province, different scenarios of economic development and carbon
emission reduction development are set. Finally, a multi-scenario GA–LSSVM forecasting model of
thermal coal demand in Shanxi Province is constructed, and the future development trend of thermal
coal demand in Shanxi Province is predicted. The results show that the demand for thermal coal is
the largest in the mode of high-speed economic development and low emission reduction, and the
demand for thermal coal is the lowest in the mode of low-speed economic development and strong
emission reduction, which provides a scientific basis for the implementation of Shanxi Province’s
thermal coal supply policy.

Keywords: coal demand forecast; scenario analysis; least squares support vector machine; genetic
algorithm optimization

1. Introduction

With the proposal of the “carbon peaking and carbon neutrality” goal, the power in-
dustry has strengthened the adjustment of power supply structure, continuously increased
the installed capacity of clean energy, and controlled the production and consumption
of coal, so as to reduce carbon emissions from the source [1,2]. As a “big coal province”,
the utilization of coal has always been the top priority in Shanxi Province. According to
the 14th Five-Year Plan of Shanxi Province, in the future development of energy, Shanxi
Province should take the initiative to participate in the national maritime strategy, promote
the transformation of new energy, improve the development level of clean electricity, and
promote the high proportion of new energy and renewable energy [3,4]. However, since
thermal power is still the main source of electricity, and thermal power installed has the
characteristics of a safe and stable supply, the installed capacity of thermal power will
still exist in large quantities in the future [5]. As the main raw material of thermal power
enterprises, coal is a key factor in the supply and demand of coal and electricity. It is of
great practical value and economic significance to objectively analyze and predict the trend
and level of demand for electric coal [6,7].

At present, the main prediction methods include support vector machines, neural
networks, and genetic algorithms [8–10]. Zhao et al. [11] proposed the Quarterly Fluctuation
Index (QFI) to predict the coal price caused by market fluctuation because the fractal
model based on QFI has better prediction ability when the price fluctuates violently. In
2002, Yu and Zhu proposed an improved hybrid algorithm PSO–GA (particle swarm
optimization–genetic algorithm) for China’s energy demand forecasting. Compared with
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single optimization methods such as GA, PSO, or ant colony optimization, it has higher
accuracy and multiple linear regression [12]. In the same year, they also proposed a hybrid
coded particle swarm optimization and radial basis function (MPSO–RBF) network model
to predict China’s energy consumption by 2020 between 1980 and 2009 [13]. By using
PSO-based energy demand forecasting (PSOEDF), Uenler [14] proposed an energy demand
forecasting model with good accuracy. Kourentzes and Nikolaos [15] proposed a neural
network (NN) method to predict intermittent time series. Crompton and Wu [16] used
the Bayesian vector autoregression method to predict energy consumption in China and
discussed the potential impact. Mirjat [17] developed Pakistan‘s LEAP model framework
for 2015–2050 based on four supply-side scenarios of demand forecasting using the long-
range energy alternative planning system (LEAP).

In terms of coal demand forecasting research, Zhu [18] considered the mobile holiday
effects such as Spring Festival, Mid-Autumn Festival and Dragon Boat Festival, and con-
structed an improved X-12-ARIMA coal demand forecasting model suitable for China’s
actual situation. Yang et al. [19] used a grey prediction model to predict the demand for
electric coal in China. Muhammad Amir Raza et al. [20] established an energy demand
model for Pakistan by using remote energy alternative planning (LEAP) software and
provided suggestions for national electricity demand for Pakistan’s electricity demand
forecast before 2030 and domestic energy resources such as coal, natural gas, and solar
energy available in Pakistan’s Baluchistan. Li et al. [21] proposed a new coordinated op-
eration strategy to optimize the commitments of hydraulic, thermal, and wind turbines,
and applied the particle swarm optimization method to optimize coal costs and carbon
emissions. Zhao et al. [22] proposed an LSTM–DNN deep learning model combining long
short-term memory (LSTM) and deep neural network (DNN) to accurately predict monthly
coal price fluctuations in different horizons.

However, there are still two problems in the past coal demand forecasting research:
First, most studies directly use the coal consumption ratio and ring ratio information,
without considering the impact of economic and environmental factors; there are obvious
defects. Second, the calculation of the prediction method is complex, and the convergence
accuracy makes it difficult to meet the demand. At the same time, the development of
economic and environmental factors is no longer a single prediction of the time series,
but also needs to consider the impact of relevant policies. “Scenario analysis” proposes
reasonable assumptions on various possible schemes in the future according to the major
changes in economy, industry, and policy. In summary, this paper structure, as shown in
Figure 1, is established to solve the current problems. This paper considers the development
trend of various influencing factors such as economy and environment in different scenarios,
uses a genetic algorithm to optimize the LSSVM model, and constructs the electricity
coal demand forecasting model based on GA–LSSVM in multiple scenarios. It predicts
the development trend of electricity coal demand in Shanxi Province in the future, and
proposes relevant policy suggestions for the supply of electricity coal and the development
of electricity coal in Shanxi Province. The main flow chart of this paper is shown in Figure 1.
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port vector machine, the genetic algorithm (GA) is used to optimize the penalty factor and 
kernel parameters of the least squares support vector machine. At the same time, the sce-
nario forecasting method is used, which combines quantitative and qualitative analysis to 
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Figure 1. The structure of the paper.

2. Predictive Model Building

This paper uses an improved method of support vector machine–least squares support
vector machine (LSSVM), which can transform the quadratic programming problem of
support vector machine into a linear equation and improve the speed and accuracy of
support vector machine. In order to further improve the classification accuracy of the
support vector machine, the genetic algorithm (GA) is used to optimize the penalty factor
and kernel parameters of the least squares support vector machine. At the same time,
the scenario forecasting method is used, which combines quantitative and qualitative
analysis to improve the accuracy of forecasting. This paper proposes a multi-scenario-
based forecasting model of thermal coal demand in Shanxi Province based on GA–LSSVM,
which can better solve the forecasting problem of thermal coal demand.
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2.1. Least Squares Support Vector Machine

The improved least squares support vector machine (LSSVM) model based on support
vector machine (SVM) constructs the optimal decision surface by projecting the input vector
into a nonlinear high-dimensional space [23,24]. The inequality operation of the standard
SVM model is transformed into a linear equation system to solve the optimization problem
according to the principle of structural risk minimization, which reduces the computational
complexity of the model and improves the convergence accuracy of the algorithm [25,26].

Assuming that the total number of samples is N, and the sample set is T = {(xi, yi)}N
i=1,

the regression model of the sample is

y(x) = ωT•ϕ(x) + b (1)

where ϕ(x) is the training sample projected to the high-dimensional space, ω is the
weighted vector, and b is the bias; for LSSVM, the optimization problem becomes

min
1
2

ωTω +
1
2

γ
N

∑
i=1

ξ2
i (2)

yi = ωT ϕ(xi) + b + ξi, i = 1, 2, 3, · · · , N (3)

where γ is the penalty factor and ξi is the slack variable.
In order to solve the above problem, the Lagrangian function is established to obtain

L(ω, b, ξi, αi) =
1
2

ωTω +
1
2

γ
N

∑
i=1

ξ2
i −

N

∑
i=1

αi

[
ωT ϕ(xi) + b + ξi − yi

]
(4)

where αi is the Lagrange multiplier. Let the derivative of each variable of the function be zero:

∂L
∂ω = 0→ ω =

N
∑

i=1
αi ϕ(xi)

∂L
∂b = 0→

N
∑

i=1
αi = 0

∂L
∂ξ = 0→ αi = γξi

∂L
∂α = 0→ ωT + b + ξi − yi = 0

(5)

Eliminating ω and ξi then translates to the following problem:[
0 eT

n
en Ω + γ−1 · I

]
·
[

b
a

]
=

[
0
y

]
(6)

Among them, Ω = ϕT(xi)ϕ(xi), en = [1,1, · · · , 1]T, α = [α1, α2, · · · , αn], y = [y1, y2, · · · , yn]
T,

the linear equations are solved: y(x) =
N
∑

i=1
αiK(xi, x)+ b, where K(xi, x) is the kernel function, and

the kernel function selected in this paper exp
(
− 1

2σ2‖x− xi‖2
)

is the radial basis kernel function.

2.2. GA–LSSVM Model Construction

The main idea of a genetic algorithm (GA) is to use the solution of the problem as a
“gene” by simulating the evolution of organisms [27]. According to the development char-
acteristics of survival of the fittest, firstly the population that adapts to the environment is
selected, and then through random selection, crossover, and mutation and other operations,
a generation of populations that are more adaptable to the environment is finally generated.
The above process is repeated continuously. After the evolution of the population and the
reproduction of several generations, the population will eventually evolve into a group of
individuals with the strongest adaptability, so as to obtain the optimal solutions to these
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problems. In this paper, the advantages of the genetic algorithm can be used to find the
global optimal solution, and the parameters of the least squares support vector machine
are optimized [28,29]. The specific GA–LSSVM algorithm flowchart is shown in Figure 2.
The main process has the following six steps:

Energies 2022, 14, x  6 of 16 
 

 

Select Variable

Output Predicted Value

Set Scene Parameters

Start

GA-LSSVM Model 
Prediction

Model Suitability 
Analysis

Training Samples

GA-LSSVM 
Model Parameters

Satisfy The 
Termination 

Iteration 
Requirement

Y

N

 
Figure 2. GA–LSSVM algorithm flow chart. 

2.3. Scenario Prediction Model Based on GA–LSSVM 
The scenario analysis method can imagine or estimate the future development trend 

of the forecast object, and is a relatively intuitive qualitative forecast method [31–33]. The 
scenario analysis method considers that the future is not a single development model, but 
a retrospective analysis of historical data to formulate a series of reasonable assumptions. 
It combines quantitative and qualitative analysis to improve the accuracy of predictions 
[34,35]. Therefore, this paper adopts the method of scenario analysis to forecast the de-
mand for thermal coal in Shanxi Province. 

At the same time, the forecast of demand generally needs to consider the combined 
effect of multiple influencing factors. In order to improve the accuracy of prediction, the 
model variables need to be screened. In this paper, the Pearson correlation coefficient 
method is used to measure the degree of correlation between variables.  

The effects of random error and environmental variables are obtained, and the orig-
inal data can be adjusted to obtain new values that remove the effects of environmental 
factors and random errors with the following formula: 

( )( )

( ) ( )
1

2 2

1 1

n

i i
i

n n

i i
i i

x x y y

x x y y
η =

= =

− −
=

− × −



 
 

(8)

where x  and y  represent the average value of the n  data, and the closer the abso-
lute value of the correlation coefficient η  is to 1, the higher the degree of correlation 
between the two. 

Based on the above method introduction, this paper uses the scenario forecasting 
model based on GA–LSSVM to forecast the demand for electricity and coal in Shanxi Prov-
ince. The basic flow chart is shown in Figure 3. According to the process shown in the 
figure, the model variables must first be selected. On the one hand, the adaptability of the 
model is tested and the appropriate scenario parameters are set according to the develop-
ment trend of the variables; on the other hand, the samples are trained and the appropriate 
GA–LSSVM model parameters are input, and multiple iterations are performed until the 
requirements are met. Finally, the trained GA–LSSVM model is used to predict the output 
variables and output the predicted value. 

Figure 2. GA–LSSVM algorithm flow chart.

(1) Set the initial values for random training and the parameters of the LSSVM model.
Select training and testing samples, and set the penalty factor γ and radial basis kernel
function parameters σ2.

(2) The initial population is randomly generated, and the solution vector is genetically
encoded. Determine the population size N, crossover probability Pc, mutation proba-
bility Pm, and termination evolution criterion; randomly generate individuals n as the
initial population.

(3) Calculate individual fitness. Calculate the fitness of each individual and define the
fitness function:

min f
(

γ, σ2
)
=

1 n
∑

i=1
(xi−x̂i)

2

n + 1

 (7)

Among them, xi is the actual value of the i-th sample, and x̂i is the predicted value of
the i-th sample.

(4) Population evolution, including the selection of mothers, crossover, mutation, and
selection of progeny to generate a new generation of populations that are more
adapted to the environment.

(5) Check the termination condition. By comparing the adaptive values of each gene, the
optimal fitness is obtained, and the value of the output penalty factor γ and radial basis
kernel function parameter σ2 is the optimal solution (otherwise, proceed to step 3).

(6) Build the GA–LSSVM model [30]. Through training, the optimal parameters γ and
σ2 of LSSVM are obtained, which are brought into the LSSVM prediction model to
obtain the GA–LSSVM prediction model.

2.3. Scenario Prediction Model Based on GA–LSSVM

The scenario analysis method can imagine or estimate the future development trend
of the forecast object, and is a relatively intuitive qualitative forecast method [31–33]. The
scenario analysis method considers that the future is not a single development model,
but a retrospective analysis of historical data to formulate a series of reasonable assump-
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tions. It combines quantitative and qualitative analysis to improve the accuracy of predic-
tions [34,35]. Therefore, this paper adopts the method of scenario analysis to forecast the
demand for thermal coal in Shanxi Province.

At the same time, the forecast of demand generally needs to consider the combined
effect of multiple influencing factors. In order to improve the accuracy of prediction, the
model variables need to be screened. In this paper, the Pearson correlation coefficient
method is used to measure the degree of correlation between variables.

The effects of random error and environmental variables are obtained, and the original
data can be adjusted to obtain new values that remove the effects of environmental factors
and random errors with the following formula:

η =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 ×

√
n
∑

i=1
(yi − y)2

(8)

where x and y represent the average value of the n data, and the closer the absolute value
of the correlation coefficient η is to 1, the higher the degree of correlation between the two.

Based on the above method introduction, this paper uses the scenario forecasting
model based on GA–LSSVM to forecast the demand for electricity and coal in Shanxi
Province. The basic flow chart is shown in Figure 3. According to the process shown in
the figure, the model variables must first be selected. On the one hand, the adaptability
of the model is tested and the appropriate scenario parameters are set according to the
development trend of the variables; on the other hand, the samples are trained and the
appropriate GA–LSSVM model parameters are input, and multiple iterations are performed
until the requirements are met. Finally, the trained GA–LSSVM model is used to predict
the output variables and output the predicted value.
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3. Index and Model Analysis
3.1. Index Analysis

The demand for thermal coal is often linked to a variety of factors. From the perspec-
tive of economic supply and demand theory, the price of commodities is determined by
both supply and demand, and the demand for thermal coal will also be affected by coal
price and supply. However, at this stage, as demand factors account for the main low level
of thermal coal demand, factors other than price will have a greater impact on it. In this
section, coal consumption in electricity, heat production, and supply industries is used
as an indicator of thermal coal demand, and the indicators are selected from two aspects
of economic development and environmental protection. At the same time, the source of
these data will be explained to provide guidance for subsequent research.

3.1.1. Index Selection

The demand for electricity is often inseparable from the development of the macro
economy. In recent years, the scale of China’s economy has expanded rapidly. At the same
time, with the continuous advancement of the urbanization process, the construction and
renovation of a large number of infrastructures, the gradual large-scale accumulation of
urban population, the subsequent energy demand, transportation demand, daily necessi-
ties demand, and cultural goods demand have gradually increased. The growth of these
demands has directly driven the continuous increase in the demand for electricity. At
present, there are five main modes of electricity production in China: thermal power gen-
eration, hydropower generation, wind power generation, photovoltaic power generation,
and nuclear power generation. Although the proportion of clean energy installed capacity
has increased in recent years, the production of electricity is still dominated by thermal
power generation. Therefore, the growth of electricity demand is directly related to the
demand for thermal coal. There are many variables that can represent macroeconomic
development, such as GDP, population, urbanization ratio, electricity consumption in the
whole society, and industrial structure.

With the proposal of the “dual carbon” goal, the installed capacity of clean energy has
been continuously increased. China will intensify efforts to adjust the power structure, and
at the same time will control the production and consumption of coal to reduce carbon
emissions from the source [36,37]. However, since thermal power generation is still the main
source of electricity, and thermal power installed capacity has the characteristics of safe
and stable supply, thermal power installed capacity will still exist in large quantities in the
future. The influencing factors of thermal coal demand related to environmental protection
considered in this paper mainly include thermal power installed capacity and carbon
emissions. For the calculation method of carbon emissions, according to the emission
factor method provided by the Intergovernmental Panel on Climate Change (IPCC) in the
“2006 IPCC Guidelines for National Greenhouse Gas Inventories”, an indirect method for
measuring carbon emissions is obtained. The main formula is

C =
n

∑
i=1

ECi·MICi·CCEi·COFi·
44
12

(9)

Among them, C is the total amount of carbon emissions, and the unit is 10,000 tons;
ECi is the consumption of the i-th energy, in tons; MICi is the average low-level calorific
value of the i-th energy, in kJ/kg; CCEi is the carbon content of the i-th energy, COFi is
the carbon oxidation factor of the i-th energy, 44 and 12 are the carbon dioxide and carbon
molecular weights, respectively. The energy consumption mainly includes eight kinds of
energy, including coal, coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, and natural gas.

According to the above analysis of the influencing factors of thermal coal demand,
using the formula of Pearson’s correlation coefficient method, we used SPSS software
(IBM Corp. Released 2020. IBM SPSS Statistics for Windows, Version 27.0. Armonk, NY:
IBM Corp) to analyze various factors related to thermal coal demand. Finally, six variables
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with strong correlation were screened out, and the results are shown in Table 1 below.
It can be seen from the results that the absolute value of the correlation degree of these
six variables is close to 1, the correlation is extremely strong, and the significance of
each variable is less than 0.01, which is extremely significant. All variables are divided
into economic variables and environmental variables. Economic variables include GDP,
population, urbanization ratio, and electricity consumption in the whole society, whose
changes are closely related to the level of economic development; environmental variables
include thermal power installed capacity and carbon emissions.

Table 1. Pearson coefficient correlation analysis results.

Index

Economic Variables Environment Variable

GDP Population Urbanization
Ratio

Electricity Consumption of
the Whole

Society
Thermal Power

Installed Capacity
Carbon

Emissions

Pearson correlation 0.971 ** 0.925 ** 0.919 ** 0.939 ** 0.980 ** 0.919 **
Sig. (two-tailed) 0.000 0.000 0.000 0.000 0.000 0.000

Note: ** indicates that the correlation is significant at the 0.01 level (two-tailed).

3.1.2. Data Sources

The collected historical data on the influencing factors of thermal coal demand in Shanxi
Province from 2005 to 2019 are used as the input variables of the model, and the demand
for thermal coal is used as the output variable of the model. The thermal coal demand in
this paper refers to the annual consumption of coal in the electricity and heat production and
supply industries. All variables and data are from China Statistical Yearbook, Shanxi Statistical
Yearbook, China Electricity Statistical Yearbook, China Energy Statistical Yearbook, Provincial
Greenhouse Gas Inventory Compilation Guidelines, and China Industrial Statistical Yearbook.
For energy coefficients, refer to the appendix of China Energy Statistical Yearbook and the
data in IPCC Guidelines for National Greenhouse Gas Emissions Inventory 2006. The five
variables of GDP, population size, urbanization ratio, electricity consumption of the whole
society, and installed thermal power capacity, can be obtained directly from the above sources.
The calculation of carbon emissions is obtained according to Equation (9), and the required
relevant data can also be obtained from the above sources. If the acquired data is missing, it is
supplemented by means of mean imputation.

3.2. Predictive Model Suitability Analysis

The data from 2005 to 2014 is selected as the training sample of the model, and the
historical data from 2015 to 2019 is used as the test set of the model to test the fitness of the
model. Based on the construction of the previous GA–LSSVM model, the prediction results
are shown in Figure 4, and the model error results are shown in Table 2. According to the
error results from Figure 4 and Table 2, it can be seen that all errors of the LSSVM model
optimized by GA optimization are smaller than the results predicted by the LSSVM model,
and the average absolute percentage error is 0.87%. The predicted value is very close to the
actual value, and the error is small. At the same time, the method is simple in calculation,
high in convergence accuracy, has less subjective influence, and is more objective in the
results obtained. Therefore, the model is suitable for forecasting the future demand for
thermal coal in Shanxi Province.
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Table 2. Model error analysis results.

Evaluation Indicators LSSVM Model GA–LSSVM Model

MSE (mean squared error) 450,121.51 15,107.43
RMSE (root mean Square error) 225,060.75 7553.72

MAE (mean absolute error) 507.10 96.87
MAPE (mean absolute percentage error) 4.93% 0.87%

4. Empirical Research

In order to predict the demand for thermal coal in Shanxi Province, the first thing
to do is to sort out the changing trend of influencing factors in the future, and predict
the development trend of future thermal coal demand in Shanxi Province. Afterwards,
different scenarios should be set according to the changing trend of the influencing factors,
and finally the predicted value will be obtained by using the model constructed above to
perform scenario prediction.

4.1. Conventional Scenario Trend Extrapolation

Trend extrapolation is a method for forecasting by extrapolating the trend line of historical
time series changes. According to the development law of the forecast object, a suitable curve
is found to express its change trend, so as to predict future development situation.

Based on the analysis of historical data trends, using SPSS software(IBM Corp. Re-
leased 2020. IBM SPSS Statistics for Windows, Version 27.0. Armonk, NY, USA: IBM Corp.),
a quadratic function curve fitting was performed on each input variable. The parameter
estimation of the fitting function is shown in Table 3. It can be seen from Table 3 that the
goodness of fit of the fitting curve of each factor influencing coal demand is close to 1, and
the fitting effect is significant.
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Table 3. Parameter estimation of fitting function for influencing factors of thermal coal demand in
Shanxi Province.

Input Variable R Square Constant First-Order Coefficient Quadratic Coefficient

GDP 0.970 2857.100 1156.200 −15.022
Population 0.957 3271.200 51.139 −1.366

Urbanization ratio 0.996 0.401 0.014 −0.00005
Electricity consumption

of the whole society 0.934 916.410 101.820 −1.219

Thermal power
installed capacity 0.998 1724.600 487.510 −9.959

Carbon emissions 0.972 55,662.000 1358.300 146.450

The predicted values of the factors affecting the demand for thermal coal from 2020
to 2030 were calculated, and the predicted results are shown in Figure 5 below. As can be
seen from Figure 5, GDP, urbanization ratio, electricity consumption of the whole society,
and carbon emissions show an upward trend year by year. Population and thermal power
installed capacity showed a trend of first rising and then falling. On average, the population
experienced negative growth, while other influencing factors maintained positive growth.

4.2. Multiple Scenario Settings

According to the 14th Five-Year Plan of Shanxi Province, considering the changes in
economic development level and the development of the thermal power industry under
the “dual carbon” goal, different economic development scenarios and carbon emission
reduction scenarios are set. Economic variables set economic development scenarios, which
are divided into high economic growth mode, normal economic growth mode, and low
economic growth mode. With the proposal of the “dual carbon” goal, carbon emission
reduction is imperative in Shanxi Province. Therefore, environmental variables set carbon
emission reduction scenarios, which are divided into strong emission reduction models
and low emission reduction models.

4.2.1. Economic Variables

According to the requirements of the long-term goals, Shanxi Province should continue
to promote high-quality development and deepen the supply-side structural reform. In
the next 15 years, the total economic volume should reach the level of the middle reaches
of the country, speed up the introduction of talents, improve the problem of population
decline, improve the new urbanization strategy, and improve the quality of urbanization
development. The results of calculating its annual growth rate are shown in Table 4
below. According to the average growth rate under the conventional scenario, the average
growth rate of GDP is 2.68%, which is slightly higher than the growth rate of population,
urbanization ratio, and electricity consumption of the whole society, which are −0.13%,
1.85%, and 1.76% respectively. The basic level of GDP growth rate is about 2%, and the
basic level of growth rate of population, urbanization ratio, and electricity consumption of
the whole society is about 1%. Therefore, this paper sets the GDP, population, urbanization
ratio, and the growth rate of electricity consumption in the whole society to float by about
2%, 1%, 1%, and 1%, respectively, on the basis of the conventional scenario growth model.
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4.2.2. Environment Variables

Since coal prices fell, Shanxi Province proposed the deep integration of “coal–electricity
integration”. With the formulation of the “dual carbon” goal, the state’s policies on energy
conservation and emission reduction have been continuously introduced, and the demand
for coal for power generation has also been greatly affected. The results of calculating its
annual growth rate are shown in Table 5. According to the average growth rate of thermal
power installed capacity and carbon emission growth rate under the conventional scenario,
the values are both 1.26%. According to the impact of the growth rate change on the forecast
of thermal coal demand, the strong emission reduction mode is set as thermal power installed
capacity and the growth rate of carbon emissions is reduced by 5% and 10%, respectively,
based on the conventional development model, and the low emission reduction mode is set
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as thermal power installed capacity and carbon emissions growth rates are reduced by 3%
and 5%, respectively, based on the conventional development model.

Table 4. Economic variable growth rate of electricity and coal demand in Shanxi Province in multiple scenarios.

Year
High Economic Growth Model Normal Economic Growth Low Economic Growth

G/% P/% U/% E/% G/% P/% U/% E/% G/% P/% U/% E/%

2020 4.84 1.29 3.55 −0.26 2.84 0.29 2.55 −1.26 0.84 −0.71 1.55 −2.26
2021 5.77 1.16 3.01 3.76 3.77 0.16 2.01 2.76 1.77 −0.84 1.01 1.76
2022 5.47 1.09 2.95 3.58 3.47 0.09 1.95 2.58 1.47 −0.91 0.95 1.58
2023 5.19 1.02 2.90 3.41 3.19 0.02 1.90 2.41 1.19 −0.98 0.90 1.41
2024 4.94 0.94 2.85 3.25 2.94 −0.06 1.85 2.25 0.94 −1.06 0.85 1.25
2025 4.71 0.87 2.80 3.10 2.71 −0.13 1.80 2.10 0.71 −1.13 0.80 1.10
2026 4.49 0.80 2.75 2.96 2.49 −0.20 1.75 1.96 0.49 −1.20 0.75 0.96
2027 4.28 0.72 2.71 2.83 2.28 −0.28 1.71 1.83 0.28 −1.28 0.71 0.83
2028 4.09 0.65 2.66 2.70 2.09 −0.35 1.66 1.70 0.09 −1.35 0.66 0.70
2029 3.91 0.58 2.62 2.58 1.91 −0.42 1.62 1.58 −0.09 −1.42 0.62 0.58
2030 3.74 0.50 2.58 2.47 1.74 −0.50 1.58 1.47 −0.26 −1.50 0.58 0.47

Average Growth Rate 4.68 0.87 2.85 2.76 2.68 −0.13 1.85 1.76 0.68 −1.13 0.85 0.76

Note: G in the table stands for GDP, P in the table stands for population, U in the table stands for urbanization
ratio, and E in the table stands for electricity consumption of the whole society.

Table 5. Growth rate of environmental variables of thermal coal demand in Shanxi Province in
multiple scenarios.

Year
Normal

Development Model
Low Emission

Reduction Mode
Strong Emission
Reduction Mode

T/% C/% T/% C/% T/% C/%

2020 4.31 4.31 1.31 0.24 −0.69 −4.76
2021 2.28 2.28 −0.72 0.39 −2.72% −4.61
2022 1.95 1.95 −1.05 0.36 −3.05 −4.64
2023 1.64 1.64 −1.36 0.31 −3.36 −4.69
2024 1.34 1.34 −1.66 0.26 −3.66 −4.74
2025 1.06 1.06 −1.94 0.21 −3.94 −4.79
2026 0.78 0.78 −2.22 0.15 −4.22 −4.85
2027 0.52 0.52 −2.48 0.08 −4.48 −4.92
2028 0.25 0.25 −2.75 0.01 −4.75 −4.99
2029 −0.01 −0.01 −3.01 −0.06 −5.01 −5.06
2030 −0.27 −0.27 −3.27 −0.13 −5.27 −5.13

Average Growth Rate 1.26 1.26 −1.74 0.17 −0.69 −4.76
Note: T in the table stands for thermal power installed capacity, C in the table stands for carbon emissions.

4.3. Coal Demand Forecast

According to the forecast model of thermal coal demand constructed above and the
setting of economic variables and environmental variables in different scenarios, this paper
uses MATLAB software to screen and process the collected data of influencing factors, and
analyzes the demand for thermal coal in Shanxi Province from 2020 to 2030. The specific
results are shown in Figure 6. According to Figure 6, it can be seen that the demand for
thermal coal in Shanxi Province shows a trend of increasing first and then decreasing under
the seven modes. On the whole, under the mode of high-speed economic development
and low emission reduction, Shanxi Province has the largest demand for thermal coal,
which can reach 166.4952 million tons in 2030; under the mode of low-speed economic
development and strong emission reduction, Shanxi Province has the smallest demand
for thermal coal, which can reach 135.724 million tons in 2030. Economic development
is positively correlated with thermal coal demand, and carbon emission reduction efforts
are negatively correlated with thermal coal demand. That is, when the intensity of carbon
emission reduction is the same, the faster the economic development speed and the greater
the demand for thermal coal; when the level of economic development is the same, the
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stronger the intensity of carbon emission reduction, and the lower the demand for thermal
coal. It can be seen that the rapid economic development will increase the demand for
thermal coal, and the accelerated promotion of carbon emission reduction measures will
help reduce the demand for thermal coal. A lower level is conducive to maintaining the
balance of coal supply and demand and the realization of the “dual carbon” goal.
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5. Conclusions and Suggestions
5.1. Conclusions

This paper considers the development trend of various influencing factors, such
as economy and environment, under different scenarios, and builds a multi-scenario-
based thermal coal demand forecast model based on GA–LSSVM to predict the future
development trend of thermal coal demand in Shanxi Province. This paper draws the
following conclusions.

(1) Six factors, such as GDP, population, urbanization ratio, electricity consumption in
the whole society, thermal power installed capacity, and carbon emissions, have a
strong correlation with the demand for thermal coal, among which GDP, population,
urbanization ratio, and the electricity consumption of the whole society are economic-
related variables, and the installed thermal power capacity and carbon emissions are
environmental-related variables.

(2) After analyzing the constructed GA–LSSVM thermal coal demand prediction model,
it is found that the error of the modified model is small, and the calculation simple,
giving high convergence accuracy, less subjective impact, and objective results; the
algorithm has superiority in predicting thermal coal demand.

(3) The thermal coal demand in Shanxi Province shows a trend of increasing first and then
decreasing. Under the mode of high-speed economic development and low emission
reduction, Shanxi Province has the largest demand for thermal coal, and under the
mode of low-speed economic development and strong emission reduction, Shanxi
Province has the lowest demand for thermal coal. Economic development is positively
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correlated with the demand for thermal coal, and carbon emission reduction efforts
are negatively correlated with the demand for thermal coal. The combined effect of
restrictions on the scale of economic development and the implementation of carbon
emission reduction measures will keep the demand for thermal coal at a low level.

5.2. Suggestions

In view of the influencing factors of coal demand forecast proposed in this paper and
the construction of related models, combined with the specific situation of Shanxi Province,
this paper proposes the following policy suggestions:

(1) Coordinate economic and low-carbon development. At the same time of rapid eco-
nomic development, we must adhere to the concept of green and low-carbon develop-
ment, reasonably encourage the development of environmental protection and green
industries, optimize the industrial structure and high-polluting industrial structure,
improve the efficiency of coal use, and increase the role of low-emission industries in
the national economy proportion.

(2) Promote upgrading and transformation and accelerate the transformation of coal-fired
power. As a national energy and heavy chemical industry base, Shanxi Province has
made great contributions to the development of the country. Shanxi Province should
promote the standardization of green coal mining, and further enhance the support and
guarantee capacity of coal. At the same time, it is necessary to vigorously promote the
implementation of measures such as energy-saving and carbon reduction transformation,
flexibility transformation, and heating transformation of coal-fired power units.

(3) Optimize the power generation structure and promote the utilization of clean energy.
Under the “dual carbon goals”, Shanxi Province should adhere to the concept of
green development, optimize and adjust the energy consumption structure of power
generation, and promote the green and efficient development and utilization of non-
renewable energy. At the same time, it is necessary to flexibly use the power market
mechanism, further play the coordinating role of the carbon trading market, promote
the use of renewable and clean energy, insist on the substitution of electric energy,
and make energy consumption more diversified.
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