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Abstract: Reactive and biased human decision-making during well construction operations can
result in problems ranging from minor inefficiencies to events that can have far-reaching negative
consequences for safety, environmental compliance and cost. A system that can automatically
generate an optimal action sequence from any given state to meet an operation’s objectives is therefore
highly desirable. Moreover, an intelligent agent capable of self-learning can offset the computation
and memory costs associated with evaluating the action space, which is often vast. This paper details
the development of such action planning systems by utilizing reinforcement learning techniques.
The concept of self-play used by game AI engines (such as AlphaGo and AlphaZero in Google’s
DeepMind group) is adapted here for well construction tasks, wherein a drilling agent learns and
improves from scenario simulations performed using digital twins. The first step in building such a
system necessitates formulating the given well construction task as a Markov Decision Process (MDP).
Planning is then accomplished using Monte Carlo tree search (MCTS), a simulation-based search
technique. Simulations, based on the MCTS’s tree and rollout policies, are performed in an episodic
manner using a digital twin of the underlying task(s). The results of these episodic simulations
are then used for policy improvement. Domain-specific heuristics are included for further policy
enhancement, considered factors such as trade-offs between safety and performance, the distance
to the goal state, and the feasibility of taking specific actions from specific states. We demonstrate
our proposed action planning system for hole cleaning, a task which to date has proven difficult to
optimize and automate. Comparing the action sequences generated by our system to real field data, it
is shown that it would have resulted in significantly improved hole cleaning performance compared
to the action taken in the field, as quantified by the final state reached and the long-term reward. Such
intelligent sequential decision-making systems, which use heuristics and exploration–exploitation
trade-offs for optimum results, are novel applications in well construction and may pave the way for
the automation of tasks that until now have been exclusively controlled by humans.

Keywords: reinforcement learning; action planning; Monte Carlo tree search; digital twinning; well
construction; hole cleaning; heuristic design

1. Introduction

Well construction is the process of drilling and completing wells to extract subsurface
fluids and gases such as water, brine and hydrocarbons, access geothermal energy, and store
waste underground. Each well construction task has multiple co-occurring sub-processes
and various systems mutually interacting, making it highly complex. Furthermore, drilling
deep in the subsurface into variable geological environments adds an inherent irreducible
level of complexity to the process. The highly involved and poorly predictable nature
of well construction can result in operational inefficiencies or safety and environmental
issues, potentially leading to non-productive time (NPT) associated with events such as
lost circulation, stuck drillstring and well control incidents. Therefore, careful surveillance
of process and equipment data for performance tracking and building intelligent systems
for decision-making and action planning are needed.
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There are many algorithms and systems in the well construction domain that currently
perform process monitoring. To assist with decision-making, approaches such as case-
based reasoning [1,2], performance tracking using digital twins [3–5], knowledge graphs
and decision-trees [6,7], and type curve matching [8,9] are being utilized. Remote process
monitoring and multidisciplinary collaboration among domain experts have been enabled
by the use of real-time (RT) data streams, advanced process and system models, and
machine learning techniques [10–13]. Final decisions, however, are often still based on an
engineer’s understanding and interpretation of the data, key performance indicators, and
model outputs. This human-centered decision-making not only introduces a degree of
bias [14], but can also result in reactive, short-term decisions instead of proactive long-term
action planning.

By contrast, intelligent decision-making and action planning systems have resulted
in overall performance improvements in various other fields. For instance, areas such
as microgrid energy management [15,16], economic dispatch and large-scale power dis-
patch problems [17,18], electric vehicle systems management [19,20], and smart grid
management [21] utilize reinforcement learning (RL) methods successfully. More recently,
very high complexity adversarial board games (e.g., chess and Go), and complex RT strat-
egy games (e.g., Alphastar, Dota, and Pac Man) have been solved using a combination of
deep neural networks and tree-based search techniques [22–27].

The goal of the research presented here is to examine the applicability of these novel
planning techniques in the well construction domain, and to utilize them for the develop-
ment of intelligent decision-making systems (or decision-engines) for improved safety and
performance (Figure 1). The proposed methodology is demonstrated here by structuring
a decision-engine specifically for hole cleaning operations. Hole cleaning is the process
of removing solids (cuttings, cavings, or metal shavings) from the borehole by circulating
a drilling fluid in and out of the well. Removal of solids is critical in ensuring different
well construction operations (such as drilling, tripping, running casing and cementing)
are performed safely and efficiently. Issues such as downhole tool damage, stuck pipe
situations, damage to downhole formations, and difficulty running casing and cementing
can result from poor hole cleaning. Annually, hole cleaning issues cause several hundred
million dollars in NPT costs [28,29]. Therefore, building a decision-engine for hole cleaning
advisory and eventual automation that permits superior proactive action planning and
execution is of considerable practical importance and value.
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2. Setting Up Decision-Engines for Well Construction Operations

Planning is the process of generating an action sequence from an initial system state
to a goal state to satisfy a high-level objective function. Setting up a planning system
requires explicitly stating the problem objectives and constraints, defining the state- and
action-space, and identifying goal states [30]. The various state-action transitions can
either be fully specified in advance or be incrementally discovered (by utilizing models) as
the planning proceeds. The solution of a planning problem is a policy or a strategy that
suggests the sequence of actions for every successive decision-making step (called a decision
epoch). The following sections provide an overview of different planning algorithms
(particularly for well construction engineers unfamiliar with such algorithms, which have
not yet found widespread adoption in their industry) and discuss their applicability to well
construction operations.

2.1. Comparison of Planning Algorithms

Planning algorithms can be compared based on a multitude of factors, such as the
search-space traversal methodology, requirement of a heuristic, ability to plan in a limited
amount of time, memory requirement for storing intermediate results, computational
complexity, etc. [30]. A straightforward approach to solving planning problems, however,
is the exhaustive tree search, wherein all possible actions from all states are evaluated until
either a goal state is reached, or the available evaluation time is exhausted. Although this
method ensures finding an optimal plan, for large systems (with large state and action
spaces), the associated time complexity renders this method impractical. Some other
classifications of algorithms based on different search-space traversal methodologies are
breadth-first search (BFS), depth-first search (DFS), and best-first search (BestFS).

BFS is a first-in, first-out (FIFO) algorithm that searches equally in all directions,
i.e., all actions from a given state are evaluated first before the evaluation of the next state’s
actions can begin. The algorithm stops and outputs the shortest path as soon as a goal state
is reached [30,31]. DFS is a more aggressive strategy, wherein, from any state, actions are
chosen at random to traverse the system, until either a goal state or a dead-end state is
reached. If a dead-end state is reached, the algorithm backtracks one step, then simulates
any action not yet explored, i.e., this algorithm works in a last-in, first-out (LIFO) manner.
The priority of such algorithms is to search deeper than to expand the search-space. A
potential issue with this method is the search becoming stuck in a repetitive loop [31,32].
Neither the DFS nor the BFS utilizes an evaluation function or a heuristic to direct the search,
i.e., costs associated with all actions taken from all the states are the same. Moreover, both
methods require keeping track of the visited, unvisited, and dead-end states. Therefore,
these algorithms run into issues when dealing with large state- or action-space systems due
to high computation-time and memory requirements, with BFS more so than DFS due to
its more exhaustive nature [30,33].

The BFS algorithm can be enhanced by using some form of evaluation functions or
heuristics or both. Dijkstra’s algorithm utilizes an evaluation function to quantify the path
traversed to reach a given state after starting from the initial state. It, like the BFS, will
find an optimal path (if one exists) between the initial and the goal state, but suffers from
the same computational and memory issues associated with larger systems [34,35]. If a
heuristic is defined to quantify the approximate cost of a state relative to its position from
the goal state, this results in a greedy BestFS algorithm. The next action is chosen greedily
based on this heuristic. Although greedy BestFS is usually faster than Dijkstra’s algorithm,
a drawback of this algorithm is the lack of exploration and backtracking, i.e., once an action
is selected, it is not re-evaluated based on any new information [30,36]. This search strategy
is, therefore, not guaranteed to find an optimal path. Dijkstra’s algorithm supplemented by
the greedy BestFS heuristic results in the A* search algorithm [30,37]. A* search is a BFS
algorithm for which both an evaluation function and an admissible heuristic are defined.
A* search will find an optimal path (if one exists) faster than BFS or the Dijkstra’s algorithm,
but it is memory-intensive since it requires storing all the visited states and keeping track
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of all possible and tried actions from all possible states. Another issue with A* search is the
necessity for a well-defined admissible heuristic [38].

Iterative deepening search (IDS) is a variant of the DFS, especially useful in systems
with high branching factors. For IDS, the DFS algorithm is continually run with increasing
depth bounds until a goal state or a dead-end state is reached. During each iteration, every
state encountered in the path is expanded in a BFS manner. IDS is faster than the BFS and
is guaranteed to find an optimal path if one exists [39]. The iterative deepening A* (IDA*)
algorithm utilizes the search technique of the IDS in conjunction with a heuristic to quantify
the cost of any state relative to the goal state. IDA* is guaranteed to find the optimal solution
if the heuristic is admissible [30,31]. The main advantage of iterative search algorithms (IDA
and IDA*) is that they do not require much memory, since only the current path is stored.
Evolutionary algorithms such as the genetic algorithm evaluate and rank multiple action
sequences simultaneously using an expert-designed fitness function. The quality of the
population of these action sequences is successively improved using selection, crossover,
and mutation operations, until some stopping criterion is met. The intrinsic randomness in
crossover and mutation steps ensures a balance between exploration and exploitation of the
search space. These algorithms are the most effective if the search space is sufficiently small,
or if time is not a constraint for search. Additionally, the performance of these algorithms is
highly dependent on the design of the fitness function, and the crossover and mutation
strategies [40,41].

For systems with a vast state- and action-space, lack of an admissible heuristic or
minimal dependency on some evaluation function, memory constraints, and limited com-
putation time availability, simulation-based search (SBS) methods are the best suited. SBS,
a decision-time planning algorithm, is a type of model-based RL method suited for online
action planning, starting from a given state [41]. Here, a goal-directed agent interacts (virtu-
ally) with an uncertain environment (models representing the underlying processes) based
on specific policies or action plans which evolve with time. These policies are designed to
balance exploration and exploitation of the search space, and every state action transition
has an associated reward. These algorithms build an ‘asymmetric’ search tree starting from
an initial or root node using a sequential BestFS strategy, as shown in Figure 2. Multiple
episodes of experience (starting from the root or the current state, st) are simulated until
either the goal state or a fixed depth bound is reached. After every episode, one or more
nodes (representing a state-action transition) are added to the tree, and the values of the
already present nodes are updated. SBS algorithms do not require a heuristic (i.e., they
are ‘aheuristic’); however, a well-defined heuristic can considerably improve the conver-
gence time. Another useful feature of these algorithms is their ‘anytime’ property, i.e., the
algorithm can be stopped at any time to return the best plan thus far [42].
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Essentially, the anytime, asymmetric, and aheuristic nature of the SBS algorithms
makes them a preferred candidate for large systems with memory and computational
constraints, as is the case in well construction.

2.2. Utilizing SBS for Well Construction Action Planning

Well construction processes are non-holonomic since the wellbore condition at any
time (state) is a function of the well’s operational past, i.e., all previous wellbore conditions
(past states) and previous operations (actions) [43]. The states themselves, depending on the
process, can be represented by combinations of parameters such as equivalent circulation
density (ECD), cuttings bed height, cuttings concentration in the flow, friction factor,
and drilling dysfunction indicators. To adequately represent a process and distinguish
different states, each of these parameters can take on many different values. These unique
combinations of values for the many state parameters can result in a vast state-space.
Similarly, various combinations of values for the many action control variables result in a
vast action-space. Some action variables for drilling operations include drillstring rotation
speed (RPM), weight on bit (WOB), flowrate, tripping speeds, mud properties (density
and rheology), etc. [44]. Furthermore, the online or near real-time planning requirements
impose constraints on computation time.

Decision-time algorithms that can plan in limited time by considering the search-space
in the vicinity of the current state are therefore needed to address these requirements. SBS
algorithms, such as flat Monte Carlo (MC) and Monte Carlo tree search (MCTS), have
been successfully used for planning in systems with large state- and action-space (e.g.,
game AI engines for chess and Go, as discussed). The game AI engines utilize the MCTS
in conjunction with deep neural networks (for policy and value evaluations) to identify,
shortlist and sequentially simulate legal actions from a given position (state) for both
players. Multiple episodes of such self-play are used to improve the policy incrementally
and finally select the most promising line of play (an optimal action sequence). Likewise, the
utilization of such SBS techniques for action planning during the various well construction
operations can result in improved efficiency and operational performance.

2.2.1. Monte Carlo Tree Search (MCTS) Algorithm

The MCTS is an SBS method that combines MC search with an incremental tree
structure. Successive MC simulations (by using a forward model of the process) are
utilized for iteratively expanding the search tree and evaluating the various nodes in
the tree structure. A node represents a state and contains information about its parent
node, possible next actions, the number of current implementations of each action, and the
average value associated with each action implementation thus far. Instead of building the
entire tree, a few promising lines of play are developed further, resulting in asymmetric
tree growth. The selective growth of the search tree is brought about by using two distinct
action selection policies: the tree policy and the rollout policy [45,46].

Tree policies can be either greedy (i.e., focusing on exploiting what is already known),
or try to balance exploring new or potentially promising paths of the search space with
greedy exploitation. This balance is commonly referred to as the exploration-exploitation
trade-off. One such policy can be devised by treating every state within the tree as a
multi-armed bandit (MAB) problem where the Upper confidence bound (UCB1) algorithm
is utilized for action selection within the tree structure [47]. The resulting algorithm is
referred to as Upper confidence bound for trees (UCT). The UCT guarantees convergence to
an optimal policy (given enough time) since the exploration factor (Cexp) not only ensures

exploration of unvisited parts of the search space, but the exploration term (
√

2· ln N(s)
N(s,a) )

also gets less exploratory with increasing number of visits [48]. Equation (1) represents the
basic UCT policy, where N(s) is the total number of visits to the state s, N(s, a) represents
the number of times action a has been taken from state s. Q(s, a) is the exploitation
term representing the average value associated with implementing action a from state s.
QUCT(s, a) is the upper confidence bound or the urgency term, and the next action within
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the search tree is selected based on maximizing this term over the action space As from the
state s (Equation (2)). The rollout policy, by default, is a uniform-random policy.

QUCT(s, a) = Q(s, a) + Cexp.

√
2· ln N(s)

N(s, a)
(1)

an+1 = maxai∈As(QUCT(s, ai)) (2)

Primarily, MC control (a model-free RL technique) is applied to simulated episodes
of experiences (model-based RL) from a root node, to grow the search tree iteratively and
improve the action plan by backpropagating feedback. A single MCTS iteration consists of
the following four phases, as detailed in Figure 3 [47]:

• Selection from nodes already in the search tree using the tree policy;
• Expansion of the tree at the leaf node by adding one (or more) node(s);
• Simulation or rollout of actions, using the rollout policy, until the terminal condition is

met (either reaching a terminal state or the end of the planning time horizon, T);
• Backpropagation or backing the rewards up the expanded tree to update the values of

different state-action pairs (Q(s, a)) encountered during the episode.
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As the number of simulations increases over time, the tree expands, and any inherent
bias is removed. Every MCTS episode commences from the root node (from which an
action plan or action sequence needs to be determined), and traverses the tree based on the
most recently acquired knowledge (which is incorporated in the Q values). Thus, MCTS is
fundamentally a generalized policy iteration (GPI) algorithm, where the policy or action
plan is iteratively evaluated and improved [41,49]. Even with naïve or vanilla policies (such
as the standard UCT and uniform random), the MCTS works well and starts to move the
results towards optimality.

Although the vanilla MCTS blends the generality of random sampling with the exact-
ness of tree search, its convergence rate can be relatively low. Therefore, in practice, the
two MCTS policies have been enhanced by incorporating prior-knowledge or handcrafted
strategies. This has resulted in different methods, such as progressive widening, progres-
sive bias, using prior-knowledge, and Rapid Action Value Estimation (RAVE) [47,50–52].
All these strategies require evaluation of a heuristic function, which can either be learned
(using deep neural networks) or designed using domain-knowledge or can be a combina-
tion of both. The heuristic function devised for most other applications depends on factors
such as the proximity of the state to the goal state, values associated with patterns, previous



Energies 2022, 15, 5749 7 of 33

action values, how dangerous or safe is the state as compared to the adversary’s positions,
etc. [27,50,51,53].

2.2.2. Structuring Well Construction Operations as Sequential Decision-Making Systems

The goal of well construction is to drill and complete a well safely, quickly, efficiently,
and economically in line with a drilling program. As previously stated, accomplishing
these objectives requires efficient planning and informed decision-making at each step
of every well construction process. Additionally, due to the non-holonomic property of
well construction operations, any action implemented at the current time will not only
affect the immediate system state but also influence the long-term evolution of the system.
This necessitates the development of intelligent decision-making systems, the foundation
of which is a Markov Decision Process (MDP) framework. An MDP is composed of the
tuple ({S, A, P, R}) and a policy (π) that address the following elements of finite-horizon
long-term sequential decision-making [30,54]:

• Identification of appropriate parameters to quantify the state (st) of the system, and
defining the desired or goal states (sgoal) based on the operation’s objective;

• Identification of relevant control variables or actions (at) that can affect the system state;
• Building the state-space (S) and the action-space (A) such that st ∈ S and at ∈ A for

all st and at;
• Incorporating problem-specific heuristics (πheuristic) to identify legitimate and promis-

ing actions from every state;
• Building models (digital twins) of the underlying processes to simulate the state

transitions (Pa
ss′ ) brought about by different actions;

• Defining a method to quantify the various state action transitions, for instance, by
using reward functions (R) to calculate long-term value functions (Q);

• Selection of a suitable action-planning technique to formulate a plan (π—the suggested
sequence of actions for successive decision epochs).

For a process to be Markovian, it must satisfy the Markovian property, i.e., any tran-
sition from a given state depends only on the current state and the immediate action. In
other words, the current state completely summarizes the system’s operational past. As
previously discussed, this is true of well construction operations; therefore, the Markovian
property assumption is valid. The MCTS algorithm is particularly well-suited for well
construction action planning because of its ability to handle vast search-spaces efficiently.
The UCT policy assists with asymmetric tree growth along promising paths while bal-
ancing exploration and exploitation of the search space. Although MCTS is inherently
aheuristic, it still permits the use of domain-knowledge-derived heuristics for speeding
up the search. Moreover, the GPI property of MCTS ensures that over time better plans
(action sequences) are found. Figure 4 shows the proposed structure for well construction
decision-making systems.
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3. Design of a Planning System for Hole Cleaning Action Planning using MCTS

The objective of hole cleaning operations is to manage:

• Height of the cuttings bed (that settles on the low side of the borehole) at low enough
values to prevent issues during any subsequent stage of well construction (Figure 5a);

• Downhole ECD values to remain within a given drilling margin (Figure 5b).

Energies 2022, 15, x FOR PEER REVIEW 10 of 36 
 

 

3. Design of a Planning System for Hole Cleaning Action Planning using MCTS 

The objective of hole cleaning operations is to manage: 

• Height of the cuttings bed (that settles on the low side of the borehole) at low enough 

values to prevent issues during any subsequent stage of well construction (Figure 5a); 

• Downhole ECD values to remain within a given drilling margin (Figure 5b). 

ECD at any depth is the gradient of the total pressure drop at that depth, and is calculated 

by Equation (3). The pressure drop is the sum of the hydrostatic pressure exerted by the drill-

ing mud (which is a function of the true vertical depth (TVD) of the well), and the total circu-

lating frictional pressure drop in the annulus between the drillstring and the wellbore (which 

is a function of the measured depth (MD) along the annular space) [44]: 

ECD =  
Phydrostatic_DTVD + Pfrictional_pressure_loss_DMD

DTVD. g
 (3) 

The stability limit (SL) and the fracture gradient (FG) form the lower and the upper 

boundaries of the drilling margin. Exceeding the FG can result in fracturing the formation, 

which can lead to loss of the drilling mud into the formation, referred to as lost circulation 

events. SL is the higher value between either the pore pressure (PP) or the mud pressure re-

quired for wellbore stability. PP is the pressure exerted by the fluids (hydrocarbons or brine) 

in the pore spaces of formation rocks. Wellbore instability can occur when the ECD or hydro-

static mud pressure falls below the SL, and a kick, i.e., an unwanted influx of formation flu-

ids/gases into the borehole [55] can happen if the ECD or hydrostatic mud pressure falls below 

the PP. 

 
 

(a) (b) 

Figure 5. (a) Cuttings bed height in different inclination intervals for the well (b) Drilling margin. 

3.1. Setting Up the MDP 

A directional well can be analyzed by dividing it into three distinct sections based on the 

inclination angles: near-vertical section, build or curve section, and horizontal section. The 

segment of the well with inclination angles between 0 and 30 degrees is the near-vertical sec-

tion, while regions of the well with inclination angles greater than 60 degrees constitute the 

near-lateral horizontal section. The intermediate inclination angle segments comprise the 

build or the curve section of a well. This method for discretizing the state-space is proposed 

Figure 5. (a) Cuttings bed height in different inclination intervals for the well (b) Drilling margin.

ECD at any depth is the gradient of the total pressure drop at that depth, and is
calculated by Equation (3). The pressure drop is the sum of the hydrostatic pressure exerted
by the drilling mud (which is a function of the true vertical depth (TVD) of the well), and
the total circulating frictional pressure drop in the annulus between the drillstring and the
wellbore (which is a function of the measured depth (MD) along the annular space) [44]:

ECD =
Phydrostatic_DTVD + Pfrictional_pressure_loss_DMD

DTVD. g
(3)

The stability limit (SL) and the fracture gradient (FG) form the lower and the upper
boundaries of the drilling margin. Exceeding the FG can result in fracturing the formation,
which can lead to loss of the drilling mud into the formation, referred to as lost circulation
events. SL is the higher value between either the pore pressure (PP) or the mud pressure
required for wellbore stability. PP is the pressure exerted by the fluids (hydrocarbons or
brine) in the pore spaces of formation rocks. Wellbore instability can occur when the ECD
or hydrostatic mud pressure falls below the SL, and a kick, i.e., an unwanted influx of
formation fluids/gases into the borehole [55] can happen if the ECD or hydrostatic mud
pressure falls below the PP.

3.1. Setting Up the MDP

A directional well can be analyzed by dividing it into three distinct sections based
on the inclination angles: near-vertical section, build or curve section, and horizontal
section. The segment of the well with inclination angles between 0 and 30 degrees is the
near-vertical section, while regions of the well with inclination angles greater than 60
degrees constitute the near-lateral horizontal section. The intermediate inclination angle
segments comprise the build or the curve section of a well. This method for discretizing the
state-space is proposed since the state variables’ response to different actions depends to a
high degree on the inclination of the well segment. Likewise, for the hole cleaning system,
the cuttings transport mechanisms, and therefore the associated hole cleaning requirements,
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are different for the three sections. The cuttings are suspended and carried upwards by
overcoming the particle slip velocity in the near-vertical section. For the horizontal section,
above the angle of repose for the cuttings, a stable cuttings bed forms on the low-side of the
borehole. The main requirement is to move this bed up and out of the hole continuously.
In the curve section, an unstable cuttings bed forms below the angle of repose, which can
avalanche back down the annulus and pack-off around the bottom hole assembly (BHA),
causing stuck pipe incidents. The hole cleaning design for this section, therefore, revolves
around preventing this cuttings avalanche [56,57].

3.1.1. State-Space and the Goal State

The following parameters are required for quantifying the borehole condition from a
hole cleaning standpoint [58,59]:

• Height of the cuttings bed in the curve and the lateral sections of the well;
• ECD along the length of the well.

The state of the system, at any decision epoch, is represented by functional values of
these parameters over the inclination intervals {[0, 30), [30, 45), [45, 60), [60, 75), [75+)},
as shown in Figure 6, and represented by Equation (4). The functional values for the cuttings
bed height (Hinc.) and the ECD (ECDinc.) parameters are whole numbers in ranges [0, 4] and
[−3, 3], respectively. Conversion to functional values helps normalize the absolute values
to specific operational thresholds, and assists in reward shaping, which is discussed in later
sections. Since the cuttings bed cannot exist in the near-vertical section (inclination interval
[0, 30)), H0−30 is not included in the definition of the state.

s =



H30−45
H45−60
H60−75
H75+

ECD0−30
ECD30−45
ECD45−60
ECD60−75
ECD75+


(4)

Defining goal states (or desired states) is necessary to direct a decision-making agent’s
search of its state and action-space. For the hole cleaning system, the functional values de-
fined for all state components are such that 0 represents the goal state for each. The method
for converting the absolute parameter values to their functional values is summarized
in Figure 7.

Equation (5) represents the goal state for this system.

sgoal =



0
0
0
0
0
0
0
0
0


(5)
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3.1.2. Action-Space

Hole cleaning and ECD management are influenced, to varying degrees, by multiple
factors, some of which can be actively controlled in real-time in the field. Factors such as
drilling mud properties (particularly density and rheology), drilling parameters (such as
drillstring RPM and flowrate), and rate of cuttings generation (which is a function of ROP)
significantly influence hole cleaning performance, and can be actively controlled in the
field [60,61]. For this research, we assume Bingham Plastic rheological behavior for the
drilling mud, in which case its rheology can be characterized by a plastic viscosity (PV)
and yield point (YP) [44]. The action set, as shown in Equation (6), is a combination of
discrete values of these control variables. Each control variable can take on a finite number
of values between some minimum and maximum thresholds that are determined by safety
constraints, operational economics, and equipment and process limitations. For instance, if
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the flowrate has ten values in the [0, 1800] interval, its equally spaced values, in gallons per
minute (GPM), are {0, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800}.

at =



Flowrate
ROP
RPM

Mud density
Mud PV
Mud YP


(6)

3.1.3. Digital Twin

A digital twin of the hole cleaning operations was built by integrating multiple data
streams with analytical implementations of the cuttings transport, hydraulics, and rig-state
detection models [62]. The cuttings transport and hydraulics models estimate the height of
the cuttings bed and the ECD along the well, respectively. The rig-state detection engine
outputs the current operational state (such as rotary or slide drilling, tripping in or out the
borehole, etc.) [63]. The purpose of this twin is twofold: first, for performance tracking
by simulating different hole cleaning actions, and second, as a forward simulation model
for assisting with action planning. Figure 8 illustrates the application of the twin as a
forward-simulation model, where an action at transitions the system state from st, to st+1,
at decision epoch t. The digital twin was designed to plan either every 5-min interval into
the future, or whenever there is a change in the well operations.
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3.1.4. Reward Function

A reward function that outputs a normalized feedback (in the [0, 1] interval) for every
state-action transition is designed by considering the following:

• the reward set associated with state transition (Rs);
• the penalty set associated with action transition (Rap);
• the reward set associated with action values (Rar).

The three reward sets are shown by Equations (7)–(9).

RS = {RH30−45, RH45−60, RH60−75, RH75+, RECD0−30, RECD30−45, RECD45−60, RECD60−75, RECD75+} (7)

Rap =
{

R f lowrate , RROP, RRPM, Rdensity, RPV , RYP

}
(8)
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Rar =
{

Ra_ f lowrate, Ra_ROP, Ra_RPM, Ra_density, Ra_PV , Ra_YP

}
(9)

Each component of every reward set is assigned different relative weights, which are
then combined to give a single number net reward (normalized in the [0, 1] range) for
each: Rs_norm, Rar_norm and Rap_norm. Finally, these normalized rewards are combined in
a weighted fashion, as shown by Equation (10). Rnet is the final reward output for every
state-action transition. This definition of the reward function ensures immediate feedback
after every action, instead of the agent having to wait for a few decision epochs (as is the
case for sparse reward functions).

Rnet =
Ws_normRs_norm + Wap_normRap_norm + War_normRar_norm

Ws_norm + Wap_norm + Was_norm
(10)

Another advantage of this reward structure is that assigning different weights to
the various reward set components provides the ability to prioritize different objectives.
Prioritizing objectives, for example, would be beneficial while drilling wells that have a
high probability of well control issues. In such wells, maintaining ECD within the drilling
margin is more important than completely removing the cuttings bed. Similarly, there
can be wells where reaching the desired state fast has a higher priority than reducing the
penalty associated with taking more aggressive actions. These objectives can be managed
by assigning different relative weights to the individual state or action reward components.

3.2. MCTS Setup for Hole Cleaning

Action planning with MCTS requires solving a sub-MDP starting from the current
system state (root-node) in a finite amount of time. The hole cleaning digital twin is
utilized as the forward-simulation model to simulate the results of different actions on the
wellbore condition, and the feedback obtained using the reward function is accumulated
and backpropagated. Vanilla MCTS, however, has some limitations:

• The agent is rewarded only when a terminal or a goal state is reached, i.e., sparse rewarding;
• From any state within the tree, all actions in its action-space (As) are evaluated by the

UCT policy regardless of their practicability for the operation;
• The rollout policy is random uniform, i.e., all actions (irrespective of their feasibility)

have an equal probability of being selected.

These limitations result in the requirement to conduct more simulations to expand
the search tree to the extent that it can be meaningfully used for trajectory evaluation,
thereby slowing down the search. To address these issues this research makes the following
changes to the vanilla MCTS:

• Definition of a non-sparse reward function, such that the reward for every state-action
transition during the rollout step is utilized for updating all tree nodes’ Q values. This
is addressed by the reward function shaping strategy, which was discussed in the
previous section;

• Using a heuristic function to improve the tree policy;
• Using a heuristic function to reduce the randomness in the rollout policy.

3.2.1. Heuristic Function Development

A domain-knowledge based heuristic πheuristic is carefully crafted by balancing the
following criteria:

• Safety and performance metric (Asp), to prevent well control issues (such as kicks
and lost circulation events) from occurring, as well as to ensure efficient cuttings bed
removal and ROP maximization for optimal drilling performance;

• Performance metric, to ensure efficient cuttings bed removal and ROP maximization
for optimal drilling performance;

• Sequential metric (Asq), to ensure smoother or sequential changes in values of action
control variables;
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• Feasibility constraints (Afe), to suggest realistic changes in values of the action control variables;
• Proximity metric (Apx), to prioritize actions based on Euclidean distance to the goal state.

Balancing safety and performance is accomplished by incorporating guidelines for
well control, hole cleaning, and drilling optimization. Figure 9 is a simplistic representation
of some such rules as a decision-tree. The result is a set of feasible actions Asp satisfying
the safety and performance requirements.
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Similarly, to satisfy the sequential metric and the feasibility constraints, action sets
Asq and A f e are evaluated, respectively. Figure 10 is a simple representation for estimating
Asq for a system with an action set containing three control variables (RPM, flowrate,
and mud density). Asq consists of actions in the vicinity of the most recent action. The
reasoning behind such selection is to dissuade sudden changes in control variables, thereby
constraining the rate of change of control variable values to safe limits. Changing mud
properties (both density and rheology) is a time-consuming process; it cannot be performed
in near real-time during conventional drilling or circulation operations (note that the
effective density can be changed quickly in managed pressure drilling operations, where
circulation takes place in a closed system where hydrostatic pressure can be quickly raised
using a choke system). However, while planning for the circulation operation, adjusting
mud properties is a crucial element of efficient hole cleaning. The purpose of defining A f e
is to incorporate such information.

To calculate the proximity metric, first, the normalized Euclidean distance for the
current state (from sgoal), dnorm−euc, is computed using Equation (11). si is the ith element of
the state vector s, and si_max is the maximum magnitude for the ith state vector component.
The dnorm−euc is then compared with the radius of a ‘greed sphere’. This greed sphere is
defined based on a normalized Euclidean distance of 0.5 from the goal state, and it is an
indication of whether the states are far away from the goal state.

dnorm−euc =

√
∑N

i=i s2
i√

∑N
i=i s2

i_max

(11)
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Figure 11 shows an example of this by considering a three-parameter system state
(Hi, Hj and ECDi). The near-goal states (s′′goal) represent the states for which the magnitudes
of all state vector components are either 0 or 1.
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The action selection strategy is given by Equation (12). In case the current state is at or
near the goal state, the same action as the most recent action (a−1) is selected. However, if
the current state is further out than the greed sphere, more aggressive actions are included
in the action set Apx. Aggressive actions represent greater magnitude changes in values of
action control variables relative to the most recent action.

Apx =


a−1 , dnorm−euc ≤ s′′goal
areg , s′′goal < dnorm−euc < rgreed

aagg , dnorm−euc ≥ rgreed

(12)

Finally, the different action sets are combined, as shown in Equation (13), to output
heuristic values for any action a in the action space As.

πheuristic_a=

{
1 , i f a ∈ Asp ∩ Asq ∩ A f e ∩ Apx
0 , otherwise

(13)
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Thus, πheuristic assigns a probability of either 0 or 1 to all the available actions in the
action-space for a given state.

3.2.2. MCTS Structure

For finite-horizon action planning (T decision epochs into the future) in a limited
amount of time tmax, the system starting in state s0 proceeds according to the algorithm
shown in Figure 12a. The root node node0 corresponds to the starting state s0, nodelea f is
the leaf node reached at the end of the selection phase in a given episode, and nodeexp is
the randomly expanded node from the leaf node. The rollout phase then proceeds to plan
until T epochs are reached (with root node as epoch 0), where nodeT is the final state (may
or may not be the goal state), and GT is the net discounted return. Equation (14) shows the
calculation for GT , where γ(≤ 1) is the discount factor, rk is the reward associated with the
kth state-action transition, and |exp| is the level for nodeexp in the tree. Finally, the backup
function updates the Q value associated with all nodes from the nodeexp until node0 by
averaging this return value.

GT =
T

∑
k=|exp|

rk.γk−1 (14)
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As previously discussed, MCTS builds an asymmetric search tree in the allocated time
(tmax), after which an action sequence is given as output, based on the method shown in
Figure 12b. The ‘best child’ from any node is its child-node corresponding to the action
with the highest average Q value. Each node in the search tree contains the following
information and can be represented by Equation (15):

• The current system state (st);
• The most recent action (at−1);
• The action space of the node (Ast );
• The total number of visits to the node so far (Nst );
• All implemented actions and the resulting transitions, i.e., all child nodes ({ai:nodei});
• The total value associated with all iterations passing through the current state (∑children i

Q(st, ai));
• The parent node (nodet−1);
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nodet =



st
at−1
Ast

Nst

Children : {ai : nodei}
∑

children i
Q(st, ai)

nodet−1


(15)

The average value (Q(st, at)) associated with a state-action transition is calculated as
the mean state-action value over all of its subsequent state’s (st+1) children (aj).

Q(st, at) =
∑children j Q

(
st+1, aj

)
N(st, at)

(16)

The tree policy is modified by including the πheuristic in the exploration term of the
UCT formula [23], as shown by:

πtree = argmaxa∈As

[
Q(st, a) + πheuristic_a.Cexp.

√
2· lnNst

N(st ,a)

]
(17)

Since the value of the exploitation term (Q(st, a)) is in the [0, 1] range, Cexp is key
in determining the number of simulations that would be required to make the values of

the exploration (Cexp.
√

2· lnNst
N(st ,a)

) and the exploitation terms comparable. Figure 13 shows

the plots for exploration terms calculated for different Cexp values as a function of the
number of child node visits, given a total of 100 visits to the parent node (Nst ). For the
exploitation-heavy cases with Cexp values 0.25 and 0.5, the values of the two terms become
comparable almost immediately, i.e., there is minimal exploration. On the other hand, for
the exploration-heavy cases with Cexp values of 2 and 4, it takes a significant number of
simulations to start exploiting its knowledge of the system. For the system developed in
this research, a Cexp value of 1 is thus selected.
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During the rollout phase from any node, a uniform random selection policy is followed
on a reduced action space (which is constructed based on Equation (18)).

Arollout = ∪
a∈As

πheuristic_a.a (18)

4. Application of the System

The developed action planning system for hole cleaning was evaluated by performing
post-mortem analysis on real-world oil well cases that exhibited hole cleaning issues. The
analyses were performed by suggesting action sequences from some critical points during
well construction. The final states associated with these plans were then compared with
the actual well performance. A detailed investigation for one such well that exhibited
issues due to insufficient hole cleaning during multiple well construction processes is
presented here.

The dataset for the well included information such as:

• well trajectory, represented by directional surveys (inclination and azimuth versus the
hole depth);

• well profile, represented by the BHA, casing and bit details;
• one-second surface sensor data, for directly and indirectly measuring the drilling parameters;
• mud-checks, to determine mud density and rheology among other drilling mud properties.

A hole cleaning digital twin, as discussed in Section 3.1.3 and detailed in Figure 8, was
developed by integrating the various models with the relevant data sources.

4.1. Well Profile

The well had a short vertical section and a shallow kick-off point (where the well starts
building inclination from the vertical) around 300 feet MD. After kick-off, the inclination angle
was continuously built until the well became horizontal at about 1250 feet MD. After this,
the well stayed near-horizontal until it reached its total depth (TD) of 2500 feet MD. The well
profile is shown in Figure 14. This well was completed in two ‘BHA runs’ where each run
comprised of drilling to a predetermined hole depth and subsequently, casing and cementing
the hole. After the first BHA run, a surface casing of internal diameter 13.375-inch was set at a
depth of 623 feet MD. Following this, in the second BHA run, a 12.25-inch hole section was
drilled to well TD. Upon reaching TD, a 50-min on-bottom circulation cycle (at a flowrate of
around 950 GPM and 60 RPM) was performed for hole cleaning purposes. The drillstring
was then tripped out of the hole with intermittent back-reaming (at 910 GPM and 60 RPM),
and finally, a 9.625-inch casing was run to TD and cemented. Poor hole cleaning negatively
affected the last trip out of the hole with the drilling BHA, the run into the hole with the
casing, and, ultimately, the casing cementing operation.
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Calculations show that for running a 9.625-inch casing in a 12.25-inch borehole, the
maximum theoretical cuttings bed height (on pulling the drillstring out of hole) should not
exceed approximately 5-inches (Figure 15). This 5-inch bed height corresponds to 45.1 in2

of cuttings in the cross-section.
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Figure 15. Theoretical maximum allowed height of the cuttings bed for the given well profile.

This cross-section of cuttings was then translated to an equivalent bed height by
assuming the drillstring to be in the hole with the drill bit at TD. For the given well profile
and trajectory (based on changes in outer diameters and eccentric placements of different
drillstring components), this limit is represented by the red line in Figure 16a. The red
shaded region corresponds to unsafe levels of cuttings bed height, while the green zone
represents the goal state. Similarly, Figure 16b depicts the ECD profile (drilling window)
for the well, bounded by SL and FG, with ten percent uncertainty in their values. As
in Figure 16a, the green shaded zone corresponds to the goal state, while the red zones
represent regions with the potential for well control issues. The zones in orange represent
safe but suboptimal states.
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Figure 16. (a) Equivalent bed height limits for the given well profile (b) ECD limits for the well
considering a ten percent uncertainty in the SL and FG values (negative sign indicates downward
depth into the sub-surface).

Table 1 shows the SL and FG values to define drilling margins for different sections of
the well. For the near-vertical section, the SL and FG were assigned non-limiting values of
6 ppg and 18 ppg, respectively, because this interval was entirely cased while drilling the
12.25-inch section during the second BHA run.
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Table 1. The SL and FG values for the different inclination intervals.

Inclination Interval Stability Limit (ppg) Fracture Gradient (ppg)

[0, 30)—in casing 6 18

[30, 45) 8.2 10.6

[45, 60) 8.4 10.4

[60, 75) 8.2 10.2

[75+) 8.6 10.0

4.2. Performance Tracking and Action Planning

The system was set up in the MDP framework by using the procedure discussed in
the previous sections. Table 2 shows the number and ranges of values associated with the
different control variables utilized for defining the action-space.

Table 2. Number and ranges of values for the different control variables to define the action-space.

Control Variable Number of Discrete Values Range of Values

Flowrate (GPM) 10 [0, 1800]

Drilling ROP (ft/h) 10 [0, 900]

Drillstring RPM (rev/min) 10 [0, 180]

Mud Density (ppg) 5 [8.5, 9.7]

Mud Plastic Viscosity (cP) 5 [7, 42]

Mud Yield Point (lbf/100 ft2) 5 [7, 42]

The weights assigned to the different reward function components are shown in
Table 3. Equal weights for all the state transitions components (Ws) assumes equal relative
importance of the different state components. Similarly, the relative penalties associated
with changing the different action components (Wap) are also assumed to be the same.
As discussed in the previous section, these weights can be tuned by the rigsite engineer
to prioritize different objectives. However, for the following example, the weights for
combining the normalized reward components (weights associated with Rs_norm, Rap_norm
and Rar_norm) are assigned such that being in or near the goal states is prioritized over the
penalty associated with changes in action variables, or the rewards due to an increased ROP.
Similarly, while drilling, the weight of the reward associated with a higher ROP is more
than the weight of the penalty associated with the changes in action variables. The weight
of the normalized action reward component (War_norm) has two values depending on the
operation being tracked. A weight of zero is assigned to circulation operations because no
new hole is being drilled (i.e., ROP is zero).

Table 3. Weight assignments for different reward function components.

Ws = [1, 1, 1, 1, 1, 1, 1, 1, 1]

Wap = [1, 1, 1, 1, 1, 1]

War = [0, 1, 0, 0, 0, 0]

Ws_norm = 0.50

Wap_norm = 0.20

Drilling Circulation

War_norm = 0.30 War_norm = 0.00
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4.2.1. Performance Tracking

State transitions were monitored, and associated rewards were calculated to track the
performance of the system. The state of the system at the end of the drilling operations (dur-
ing second BHA run) is represented by Equation (19), and can be visualized by Figure 17.
The mud properties for drilling the last section of the well were: mud density of 9.06 ppg,
PV of 11 cP, and YP of 36.5 lbf/100 ft2.

sTD =



H30−45
H45−60
H60−75
H75+

ECD0−30
ECD30−45
ECD45−60
ECD60−75
ECD75+


=



0
3
4
4
1
1
1
1
1


(19)
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Figure 17. The state of the borehole at the end of the drilling operation during the second BHA run.

The final cuttings bed was around 9-inch, which is significantly higher than the limits
specified in Figure 16a. Therefore, to ensure safe tripping operations without getting stuck,
and to prepare the well for casing and cementing operations, these cuttings needed to be
removed. A 50-min circulation cycle was then performed, the resulting state of which is
represented by Equation (20), and Figure 18. The final cuttings bed height was still close
to the allowed limit, and therefore non-optimal, explaining the issues encountered during
tripping, casing, and cementing.

sTD_circ =



0
2
3
3
1
1
1
1
1


(20)
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4.2.2. Action Planning

The developed decision-making system was then used for planning the circulation
cycle. The goal of the system, as previously discussed, is to reduce the cuttings bed height
to safe limits while maintaining the ECD within the drilling margin (i.e., bed height and
ECD need to be managed to in or around the green-shaded zones defined in Figure 16).

The following metrics are used to evaluate the different action sequences:

• The final system state;
• The average return value of the action sequence (V), which is the mean of total

accumulated reward over the given trajectory that results from following the
action sequence.

V =
∑T

t=1 Rt

T
(21)

For the well’s actual circulation operation, the final state represented by Equation (20)
was considerably far from the goal state. The V value for this action sequence was evaluated
to be 0.74. The progression of the normalized Euclidean distance of the system state is
shown in Figure 19. The green line at 0.2 corresponds to those states which have an absolute
Euclidean distance of around two. With the definition of the state vector for this system, the
theoretical maximum Euclidean distance is evaluated as 10.44, as detailed in Equation (22).
For the ratio in Equation (11) to be 0.2, the maximum value for the current state’s Euclidean
distance can be two. For such states, the values of either four of their components have
magnitude one, or one of their components has a magnitude of two, while the rest of the
components are zero. √

∑9
i=i s2

i_max=
√

4(42) + 5(32) = 10.44 (22)

The purpose of this 0.2 line is purely to serve as a visual aid, such that states closer to
the line represent states closer to the goal state.
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the actual well circulation operation (shown by the green dotted line, here taken to be a state at a
normalized Euclidean distance of 0.2).

4.2.3. Plan 1

Using the initializations defined in Tables 2 and 3, and with a Cexp value 1, the decision-
engine was used to plan ahead for eight decision epochs (40-min) starting from the state
sTD (Equation (19)). Equation (23) represents the action sequence (aseq1) recommended by
the system. Selecting the right mud properties at the beginning of the circulation cycle
is essential, since changing them is a time-consuming process. It is, therefore, highly
impractical to adjust them in the middle of the circulation cycle. To this effect, the system
suggested changing the mud properties (at the beginning of the circulation cycle) to mud
density of 8.9 ppg, PV of 17.5 cP, and YP of 10.5 lbf/100 ft2 from mud density 9.06 ppg, PV
11 cP, and YP 36.5 lbf/100 ft2 initially.

aseq1 =



1000
0

80
8.9

17.5
10.5


,



1200
0

100
8.9

17.5
10.5


,



1400
0

120
8.9

17.5
10.5


,



1600
0

160
8.9

17.5
10.5


,



1800
0

160
8.9

17.5
10.5


,



1600
0

160
8.9

17.5
10.5


,



1400
0

160
8.9
17.5
10.5


,



1400
0

160
8.9
17.5
10.5


(23)

The predicted output state of the system is shown in Figure 20. The cuttings bed is
almost entirely removed (as represented by the blue line), and the ECD values are very
close to the desired regions throughout the well. Equation (24) represents the final state of
the system.

sTD_circ1 =



0
0
0
0
1
1
1
1
1


(24)
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Figure 21 illustrates the progression of the system with actions for the sequence 𝑎𝑠𝑒𝑞1. 

Figure 21a shows the reduction in the cuttings bed height with different actions, and Figure 

21b represents the progression of the normalized Euclidean distance with actions. 

 
(a) (b) 

Figure 20. (a) ECD profile (b) Cuttings bed height (output state) for 𝑎𝑠𝑒𝑞1. Figure 20. (a) ECD profile (b) Cuttings bed height (output state) for aseq1.

Figure 21 illustrates the progression of the system with actions for the sequence aseq1.
Figure 21a shows the reduction in the cuttings bed height with different actions, and
Figure 21b represents the progression of the normalized Euclidean distance with actions.
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Figure 21. (a) Progression of the cuttings bed (b) Progression of the normalized Euclidean distance
(blue line) of the system states for aseq1 to an acceptable goal state (shown by the green dotted line,
here taken to be a state at a normalized Euclidean distance of 0.2).

By the fourth action, the system has already moved close to the 0.2 line (by cuttings
bed being reduced to the goal state), where it stays until the end. Figure 22 shows the pro-
gression of the rewards associated with this action sequence. Thus, the V value calculated
for aseq1 is 0.82.
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Figure 22. Progression of the rewards associated with aseq1.

An interesting observation in the action sequence is the system actively trying to
manage the ECD by reducing the flowrate, after the cuttings bed has been removed. Initially,
the system suggests increasing the flowrate and the RPM, which helps with cuttings bed
removal (as can be seen by the reduced Euclidean distance), and then later tries to reduce
the ECD.

4.2.4. Plan 2

Another planning operation was performed by changing the flowrate and RPM thresh-
olds, as shown in Table 4. No changes were made to the mud density and rheology thresh-
olds, and the weights associated with the different reward components were also unaltered.

Table 4. Modified flowrate and RPM thresholds for varying the action-space.

Control Variable Number of Discrete Values Range of Values

Flowrate (GPM) 10 [0, 1500]

Drillstring RPM (rev/min) 10 [0, 150]

Equation (25) represents the action sequence (aseq2) output by the planning system,
over a 40-min (eight decision epochs) interval. Due to the truncated flowrate and RPM
thresholds, the system suggests different mud density and rheology than for aseq1 to help
with the cuttings removal.

aseq2 =



833
0
67

9.24
10.5
10.5


,



1000
0

83
9.24
10.5
10.5


,



1167
0
83

9.24
10.5
10.5


,



1333
0

100
9.24
10.5
10.5


,



1333
0

117
9.24
10.5
10.5


,



1500
0

133
9.24
10.5
10.5


,



1500
0

150
9.24
10.5
10.5


,



1333
0

150
9.24
10.5
10.5


(25)
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The final state of the system (sTD_circ2), represented by Equation (26), is shown in
Figure 23.

sTD_circ2 =



0
0
0
0
1
1
1
1
1


(26)
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The final state of the system (𝑠𝑇𝐷_𝑐𝑖𝑟𝑐2), represented by Equation (26), is shown in Figure 23. 
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Figure 23. (a) ECD profile (b) Cuttings bed height.  
Figure 23. (a) ECD profile (b) Cuttings bed height.

The normalized Euclidean distance does decrease with time, but it only reaches the 0.2
line on the seventh action (Figure 24b). An interesting observation in Figure 24a is that the
cuttings bed is not entirely removed but is reduced to the goal state (green-shaded zone)
values. The ECD is also in the safe-but-suboptimal region, but it is much higher than for
the first case due to a higher suggested mud density.
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Although, the final state representations for both the plans (aseq1 and aseq2) are the
same, the average V value calculated for aseq2 is 0.79, which is lower than for aseq1. The
progression of rewards for the sequence aseq2 is shown in Figure 25.
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4.3. Discussion

For both plans aseq1 and aseq2, the decision-engine was able to self-learn by simulating
multiple episodes of experience and output action sequences that would have helped move
the system towards the goal states. To summarize:

1. The non-holonomic nature of drilling operations combined with the decision-engine’s
long-term planning capabilities allow for more robust planning. An example of this is
the system selecting appropriate mud properties at the beginning of the circulation
cycle by evaluating multiple steps into the future. Both plans that were generated
result in a better outcome than the actual plan generated and implemented by a
human decision-maker.

2. Tuning the weights associated with the different reward components allows for
prioritizing different objectives or different sections of the well over others.

3. Utilizing the domain-knowledge enriched MCTS allows for faster and more efficient
planning, and well-defined heuristic functions make such planning systems imple-
mentable in the field. Exhaustively evaluating all nodes in the search tree to the
eighth level (eight decision epochs or 40-min) would require over a hundred million
simulations, as well as require storing the results of each state-action transition. This
would be highly computationally and memory inefficient. MCTS, on the other hand,
requires a number of simulations that are many orders of magnitude lower (only a
few thousand in total), and all state-action transition results do not need to be stored.
For the cases discussed in this paper, the planning algorithm, without any parallel
processing or multi-threading on a standard laptop using a non-streamlined Python
code, was able to generate these plans in under an hour.

4. Planning with higher values does result in the convergence of the state’s Euclidean
distance towards the 0.2-line, but it requires many more simulations. On the other
hand, lower Cexp values introduce an element of bias depending on the order in which
the nodes are added to the tree, which itself depends on the random rollout policy for
MC simulations.
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5. Conclusions

This paper proposes a method for the development of intelligent decision engines
for well construction operations by utilizing an MDP formalism with the MCTS for action
planning. This method is demonstrated by implementing a hole cleaning action planning
system and comparing its performance against a human decision maker’s performance.
To the best of our knowledge, there are no published models or systems that address the
issue of intelligent long-term sequential decision-making and action planning for the well
construction domain. Such systems, however, have resulted in significant performance
improvement across other domains such as game AI (such as in AlphaGo, AlphaZero),
electric power distribution, dynamic resource allocation, etc. To summarize:

1. MCTS planning systems allow for a hybrid approach to managing conflicting objec-
tives by combining the advantages of the exploration-exploitation trade-off offered
by the MCTS, with domain-knowledge derived heuristics, thereby helping make
better decisions.

2. A combination of the digital twin and a non-sparse reward function, with backpropa-
gation of the episodic returns, allows the system to learn from simulated experience.
A non-sparse reward structure ensures that the feedback received by the agent is
frequent and meaningful, thereby speeding up the policy improvement process.

3. The underlying tree and rollout policies of the MCTS algorithm can be enhanced by
using well-defined process-specific heuristics. This assists in improving the conver-
gence rate of the system towards an optimal action sequence. For the hole cleaning
system, the heuristic was designed to balance safety, performance, feasibility, and
proximity constraints.

4. Utilizing such systems can aid in overall performance improvement by eliminating
the need to wait on decisions, as well as suggesting optimal drilling parameters for
the given wellbore condition.

Furthermore, decision engines can be developed for a multitude of other well con-
struction applications, such as well control, drilling parameter optimization, tripping au-
tomation, cementing, etc. These decision engines can then be integrated into a rig’s control
system to automate monitoring, planning, and control of action variables such as drilling
rate, drillstring rotation speed, tripping speed, flowrate, and mud properties. The ultimate
goal is to automate important well construction tasks and optimize them by removing the
(non-optimum) variability associated with subjective human-based decision-making.
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Unit Conversion
1 meter (m) 3.28 feet (ft)
1 meter/second (m/s) 11,811 feet/hour (ft/h)
1 psi 6894.76 Pa
1 ppg 119.83 kg/m3

1 radian 57.2958 degrees
1 ft3 0.02832 m3

1 GPM 0.0000631 m3/s
1 cP 0.001 Pa·s
1 lbf/100 ft2 0.4788 Pa
1 lbs. 0.4536 Kg

Nomenclature
A Action-space
A f e Action set associated with feasibility constraints (for hole cleaning heuristic)
Apx Action set associated with proximity metric (for hole cleaning heuristic)
Arollout Reduced action space for a state during the rollout phase of the MCTS
As Action space from state s
Ast The action space of the node associated with state st
Asp Action set associated with safety and performance metrics (for hole cleaning

heuristic)
Asq Action set associated with sequential metric (for hole cleaning heuristic)
a−1 The most recently executed action
aagg Aggressive actions representing greater magnitude changes in values of action

control variables relative to the most recent action
areg Regular actions representing small changes in action control variables with

respect to the most recent action
aseq1 action sequence recommended by the system for the first planning case
aseq2 action sequence recommended by the system for the second planning case
at Action executed by the agent at time or decision epoch t
Cexp The exploration factor in the UCT formula
DTVD True vertical depth for the measured depth DMD
dnorm−euc Normalized Euclidean distance for the current state
ECD Equivalent circulation density (pounds per gallon or ppg)
ECDinc. Functional value of ECD in the inclination interval segment inc.
|exp| The level at nodeexp is in the tree
flowrate Rate of flow of the drilling mud through the drillstring controlled by a positive

displacement reciprocating mud pump on the surface (GPM)
GT the net discounted return to T decision epochs
g Acceleration due to gravity (9.81 m/s2)
Hinc. Functional value of the cuttings bed height in the inclination interval segment incl.
incl Inclination angle range (degrees)
N(s) Total number of visits to the state s
N(s, a) Number of times action a has been taken from state s
Nst Total number of visits to the node associated with state st
node0 Root node corresponding to the starting state s0
nodeexp Randomly expanded node from the leaf node during the expansion phase of

the MCTS
nodelea f Leaf node reached at the end of the selection phase of the MCTS
nodet Node at decision epoch t
Pf rictionalpressure

_loss_DMD

Frictional pressure drop in the annulus (Pa) at a measured depth DMD

Phydrostatic_DTVD Hydrostatic Pressure (Pa) at a vertical depth of DTVD
Pa

ss′ Transition probability of a system in the state s to the state s′ when an agent
executes action a

PV Plastic viscosity (cP)
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Q(s, a) Average value associated with implementing action a from state s
QUCT(s, a) The upper confidence bound or the urgency term in the UCT formula
R Reward set
Ra_density Action reward component associated with the density value
Ra_ f lowrate Action reward component associated with the flowrate value
Ra_PV Action reward component associated with the PV value
Ra_ROP Action reward component associated with the ROP value
Ra_RPM Action reward component associated with the RPM value
Ra_YP Action reward component associated with the YP value
Rap Action transition-based penalty set
Rap_norm Normalized action penalty for the hole cleaning system
Rar Action value-based reward set
Rar_norm Normalized action reward for the hole cleaning system
RECDincl. State reward component associated with ECD in the inclination interval incl.
Rdensity Action Penalty component associated with changing mud density
R f lowrate Action Penalty component associated with changing flowrate
RHincl. State reward component associated with cuttings bed height in the inclination

interval incl.
Rnet Net normalized reward function for the hole cleaning system
RPV Action Penalty component associated with changing mud PV
RROP Action Penalty component associated with changing ROP
RRPM Action Penalty component associated with changing RPM
RS State transition-based reward set
Rs_norm Normalized state reward for the hole cleaning system
RYP Action Penalty component associated with changing mud YP
ROP Rate of penetration or drilling rate (ft/h)
RPM Drillstring rotation speed (revs./min)
rgreed Radius of the greed sphere for Apx evaluation
rk Reward associated with the kth state-action transition
S State-space
SL Stability limit (ppg)
sTD State of the hole cleaning system at the well TD
sTD_circ State of the wellbore after performing a circulation cycle at TD
sTD_circ1 State of the wellbore after performing a circulation cycle at TD following aseq1
sTD_circ2 State of the wellbore after performing a circulation cycle at TD following aseq2
sgoal Goal or desired state for the MDP
s′′goal The states near the goal state (for evaluating the Apx set)
st State of the system at time or decision epoch t
T Number of decision epochs to evaluate till in the future
t Time step or decision epoch t
tmax Time available for MCTS algorithm to plan
V The average return value of an action sequence
Wap Weight set associated with the action transition penalty
Wap_norm Weight value associated with the normalized action penalty
War Weight set associated with the action value reward
War_norm Weight value associated with the normalized action reward
Ws Weight set associated with state transition reward
Ws_norm Weight value associated with the normalized state reward
WOB Weight on bit (klbs.)
YP Yield point (l bf/100 ft2)
π Policy or plan
πheuristic_a Problem specific heuristic (probability of selecting action a)
πtree Tree policy—the action selected from a given node in the search tree during

the selection phase of the MCTS
γ Discount factor for return calculation
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