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Abstract: Refrigerant maldistribution severely deteriorates the heat transfer performance of a mi-
crochannel evaporator. Compared with the refrigerant distribution among flat tubes along the header,
refrigerant distribution among microchannels in the flat tube in the airflow direction has barely been
paid attention. In this paper, a heat transfer mathematical model of a microchannel evaporator’s flat
tube composed of vertically placed parallel microchannels in the airflow direction was developed.
The Refrigerant distribution among the microchannels was evaluated and its influence on heat trans-
fer between air and refrigerant was analyzed. The results showed that the refrigerant distribution
and heat transfer performance between air and refrigerant were interrelated and interacted with each
other. The temperature of the air leaving the microchannel evaporator changed along the microchan-
nel because of uneven refrigerant distribution among the microchannels, and the air temperature
difference between air leaving out of the bottom and the top of the evaporator was approximately
2.13 ◦C. Ignoring the heat transfer from adjacent microchannels will lead to a small heat transfer
deviation for the flat tube; thus, heat transfer among microchannels can be neglected.

Keywords: microchannel evaporator; refrigerant distribution; heat transfer performance

1. Introduction

The application of microchannel heat exchangers in air source heat pumps (ASHPs)
has attracted scholars’ attention for a long time because of the advantages of good heat
transfer performance, lower refrigerant charge, and less copper consumption. When the
microchannel heat exchanger works as a condenser of an ASHP, higher energy efficiency
can be achieved. However, when the microchannel heat exchanger was used as an evapora-
tor of an ASHP, its heat transfer performance decreased sharply [1,2], even up to 23% [3].
The deteriorated heat transfer performance of the microchannel evaporator led to a re-
duction in ASHP’s energy efficiency by approximately 20–30% [4]. Research by many
scholars shows that refrigerant maldistribution is one of the most important reasons for
the deteriorated heat transfer performance of the microchannel evaporator. Therefore,
refrigerant maldistribution attracts extensive attention from scholars. The results of a study
by T. Kulkarni et al. [5] showed that mass flow maldistribution could not be controlled by
changing either the port/header diameter or the refrigerant state at the inlet but only by
minimizing the pressure gradients along the header. There are numerous factors that affect
refrigerant distribution in a microchannel evaporator, such as the header geometry and
orientation, fluid properties, and inlet conditions.

The orientation is very important for the refrigerant’s even distribution among mi-
crochannels. When the header is vertical and the microchannel is horizontal, phase separa-
tion easily occurs. The superheated refrigerant always appears at the top in each pass, while
the liquid appears at the bottom. Phase separation caused by gravity is the main reason for
refrigerant maldistribution, which will eventually deteriorate the heat transfer performance
of a microchannel evaporator. An experimental study by Cho et al. [6] indicated that a
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horizontal header with a vertical upward flow showed better refrigerant distribution than a
vertical header with horizontal flow. Bowers et al. [7] and Y. Liu [8] studied the distribution
of two-phase refrigerant in heat exchangers with different orientations. The experimental
results of Liu et al. [8] showed that when the inlet refrigerant was slug flow, the refrigerant
distribution of a horizontal header with upward refrigerant flow in the microchannels was
the most uniform, and when the inlet refrigerant was slug annular flow, the refrigerant
distribution of a vertical header was the best. A study by Dario et al. [9] showed that the
refrigerant distribution became more uniform as the flow rate increased when the header
was placed horizontally. In contrast, the distribution of the refrigerant became worse when
the header was vertical. Kim et al. [10] studied the distribution of refrigerant when the
header and channel were horizontally placed with different inclination angles, and they
found that the distribution of the refrigerant worsened with the increase of the inclination
angle. Won-Jong Lee et al. [11] developed phase-distribution models for a vertical header,
and the results showed that the heat transfer could decrease by a maximum of approxi-
mately 63% for a microchannel evaporator compared with the ideal uniform distribution
case. Wenju Hu et al. [12] experimentally studied the influence of the header’s placement
on refrigerant distribution, and the results showed that horizontal headers were beneficial
to refrigerant distribution compared to a microchannel evaporator with vertical headers.

To improve the refrigerant distribution in microchannel evaporators, measures have
also been taken in terms of the geometry of header. Lee et al. [13] studied the effects on
refrigerant distribution of a flat tube’s insertion depth into the header, and they argue
that the a uniform refrigerant distribution can be achieved by adjusting the depth of the
flat tube inserted into the header. Kim et al. [14–16] studied the influence of inserted
devices, such as wire mesh, a perforated plate, and a perforated tube, on the refrigerant
distribution, and they found that a perforated tube was effective for the uniform distribution
of refrigerant. Lately, N.-H. Kim et al. [17] studied various combinations of perforated
tubes, including perforated tubes, perforated tubes with a perforated plate, an orifice and
perforated tubes, and concentric perforated tubes, and the experimental results showed
that a better refrigerant distribution could be obtained by using a concentric perforated
tube. Ahmad et al. [18] experimentally studied the effects of the expansion orifice and
splashing grid on the uniform distribution of refrigerant. The results showed that the
expansion orifice could cause the two-phase flow to produce a high-speed jet, which made
the distribution of the two-phase flow more uniform. Wu et al. [19] proposed a novel
embedded-clapboard header, and the experimental results showed that when the inlet
quality was 0.2, and the header was arranged vertically, slanting and horizontally, the
average unevenness of the two-phase flow was 42.5%, 45.9% and 41.4% lower than that of
the conventional header distributor.

Refrigerant distribution is not only related to header geometry and orientation, but also
to fluid properties and inlet conditions. An experimental study by A.T. Wijayanta et al. [20]
indicated that the refrigerant distribution strongly depended on the local momentum of the
fluid and the geometry of the header. Lee et al. [13] studied the influence of the refrigerant
flow rate and dryness in the header on the refrigerant distribution, and they found that
the effect of the mass quality on the refrigerant distribution was minor when the intrusion
depth of the flat tube became larger. Zou et al. [21] compared the refrigerant distribution of
R245fa, R134a, R410A, and R32 in the vertical header, and the experimental results showed
that R245fa had the best distribution, followed by R134a, R410A and R32. Fei et al. [22]
studied the influence of the refrigerant’s inlet conditions, including vapor quality, velocity
and inlet flow development status, on the refrigerant distribution in a horizontal header
with vertical-downward channels. The results indicated that when the inlet quality and
the velocity were higher, the distribution effect was the best. Mahvi et al. [23,24] showed
that the distribution uniformity of the two-phase refrigerant flow largely depended on the
flow pattern in the header. Zou et al. [25,26] visualized the vertical header and showed that
increased refrigerant quality would result in poor refrigerant distribution.
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In addition to the above factors affecting refrigerant distribution, Long Huang et al. [27]
pointed out that uneven heat transfer was also one of the main reasons leading to refrigerant
maldistribution. As a matter of fact, uneven heat transfer not only exists among flat
tubes, but it also exists among microchannels of a flat tube in the air flowing direction in
which the air temperature decreases gradually. However, the refrigerant distribution in
a flat tube with microchannels in the air flowing direction has never been reported in the
published literature. Traditionally, it is often assumed that the refrigerant flow in different
microchannels within a tube is identical and uniformly distributed [28,29]. In this paper, a
mathematical model of a flat tube with microchannels for a microchannel heat exchanger
was developed, and the coupling effect of heat transfer and refrigerant distribution was
studied, which will be useful for heat transfer performance improvement of microchannel
heat exchanger via structural optimization.

2. Mathematical Model
2.1. Physical Model

The microchannel heat exchanger was composed of headers, flat tubes with microchan-
nels inside and louvered fins arranged between the flat tubes to enhance heat transfer
performance. The microchannels with refrigerant flowing inside is shown in Figure 1. In
this paper, a microchannel evaporator of a residential building air conditioner working
in summer condition was selected for study. The structural parameters of the fins and
microchannels for the flat tube are shown in Figure 2 and Table 1.
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Table 1. Structural parameters of the fins and microchannels of a flat tube.

Symbol Items Value Symbol Items Value

Tl Flat tube length/mm 30 Dl Microchannel length/mm 0.8

Td Flat tube width/mm 1.6 Dd Microchannel width/mm 0.8

Tp Flat tube spacing/mm 10 Dp Microchannel spacing/mm 0.4

δw Wall thickness/mm 0.2 Fp Fin pitch/mm 1.2

Lp Louver spacing/mm 1.5 Fh Fin height/mm 8.8

Ll Louver length/mm 6.8 Ft Fin thickness/mm 0.15

Lα Louver angle/deg 27 Fd Fin width/mm 25.2

2.2. Mathematical Model of the Refrigerant

Figure 3 shows the heat transfer mechanism of a microchannel. For refrigerant flowing
inside a microchannel, it extracts heat from the air though the flat tube’s walls and also
from adjacent microchannels.
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For an evaporator, there is a superheated region and a two-phase region for the
refrigerant. Therefore, in the refrigerant mathematical model, mathematical models for
the superheated region and the two-phase region were developed, respectively. Here, the
following assumptions are given:

(1) Both the refrigerant-side and air-side flows are one dimensional flows;
(2) The vapor–liquid phase is in a state of thermodynamic equilibrium;
(3) All of the physical parameters of the single-phase refrigerant in the cross sections are

of the same values, and the physical parameters only change in the flow direction;
(4) The gravity of the refrigerant in the microchannel is to be neglected;
(5) Heat conduction in the axial direction is negligible because of the minimal temperature

gradient in the direction of the refrigerant flow;
(6) For refrigerant inside the tube, the heat exchange process is continuous and stable.

2.2.1. Mathematical Model of the Two-Phase Region

For the two-phase region of the refrigerant, mass, momentum and energy equations
exist. Firstly, the mass conservation equation can be written as:

∂

∂z
[αρvapuvap + (1− α)ρliquliq] = 0 (1)

where α is the refrigerant’s void coefficient; ρvap and ρliq are the densities of the refrigerant
in the vapor and liquid states, respectively, kg/m3; uvap and uliq are the velocities of the
refrigerant in the vapor and liquid states, respectively, m/s.

The momentum and energy conservation equations can be expressed, separately, as:

∂

∂z
[αρvapuvap

2 + (1− α)ρliquliq
2] = −∂Pr

∂z
− τ0s0

A
(2)
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and,

∂

∂z
[αρvapuvaphvap + (1− α)ρliquliqhliq] =

Qr

A
(3)

where τ0 is the shear stress, N/m2; s0 is the wetted perimeter of the aluminum tube, m;
hvap and hliq are the enthalpy of saturated gas and liquid phases, J/kg; Qr is the heat that
the refrigerant obtains through per unit length of the microchannel, W/m.

The heat Qr in Equation (3) can be expressed as:

Qr = Qw + Qi−1 + Qi+1 (4)

where Qw is the heat that the refrigerant obtains through the per unit length of the two
sidewalls adjacent to the air, W/m; Qi−1 is the heat that the refrigerant obtains through per
unit length of the sidewall adjacent to the microchannel (i − 1), W/m; Qi+1 is the heat that
the refrigerant obtains through per unit length of the sidewalls adjacent to the microchannel
(i + 1), W/m.

Heat exchange between the refrigerant and the microchannel wall adjacent to air can
be expressed as:

Qw = 2Aw
1

δw
λw

+ 1
αr,i

(tw − tr,i) (5)

where Aw is the heat transfer area of the per unit length of the two sidewalls adjacent to
the air, m2/m; δw is the thickness of the wall, m; λw is the thermal conductivity of the
microchannel wall, W/(m·K); αr,i is the refrigerant convective heat transfer coefficient on
the inner surface of the microchannel (i ), W/(m2·K); tw is the outer surface temperature of
the microchannel wall adjacent to the air, ◦C; tr,i is the temperature of the refrigerant in the
microchannel (i), ◦C.

The heat exchange between the refrigerant and the microchannel (i − 1) can be
expressed as:

Qi−1 = Ai−1
1

1
αi−1

+ δw
λw

+ 1
αr,i

(ti−1 − tr,i) (6)

where Ai−1 is the heat transfer area between microchannel (i) and microchannel (i − 1),
m2/m; αi−1 is the refrigerant convective heat transfer coefficient on the inner surface of the
microchannel (i− 1) or the air convective heat transfer coefficient on the outer surface of the
1st microchannel, W/(m2·K); ti−1 is the temperature of the refrigerant in the microchannel
(i − 1) or the temperature of the outside air flowing to the 1st microchannel, ◦C.

The heat from the microchannel (i + 1) can be expressed as:

Qi+1 = Ai+1
1

1
αi+1

+ δw
λw

+ 1
αr,i

(ti+1 − tr,i) (7)

where Ai+1 is the heat transfer area between microchannel (i) and microchannel (i + 1),
m2/m; αi+1 is the refrigerant convective heat transfer coefficient on the inner surface of the
microchannel (i + 1) or the air convective heat transfer coefficient on the outer surface of the
last microchannel, W/(m2·K); ti+1 is the temperature of the refrigerant in the microchannel
(i + 1) or the temperature of the outside air leaving the last microchannel, ◦C.

2.2.2. Mathematical Model of the Superheated Region

For the superheated region of the refrigerant, mass, momentum and energy equations
exist. Firstly, the mass conservation equation can be written as:

∂

∂z
(ρsus) = 0 (8)
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where ρs is the density of the superheated refrigerant, kg/m3; us is the velocity of super-
heated refrigerant, m/s.

The momentum and energy conservation equation can be expressed, separately, as,

∂

∂z

(
ρsu2

s

)
+

∂Pr

∂z
+

τ0s0

A
= 0 (9)

∂

∂z
(ρsushs)−

Qr

A
= 0 (10)

Where hs is the enthalpy of the superheated refrigerant, J/kg.

2.2.3. Heat Transfer Coefficient and Pressure Drop on the Refrigerant Side

(1) Superheated region
The convective heat transfer of the refrigerant in the superheated region adopted the

widely recognized Dittus-Boelter correlation formula.

Nu =
αrDh

λr
= 0.023Revap

0.8Pr0.4
r (11)

f =

{
64Revap

−1 (Revap ≤ 2300)

0.316Revap
−0.25 (Revap > 2300)

(12)

∆P = f
vaveG2

r l
2Dh

(13)

where Nu is the Nusselt number; αr is the convective heat transfer coefficient on the
refrigerant side, W/(m2·K); Dh is the hydraulic diameter, m; λr is the thermal conductivity
of the refrigerant; Revap is the Reynolds number of the refrigerant in the vapor state; Prr is
the Prandtl number; ∆P is the frictional pressure drop; f is the friction resistance coefficient;
l is the length of the microchannel, m; vave is specific volume of refrigerant, m3/kg; Gr is
the mass flux of the refrigerant, kg/(m2s).

(2) Two-phase region
The model used the flow boiling heat transfer coefficient correlation equation based on

the convective heat transfer enhancement factor,Enew, and the nucleate boiling suppression
factor, Snew [30], as follows:

αtp = Enewαliq + Snewαnb (14)

where αtp is the convective heat transfer coefficient when the flowing refrigerant is in
the two-phase state, W/(m2·K); αliq is the convective heat transfer coefficient when the
flowing refrigerant is in the liquid state, W/(m2·K); αnb is the nucleate boiling heat transfer
coefficient, W/(m2·K). In Equation (14), αliq and αnb can be obtained by [31,32]:

αliq = 0.023
λliq

Dh
Re0.8

liq Pr0.4
liq (15)

αnb = 55(
Pr

Pc
)

0.12
[− log10(

Pr

Pc
)]
−0.55

M−0.5q0.67 (16)

where λlip is the thermal conductivity of the liquid refrigerant, W/(m·K); Reliq is the thermal
conductivity of the liquid refrigerant, W/(m·K); is the Reynolds number of the refrigerant
in the liquid state; Prliq is the Prandtl number of the refrigerant in the liquid state; Pc is the
critical pressure of the refrigerant; M is the molecular mass of the fluid, kg/kmol; q is the
heat flux on the microchannel wall, W/m2.

In Equation (14), Enew and Snew can be obtained by [30],

Enew = (1 + 9.8X−0.2
tt )We−0.32

vap (17)
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Snew =
Bo0.02Fr−0.04e−0.81x

1− 10−4ReliqE0.79
new

(18)

where Xtt is the Lockhart–Martinelli number; Wevap is the Weber number; Fr is the Froude
number; Bo is the boiling number.

The Lockhart–Martinelli number, Xtt, can be expressed as Equation (19):

Xtt = (
1− x

x
)

0.9
(

ρvap

ρliq
)

0.5
(

µliq

µvap
)

0.1
(19)

where x is the vapor quality of the refrigerant; ρvap and ρliq are the density of the vapor
refrigerant and the liquid refrigerant, respectively, kg/m3; µvap is the dynamic viscosity
coefficient of the vapor refrigerant, N·s/m2; µliq is the dynamic viscosity coefficient of the
liquid refrigerant, N·s/m2.

The pressure drop of the refrigerant in the two-phase region used the correlation
formula of Zhao [33], and it can be expressed as Equation (20)

∆P = ∆Pacc + ∆Pf + ∆Pg (20)

where ∆Pacc is the acceleration pressure drop, Pa; ∆Pf is the friction pressure drop, Pa; ∆Pg
is the gravitational pressure drop, Pa.

In Equation (20), the acceleration pressure drop is:

∆Pacc = G2
r

{[
x2

out
ρvapαout

+
(1− xout)

2

ρliq(1− αout)

]
−
[

x2
in

ρvapαin
+

(1− xin)
2

ρliq(1− αin)

]}
(21)

where Gr is the mass flux of the refrigerant, kg/(m2·s); xout and xin are the vapor quality
of the refrigerant at the outlet and inlet, respectively; αout and αin are the void coefficients
of the refrigerant at the outlet and at the inlet, respectively, and can be calculated by
Equation (22):

α =

1 +

(
ρvap

ρliq

)2/3

+
(1− x)

x

−1

(22)

In Equation (20), the frictional pressure drop is:

∆Pf =
fliqGr2l
2ρliqDh

(
N +

3.24KH
Fr0.045We0.045

)
(23)

where

fliq =


16Re−1

liq (Reliq ≤ 2000)

0.079Re−0.25
liq (2000 < Reliq < 20000)

0.046Re−0.2
liq (20000 < Reliq)

(24)

N = (1− x)2 + x2 ρliqRe−0.25
vap

ρvapRe−0.25
liq

(25)

K = x0.78(1− x)0.224 (26)

H = (
ρliq

ρvap
)

0.91
(

µvap

µliq
)

0.19
(1−

µvap

µliq
)

0.7
(27)

where flip is the frictional factor for treating the two-phase refrigerant as the liquid refrigerant.
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2.3. Mathematical Model of the Air Side

For the air side, the mass and energy equations exist. Firstly, the mass conservation
equation could be written as:

d(mada)

dz
= αmη f ,w A f ,w(da − dw) (28)

where ma is the mass flow rate of air, kg/s; αm is the mass transfer coefficient on the fins,
m/s; η f ,w is the surface efficiency of microchannel exchanger; A f ,w is the total surface area of
the fin and the microchannel wall, m2; da is the absolute humidity of the air, kg/kg.a; dw is
the absolute humidity of the saturated air with the surface temperature of the fins, kg/kg.a.

The fins of the microchannel evaporator in this paper were louvered fins. Thus, the
surface efficiency can be calculated as follows:

η f ,w = 1−
A f

A f ,w

(
1− η f

)
(29)

where A f is the surface area of the folded louver fins, m2; η f is the fin efficiency, which can
be expressed as Equation(29):

η f =
tanh(ml)

ml
(30)

where

m =

√
2αa

λ f Ft
(1 +

Ft

Fd
) (31)

l =
Fh
2
− Ft (32)

where αa is the convective heat transfer coefficient of the air side, W/(m2·K); λ f is the
thermal conductivity of the fin, W/(m·K).

The energy conservation equation of the air side can be expressed as:

d(maha)

dz
= Qw (33)

where

Qw = ξwαaη f ,w A f ,w(tw − ta) (34)

ξw = 1 +
2501 + 1.86ta − 2.05tw

Ca
· da − dw

ta − tw
(35)

where ha is the enthalpy of air, J/kg; ξw is the moisture separation coefficient; ta is the air
temperature, ◦C; Ca is the specific heat of the air, J/(kg ◦C).

For the mathematical model of louvered fins, this paper adopted the fitting correlation
equation of the air-side heat transfer factor j. Therefore, the convective heat transfer
coefficient of the air can be obtained using [34]:

αa = j
ρauaCa

Pra
2
3

(36)

where j is the air-side heat transfer factor; ua is the velocity of the air, m/s; ρa is the density
of the air, kg/m3; Pra is the Prandtl number of the air.

For the heat transfer on the outside surface of the microchannel exchanger, there were
dry and wet conditions. The heat transfer factor, j should be given separately.
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(1) Dry condition
The air heat transfer was predicted by Kim and Bullard [35], and their models are

widely used with high accuracy and recognition.

j = Re−0.487
Lp (

Lα

90
)

0.257
(

Fp

Lp
)
−0.13

(
Fh
Lp

)
−0.29

(
Fd
Lp

)
−0.235

(
Ll
Lp

)
0.68

(
Tp

Lp
)
−0.279

(
Ft

Lp
)
−0.05

(37)

ReLp =
uaLp

ν
(38)

where ν is the kinematic viscosity coefficient of the air, m2/s; ReLp is the air-side Reynolds number.
(2) Wet condition
Under the wet condition, both sensible heat exchange and latent heat exchange occur.

The heat transfer calculation formula [36] on the air side is:

j = Re−0.512
Lp (

Lα

90
)

0.25
(

Fp

Lp
)
−0.171

(
Fh
Lp

)
−0.29

(
Fd
Lp

)
−0.248

(
Ll
Lp

)
0.68

(
Tp

Lp
)
−0.275

(
Ft

Lp
)
−0.05

(39)

2.4. Numerical Solution of the Mathematical Model

There were 25 microchannels in the flat tube used in this paper, because when the
element number of a microchannel is larger than 45, the element number has almost no
effect of on the numerical results. Thus, each microchannel was divided into 45 micro-
control elements in the direction of refrigerant flowing, as shown as in Figure 4a. For each
element, the refrigerant flowed into the element from the bottom and flowed out of the
element from the top. Meanwhile, air flowed into the element from the left and flowed out
of the element to the right.
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The numerical simulation flowchart of a microchannel tube is illustrated in Figure 5.
Firstly, the mass, momentum, and energy equations on the refrigerant side and the energy
equation on the air side for each microchannel were discretized. Next, the unknown
parameters, such as the mass flow rate in each microchannel, the refrigerant state and the
temperature distribution in the adjacent microchannels were assumed prior to calculating
the numerical solution. Then, using the input parameters, such as the input air temperature,
humidity, the input refrigerant parameters and the assumed parameters mentioned above,
the numerical solution for the 1st microchannel was carried out from the micro-control
element at the microchannel inlet to the micro-control element at the microchannel outlet.
When the numerical solution for the 1st microchannel was completed, the output air
temperature for each micro-control element was used as the input air temperature for the
micro-control element of the second microchannel. In this way, the numerical solutions for
the microchannels in the flat tubes were completed one by one.
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It should be noted that an iterative solution was necessary in the process of the
numerical solution. Firstly, the wall temperature of each element should be assumed and
then calculated iteratively, because the wall temperature decides the state of the surface, i.e.,
dry or wet. Secondly, the refrigerant mass flow rate of each microchannel was calculated
iteratively until the difference between the calculated refrigerant pressure drop and the
given pressure drop was sufficiently small. Thirdly, the iterative numerical solution for a
whole flat tube was carried out until the refrigerant temperature, refrigerant dryness, and
air outlet temperature difference between the two calculations was sufficiently small. The
numerical scheme described above was implemented into a self-written MATLAB code for
numerical calculation.

The input parameters of the refrigerant and air in the paper are shown in Table 2.
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Table 2. Parameters of the inlet refrigerant and air microchannel heat exchanger.

Refrigerant Side Parameters Value Inlet Air Parameters Value

Inlet temperature/◦C 10 Dry-bulb temperature/◦C 26

Superheat/◦C 5 Relative humidity 60%

Inlet dryness 0.2 Wind velocity/(m/s) 1.736

Mass flow/(g/s) 0.05

2.5. Validation of Mathematical Model

The microchannel evaporator model of this paper was validated against the results
of the model by B. Wiebke [3] and the results obtained using the modeling software
CoilDesigner [37]. However, it should be noted that both B. Wiebke [3] and Jiang [37]
considered the refrigerant to be evenly distributed among the microchannels in a flat tube.
The microchannel evaporator in References [3,37] were calculated using the mathematical
model in this paper. The refrigerant temperature in the middle microchannel of the flat
tube and the air outlet temperature of the flat tube were selected to be compared with
the refrigerant temperature and air outlet temperature in References [3,37], as shown as
Figures 6 and 7. From Figures 6 and 7, it can be seen that the air temperature and refrigerant
temperature had similar tends as References [3,37] when the height of the microchannel
was less than 0.33 m. When the height was larger than 0.33 m, both refrigerant and air outlet
temperature difference appeared, because uneven refrigerant mass flow distribution was
considered in the model of this paper. Thus, on the basis of the results of the comparison
with References [3,37], it can be considered that the model in this paper is reliable.
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3. Results and Discussions
3.1. Refrigerant Side
3.1.1. Refrigerant Dryness and Temperature

Figure 8 shows the refrigerant dryness in the microchannels, and Figure 9 shows the
refrigerant temperature distribution in the microchannels. From Figures 8 and 9, it can be
seen that for the first 13 microchannels, the whole microchannel flat tube was obviously
divided into a superheat region and a two-phase region, respectively. In addition, from
the 14th microchannel, the entire microchannel was completely occupied by the two-phase
refrigerant, although the dryness of the refrigerant in the microchannel gradually increased
along the microchannel’s length. These results indicate that the outlet refrigerant of the 1st
microchannel was up to 24.5 ◦C, which is very close to the 26 ◦C of the inlet air temperature,
while for the 25th microchannel, the dryness of the refrigerant only increased from 0.2 to 0.3.
The statistics show that the length of the superheated region was approximately 267 mm for
the first microchannel, which means approximately 66.7% of the microchannel’s length was
occupied by the superheated refrigerant, and the superheated region accounted for 19.3% of
all of the microchannels’ heat transfer area. Figures 8 and 9 also show that the length of the
superheated region gradually reduced, and the length of the two-phase region gradually
increased. The reasons for this are that the air temperature reduction and refrigerant mass
flow rate increased in the microchannels in the direction of the air flow, which is discussed
later in this paper.
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3.1.2. Refrigerant Pressure Drop

Figure 10 shows that the pressure drop of the refrigerant in the two-phase of the
1st microchannel first increased with the increase in dryness, and then reached the maxi-
mum value when the dryness equaled 0.85, after which, it decreased sharply. The pressure
drop in the two-phase region of this paper was very similar to that given by Kim [38].
Because of the refrigerant pressure drop change with the dryness in the two-phase region,
there was a pressure drop change in the refrigerant with the number of micro-element,
as shown in Figure 11. When the refrigerant changed from the two-phase state into the
superheated state, the pressure drop increased slowly with the number of micro-elements
because of the increase in the refrigerant temperature. The pressure drop in the superheated
region was almost equal to the pressure drop when the refrigerant dryness was 0.45, which
coincides well with the conclusion of J.H. Yun [39].
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To analyze the pressure drop in the two-phase and superheated regions, the pressure
drop in the two-phase and superheated regions for all microchannels were calculated,
as shown in Figure 12. From Figure 12, it can be seen that for the 1st microchannel, the
two-phase region pressure drop was approximately 0.6 kPa, accounting for approximately
67.1% of the total pressure drop. Then, the pressure drop in the two-phase region increased
gradually in the direction of the airflow until the 13th microchannel.
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3.1.3. Refrigerant Mass Flow Rate

Figure 13 shows the mass flow rate of refrigerant in the microchannels. From Figure 13,
it can be seen that the mass flow rate of the refrigerant in the microchannels increased in the
direction of the air flow, and the mass flow rate of the first 13 microchannels increased much
more slowly than in the other 12 microchannels. For the 1st microchannel, the refrigerant
mass flow rate was only approximately 0.049 kg/s, while the refrigerant mass flow rate
of the 25th microchannel increased to approximately 0.127 kg/s, which is approximately
2.59 times that of the 1st microchannel. The main reason for the uneven refrigerant mass
distribution is the uneven heat transfer among the microchannels, which finally determines
the distribution of the refrigerant dryness and pressure loss in the microchannels. As
shown in Figure 10, the pressure drop of the refrigerant increased with the dryness in the
refrigerant when the dryness was lower than 0.85, even in the superheated region, the
pressure drop was higher than when the dryness equaled 0.45. For the microchannels in
the front part of the flat tube, the longer the superheated region, the lower the refrigerant
mass flow rate. On the contrary, for the microchannels in the rear part of the flat tube,
the microchannel was occupied by the two-phase refrigerant, and the dryness decreased
gradually in the direction of the air flow. According to the relationship between the
refrigerant dryness and the pressure drop in Figure 10, more refrigerant will flow through
microchannels under equal pressure drop conditions.
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In the published literature, three values are used to evaluate the uniformity of the
mass flow rate distribution. The first one can be calculated by Equation (40):

M =
|mi −mave|

mave
(40)

where mave is the average refrigerant mass flow rate for the microchannels, kg/s; mi is the
refrigerant mass flow rate for the microchannel i, kg/s; Therefore, in Equation (40), the
value of M is smaller, and the flow distribution is more uniform.

In [40], the flow maldistribution was evaluated through the standard deviation in the
mass flow rate distribution. The standard deviation of a variable, S, is given as:

S =

√
n

n− 1∑n
i=1 (

mi
mave

− 1)
2

(41)

In Equation (41), when the unevenness value S is smaller, the flow distribution is
more uniform.

In [41], the refrigerant distribution parameter (RDP) was used to evaluate the uni-
formity of the refrigerant distribution in the heat exchanger. The RDP is calculated by
Equation (42):

RDP = 1−∑n
i=1
|mi −mave|

2nmave
(42)

From Equation (42), it can be seen that RDP is calculated on the basis of the average
relative deviation between the actual refrigerant mass flow rate and the average refrigerant
mass flow rate in the microchannels of the flat tube. RDP stands for the refrigerant
distribution uniformity of the flat tube. The range of RDP is (0, 1). The larger the RDP, the
better the refrigerant distribution uniformity.

Figure 14 shows the non-uniformity among the microchannels and Table 3 shows
three indicators to evaluate the uniformity of the mass flow rate of the refrigerant for the
microchannel heat exchanger. It can be seen from Figure 14 that the non-uniformity for
both the microchannels in the front and the back of the flat tube was large, and the largest
non-uniformity value reached 0.52. The results in Table 3 show that the S value was 1.67
and the RDP value was 0.85, which deviate greatly from the ideal values of 0 and 1.
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Table 3. Evaluation of the refrigerant distribution uniformity.

Evaluating Indicator Value of Microchannel Ideal Value

M
Maximum 0.52 0

Minmum 0.13 0

S 1.67 0

RDP 0.85 1

3.2. Air Side

Figure 15 shows the air temperature distribution of the microchannel, and Figure 16
shows the air temperature change in the airflow direction. The temperature difference
between the air out of the bottom and the top was 2.13 ◦C. Figure 17 shows the condensation
water distribution on the microchannels, which may be important for condensate water
drainage during structural optimization in the future. From Figure 17 it can be obviously
noticed that the mass of condensation water first increased in the front 13 microchannels
and then decreased gradually. The main reason for this is that the refrigerant distribution
in microchannels, as shown in Figure 7, led to air temperature decrease, as shown in
Figures 15 and 16, and finally led to an increase in water condensation. For the other
12 microchannels that were filled with two-phase refrigerant, the humidity of the air became
increasingly and lower; thus the condensate water gradually decreased.
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3.3. Heat Transfer Rate

Figure 18 shows that the heat exchange between the air and the refrigerant changed
with the number of micro-elements. It can apparently be known that the heat exchange in
the two-phase region increased with the height because of the increase in the tworefrigerant
dryness, which may increase the convection coefficient of the refrigerant. However, when
the refrigerant state changed from the two-phase state to the superheated state, the heat
exchange of the elements decreased sharply due to the lower convection coefficient of
refrigerant in the superheated state. Combined with refrigerant dryness in Figure 6 and
heat exchange of the 1st, 7th, 13th, 19th and 25th in Figure 18, it can be concluded that the
dryness of the refrigerant was a crucial factor influencing the heat transfer rate between the
air and refrigerant.
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Figure 18. Heat exchange between the air and refrigerant changing with the number of micro-elements.

Figure 19 shows the heat transfer rate of the microchannel. The heat transfer rate of
the microchannel first increased slowly in the 13 front microchannels and then decreased
quickly and then gradually. For the 25th microchannel, the heat transfer rate was only
2.58 W, which is only approximately one-quarter of the 13th microchannel. Combined with
the refrigerant mass flow rate distribution in Figure 13, it can be seen that the refrigerant
distribution in the microchannels was influenced greatly by the heat transfer rate of the
microchannels. For the first 13 microchannels, higher refrigerant mass flow rate led to
higher heat transfer intensities. However, for the last 12 microchannels, lower heat transfer
intensities led to higher refrigerant mass flow rates.
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Figure 19. Heat transfer rate of the microchannels.

Figure 20 shows the temperature difference between air and refrigerant change with
the number of microchannels. Combined with the condensation distribution on the mi-
crochannels in Figure 17, the heat transfer rate of the microchannel in Figure 19 can be
explained. Although a larger temperature difference is beneficial for heat transfer between
the air and the refrigerant, condensation water on the air side is also a non-negligible
factor. For the first 13 microchannels, although the temperature difference between the
air and refrigerant decreased, the condensate water increased. However, for the last
12 microchannels in which the refrigerant was not completely evaporated, both the tem-
perature difference and the mass of the condensate water decreased. Thus, it can be
concluded that the microchannels’ refrigerant mass flow rate should be optimized by the
microchannels’ structural optimization.
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Heat transfer between adjacent microchannels was also analyzed in this paper. Figure 21
and Table 4 shows the influence of heat transfer from adjacent microchannels. The rsults
show that for the first 13th microchannels, the heat transfer between two adjacent mi-
crochannels had almost no effect on the heat transfer, because the influence of the left
and right microchannels on the middle microchannel can be almost offset. For the last
12 microchannels filled completely by the two-phase refrigerant, the largest deviation was
4.47% which occurred in the 14th microchannel. The smallest deviation was 2.17% which
occurred in the 25th microchannel. However, the total heat exchange deviation for the



Energies 2022, 15, 5252 19 of 22

entire flat tube was only 1.17%, as shown as in Table 4. Therefore, it can be concluded that
heat exchange from adjacent microchannels is small and can be neglected.
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Table 4. Deviation considering the heat from adjacent microchannels.

Heat Transfer Deviation
of Microchannel Heat Transfer Deviation

of the Flat Tube
Minimum Deviation Maximum Deviation

Considering heat from
adjacent microchannels 2.77 W 9.08 W 177.51 W

Considering no heat from
adjacent microchannels 2.83 W 9.51 W 179.58 W

Percentage deviation 2.17% 4.74% 1.17%

4. Conclusions

In this paper, a heat transfer mathematical model of a microchannel evaporator’s flat
tube, which had vertically placed parallel microchannels inside in the airflow direction was
developed. The refrigerant distribution among the microchannels and its influence on the
heat transfer between the air and the refrigerant were studied. The following conclusions
can be drawn for the microchannel evaporator in summer conditions.

1. The refrigerant mass flow rate among the microchannels with the same structural
parameters in a flat tube was obviously nonuniform in the airflow direction, and the
refrigerant mass flow rate of the last microchannel was approximately 2.59 times that of the
first microchannel. The refrigerant in the microchannels of the first half could completely
evaporate, while the refrigerant in the microchannels of the second half incompletely
evaporated, which means the heat exchange between air and refrigerant was inadequate;

2. Refrigerant distribution and heat exchange between air and refrigerant were interre-
lated and interacted with each other. For the first 13 microchannels, higher refrigerant mass
flow rate led to a higher heat transfer intensity. However, for the last 12 microchannels,
lower heat transfer intensities led to a larger refrigerant mass flow rate. The heat exchange
rate of the 25th microchannel was only approximately one-quarter of the 13th microchannel.
The microchannels’ refrigerant mass flow rate should be optimized via structural optimiza-
tion of the microchannels;

3. There existed a temperature difference between the air out of the bottom and
the top of the flat tube, and the temperature difference was approximately 2.13 ◦C. The
microchannel in the middle of the flat tube had the most condensate water;
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4. Ignoring the heat transfer between microchannels will cause a deviation of 1.17%
for the numerical results of the heat transfer rate of the flat tube, which means that heat
transfer from adjacent microchannels can be neglected in the mathematical model.
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Nomenclature

A Area, m2 Greek symbols

Bo Boiling number α
Convective heat transfer coefficient,
W/(m2·K)

C Specific heat of air, J/(kg·K) α Void coefficient of refrigerant
Dh Hydraulic diameter, m β Correction factor

Enew
Convection heat transfer enhancement

ρ Density, kg/m3
factor

Fr Froude number τ0 Shear force, Pa
G Mass flux, kg/(m2s) δ Thickness of wall, m
Nu Nusselt number ∆P Pressure drop, Pa
P Pressure of refrigerant, Pa ∆Pacc Acceleration pressure drop, Pa
Pr Prandtl number ∆Pf Frictional pressure drop, Pa
Q Heat transfer per length, W/m ∆Pg Gravitational pressure drop, Pa
RDP Evaluating indicator of uniformity λ Thermal conductivity, W/(m·K)
Re Reynolds number µ Dynamic viscosity coefficient, N·s/m2

Snew Nucleate boiling suppression factor ν
Kinematic viscosity coefficient of air,
m2/s

We Weber number η Fin efficiency
Xtt Lockhart–Martinelli number ξw Moisture separation coefficient
d Absolute humidity of air, g/kg Subscripts
f Friction factor a Air
h Enthalpy, kJ/kg f Fin
j Air-side heat transfer factor i Number of microchannel or node
m Mass flow rate, kg/s liq Liquid refrigerant
q Heat flux density, W/m2 r Refrigerant
x Vapor quality of refrigerant s Superheated
S0 Wetted perimeter, m vap Refrigerant in vapor state
t Temperature, ◦C w Wall
µ Velocity, m/s
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