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Abstract: Lately, adequate protection strategies need to be developed when Microgrids (MGs) are
connected to smart grids to prevent undesirable tripping. Conventional relay settings need to be
adapted to changes in Distributed Generator (DG) penetrations or grid reconfigurations, which is
a complicated task that can be solved efficiently using Artificial Intelligence (AI)-based protection.
This paper compares and validates the difference between conventional protection (overcurrent and
differential) strategies and a new strategy based on Artificial Neural Networks (ANNs), which have
been shown as adequate protection, especially with reconfigurable smart grids. In addition, the
limitations of the conventional protections are discussed. The AI protection is employed through the
communication between all Protective Devices (PDs) in the grid, and a backup strategy that employs
the communication among the PDs in the same line. This paper goes a step further to validate
the protection strategies based on simulations using the MATLABTM platform and experimental
results using a scaled grid. The AI-based protection method gave the best solution as it can be
adapted for different grids with high accuracy and faster response than conventional protection,
and without the need to change the protection settings. The scaled grid was designed for the smart
grid to advocate the behavior of the protection strategies experimentally for both conventional and
AI-based protections.

Keywords: artificial neural network-based relay; protection strategies; smart grids; microgrids;
distribution system

1. Introduction

The penetration of MicroGrids (MGs) will be widely acknowledged as a critical tech-
nology for integrating Distributed Generators (DGs) in the Distribution System (DS) [1,2],
specifically with the widespread new loads such as the 5G communication channel, and
the increase in electric vehicle production, auto-drive vehicles, and smart homes [3–5]. This
means most of the electricity is covered by different types of DGs to form MGs.

Grid codes [6] require power converters to keep injecting power during grid faults
to support the grid by decreasing the active power and elevating the reactive power
injections [7,8]. Therefore, the need for a protection strategy for smart grids has become
more essential. However, many obstacles exist [9], which impacts the Protective Devices
(PDs) settings [8]. By using smart protection technologies, the efficiency of these networks
can be significantly improved [10].

Various techniques for locating and detecting faults in DSs with DG have been de-
veloped. As seen in Table 4 of [11], these approaches can be subdivided into two classes:
conventional or Artificial Intelligent (AI) strategies [10]. The limitations of conventional
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protection strategies are addressed in [12]. These limitations include a change in the power
flow resulting in unpredictable operating times. In addition, increasing the penetration
of DGs into the MGs results in a wide range of fault levels leading to protection blinding
and false tripping [13]. In [14], various DS protection strategies were proposed to utilize
the advantages of the DG entirely. The common protection challenges associated with
integrating DG into DSs were discussed in [15,16]. A comparison between different fault
classification methods was presented in Table 4 of [14]; in addition, a comparison between
AI techniques is presented in Table 3 of [17], and the protection schemes for MGs are
presented in Table 4 of [17].

Current research trends indicate that the addition of MG threatens conventional
protection, such as overcurrent and differential protections, so settings and parameters
need to be updated. Traditional protection mechanisms have evolved into new features
as a result of standards like IEC 61850 and Ethernet-based communication capabilities,
and as a result of utilizing Multi-Agent System (MAS) [18,19] or wireless networks [20]. A
two-terminal pilot channel can be used to reduce the communication cost by employing
a multi-terminal current differential protection scheme. It should be noted that previous
studies have focused on the non-based inverter DS. One of the main concepts in smart
grids is the evolution of a centralized controller with Differential Relay (DR). In [20,21], the
theory of a hybrid protection scheme was presented, which employs the traditional DR
alongside the adaptive one via a central controller for a PV-based inverter system. However,
the system was not tested with high PV penetration nor with high fault resistance.

Unlike conventional protections, smart protection techniques can locate the fault for
any fault resistance or load consumption even when the grid can be reconfigured. It can be
concluded, from Table 1 of [16], that few studies have investigated the protection system
behavior with high DG-based inverter penetration [22–27].

None of the previous studies used a coordination system with the directional relay
system through Artificial Neural Networks (ANNs). The AI protection scheme is based on
two strategies. The first strategy is the Centralize Controller (CE) to employ the commu-
nication between all PDs in the grid. The second strategy, named Zone Controller (ZO),
functions as a backup strategy depending on the communication among the PDs in the
same line. This protection strategy makes it possible to locate and isolate symmetrical
and unsymmetrical faults. In addition, it considers the changing load consumption, DG
penetration, different fault locations, HV/MV transformer configuration, and low and high
fault resistance to offer more stable and redundant protection [28].

It should be noted that this paper is an evolution of the authors’ previous work
regarding overcurrent protection through ANNs for smart distribution networks [28]. It
goes a step further in two main branches; on the one hand, we studied the behavior
of the conventional and the proposed protection algorithms when MGs are connected
to a DS with low short circuit power. In addition, a comparison of these protection
algorithms is provided and validated experimentally. On the other hand, the effectiveness
of the proposed AI-protection strategy is illustrated and compared with two conventional
protection strategies, Overcurrent Relay (OCR) and DR. In the authors’ previous work, the
analysis was carried out by sending the data of the faulted line from the dSPACE to be
managed through the Digital Signal Processor (DSP) controller. The data of the healthy
lines were set within the DSP controller to check the performance of the solid-state relay.
However, we designed a scaled system for the Medium Voltage (MV) DS and this was
implemented experimentally in the laboratory. The behavior of the proposed protection
algorithms was demonstrated and analyzed experimentally, considering the whole grid
without using data generated from the dSPACE. In this case, the dSPACE was used only to
control the inverter of the DG.

The rest of the paper is organized as follows: the challenges of using the conventional
and AI-based protection techniques with MGs is clarified in Section 2. Section 3 explains
the proposed protection strategy. Then, a comparative study is developed between the
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OCR, DR conventional relays, and the proposed protection scheme in Section 4. Section 5 is
devoted to the experimental results followed by the conclusions of the paper in Section 6.

2. Protection Challenges

The integration of MGs in DS influences the conventional protection, so current re-
search work aims to update the settings and the parameters of the conventional protections
to cope with the new challenges. Several methods have been developed to calculate
the OCR parameters with MG penetration. Some of them use a microprocessor-based
relay without communication [29]. Another way is to use linear programming with com-
munication [30]. Previous studies focused on the non-based inverter DS. In [31], a new
communication-assisted over current protection structure was proposed for inverter-based
DC MGs. However, a major disadvantage is the slow tripping that may increase the damage
to the faulty equipment based on the operating conditions.

DR is one of the most applied methods to protect DS, especially with MG penetra-
tions [15], as it solves the bidirectional power flow issue [14]. However, DR may face
tripping problems if the current transformers are saturated or not configured correctly [32].
In addition, with the increase in MG penetration, the threshold current also increases, and
the sensitivity of the relays is thus decreased. In addition, if the MG contribution comes
from one end of the faulted line and is approximately equal to the current from the other
end, the DR could face tripping problems, particularly with high MG penetration [33].
When the MG penetration changes, the OCR and DR settings need to be modified to adapt
to the grid’s new situation, as mentioned in [28], which can be done using several methods,
as explained in [34]. Many researchers propose different techniques to update the settings
of conventional relays with MG penetration. In [35], dual setting relays were equipped
with two inverse time-current characteristics. However, previous studies did not focus
on the PV-based inverter. In [36,37], the same idea was implemented with different net-
work reconfigurations for inverter-based MGs, but the reliability evaluation and stability
improvement need to be carefully studied.

Adaptive protection enables relays to react to any changes in the DS. Though this
process’s complexity is high, a proper communication medium is needed, mainly with
grid reconfigurations and MG penetration into DS. In [38,39], a two-stage optimization
approach was presented, including automated online readjustment of the relay settings to
match with various DS operating conditions. One way to rapidly update the relay setting
is to use communication, as presented in [20,40]. Another idea is based on pre-processing
the faulted current and voltage signals using Fourier transform. In [41], a data-mining-
based differential protection scheme was proposed, using discrete Fourier transform to
estimate the most affected features during faults. A similar strategy was proposed in [42]
using correlation transformation of the short-circuit current. In [43], a protection scheme
based on harmonic analysis was proposed for an inverter-based MG with a reconfigurable
configuration. Nevertheless, as previous studies depend on the harmonics, the protection
scheme’s performance must be analyzed, in particular, with various fault resistance when
the fault is close to the point of common coupling.

The Differential Evolution (DE) algorithm is an effective way to solve directional
OCR coordination problems. In [44,45], an enhanced DE was proposed, and comparisons
among different versions of DE were presented. However, previous research focused
on non-based inverter generators. Furthermore, the protection system’s behavior during
grid reconfigurations has not been studied. Recently, AI techniques have gained more
importance in the protection of DS due to their ability to operate quickly and deal with
many inputs. A Fuzzy Logic Controller to enhance the current differential protection
scheme was presented in [46]. Another method is based on Particle Swarm Optimization
(PSO); in [47], an adaptive protection approach was proposed through Integer Linear
Programming (ILP) and PSO. ANNs are also one of the most effective methods to solve
protection problems. In [48], a smart differential protection scheme using a nonlinear signal



Energies 2022, 15, 4933 4 of 18

transformation based on ANN was proposed. However, the preceding research did not
consider inverter-based generators.

Various techniques have been established lately in the context of the availability
of inverter-based generators. In [34], a centralized algorithm with mixed-integer linear
programming was proposed to obtain the relay setting, although no backup protection
was introduced, and the algorithm was not tested experimentally. In [5], a fault diagnostic
scheme utilizing Discrete Wavelet Transform and ANN was proposed. However, the error
percentage was significant, due to the amount of transient data used to train the ANN.

3. Proposed CE and ZO Protection Algorithms

As seen from the aforementioned papers, a protection scheme for a DS with high
MG penetration is required. The PDs must be capable of adapting to the variations intro-
duced by the connected DGs to the grid, which involves the possible usage of PDs with
directional capabilities including several characteristics such as fast reactions, sensitivity,
selectivity, and reliability, thereby improving the DG fault ride through [15]. The proposed
protection scheme, explained in [16], presents the characteristics mentioned above for
the inverter-based generators using CE and an ANN-based backup ZO. It is important
to note that the particularities of the effect of the inverter-based generators have been
taken into consideration, such as small transient duration, low short-circuit current, and
reversible power flow. Another aspect that must be considered is the ground connection of
the HV/MV transformer as this connection will influence the short-circuit current in the
network leading to a variation in the protection system performance. We studied different
connections along with several topologies maintained by many facilities. The most conven-
tional implemented configuration is to connect a zig-zag transformer to have an artificial
neutral in the delta side of the medium voltage transformer, YNd11 grounded through
zig-zag [49]. The analyzed grid shown in Figure 1 consists of several MGs connected to a
DS. The proposed protection strategy was tested for other grid topologies. Table 1 shows
the grid parameters.
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Table 1. Grid parameters.

Main Grid
HV/MV

Transformer
(YNd11)

Zig-Zag DL
MV/LV

Transformer
(Dyn11)

DG

Rated voltage:
66 kV

Short circuit
power: 360 MVA

Rated power:
25 MVA

Rated voltage:
66/20 kV

Usc (%): 11

Grounding
reactance:69.282 Ω
Single-phase fault

current: 500 A

Resistance: 0.16 Ω/km
Reactance: 0.109 Ω/km

Capacitance:
0.309 µF/km

Line length: 2 km

Rated power:
3 × 2 MVA

Rated voltage:
20/0.4 kV

Usc (%): 4.5

Rated power:
6 MVA

Rated voltage:
400 V

The first algorithm (CE) is based on Direction of Power Flow (DPF) data and positive-
sequence current (i+) values analyzed from all PDs in the grid. These data were transferred
to the CE, as shown on the left side of Figure 1. The second algorithm is the ZO, located at
each PD, which rely on exchanging DPF data via the communication between both PDs in
the same line.

The usage of CE and ZO algorithms is modeled and adapted by ANN to automatically
coordinate the PD decision. The use of ANN provides the advantages of quick decision-
making and massive data processing, making ANN preferred in DS with a high number of
buses. Figure 2 depicts the structure that describes the ANN fault location scheme. Each
input to neuron (x) is given a weight (W) that corresponds to the input’s contribution,
then a bias (b) is added to the summation of all inputs (from 1 to 24); each input includes
64 samples per cycle.
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A significant number of cases are required to train the ANN, considering numerous
variables such as variable DG penetration, location, various fault resistance, types, and
locations. Figure 3 shows the flowchart of the ANN procedure starting from the system
modeling, passing through the system simulation, taking into consideration different grid
scenarios, and ending by ANN validation and testing.

The Neural Net Fitting tool (nftool) from the MatlabTM Toolbox (MathWorks, Natick,
MA, USA) was utilized to complete this task. After that, the most suitable training tech-
nique, “Levenberg Marquardt” was chosen. This approach necessitates a higher level of
memory but requires less training time [50]. The ANN is trained for about 5000 cases to
manage parameter changes that impact the protection algorithm’s decision.

Based on the directional relay with ANN, the proposed protection strategy is an
efficient option mainly for reconfigurable smart grids with MGs, where the direction of the
power flow can vary continuously. Utilizing this feature provides the protection scheme
with a level of reliability in locating a faulted part of the system during different conditions.
The CE unit assesses the fault location depending on the network-wide comparative
measurements and triggers the fitting circuit breakers during the fault. ZO is placed into
action in parallel to strengthen the security and redundancy of the protection system, and
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the decisions of both controllers are assessed. The algorithm is dependent on the peer PDs
in the same line and delivers their information to ZO installed at each PD [51]. If there is
a communication problem, the decision priority shifts from one algorithm to the next. If
both decision signals are available, they are compared and a priority check is performed to
determine the best approach.
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The author’s previous work presented the ANN design, training, and detailed param-
eters. To calculate the Direction of Power Flow (DPF) at each PD, abc voltage and current
need to be measured, as presented in the author’s previous work [28]. The flowchart of
the proposed protection scheme is presented in Figure 4. In the beginning, the inputs and
communication signals from all PDs must be checked for their availability. In the case of a
discrepancy and to ensure that the error is permanent, the signals are rechecked after half a
cycle utilizing variable “a”. The CE decision is performed if the signals are received. At the
same time, the ZO algorithm is executed. If the decision of both algorithms agrees, then
the trip decision is performed; otherwise, the priority goes to the decision of the ZO, as it
has more secure communication signals. In the case of no decision signals received, the
decision is to send a trip signal to the PD.

Another scenario was studied as follows: if the CE controller sends a trip signal to
the PD and the PD does not respond, the CE controller will start a post-processing stage
to disconnect the closest line to the fault. For instance, if a fault occurs at Distribution
Line (DL) 4 in Figure 1, then PD7 and PD8 must disconnect as they are the two breakers
connected at both ends of the faulted line DL4. Nevertheless, if they do not trip, the CE
must send a trip signal to disconnect the nearest PDs to the faulted line DL4, which are
PD6, and PD9. This step can guarantee the complete protection of the grid even if the trip
signal is not executed for any reason such as breaker failures.
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4. Analyzed Grid and Test Results

The OCR and DR explained in [52] are used to demonstrate the comparison to em-
phasize the advantages of the proposed protection strategy. The OCR, DR, and CE-ZO
protection strategies were tested using an analyzed DS connected to several MGs. The
algorithms were demonstrated for several DG penetrations, load consumptions, fault re-
sistances, fault types, and fault locations. In this paper, the IEEE extremely inverse curve
was selected as it guarantees the fastest disconnection [53]. The analysis of OCR, DR, and
CE-ZO protection algorithms’ performance is given for the grid represented in Figure 1.
The relay settings used to obtain Figure 5 are shown in Tables 2 and 3 for the OCR and DR
protection strategies. The currents at both ends of DL3 are represented in Figure 5 for the
three protection strategies. These results correspond to a three-phase fault in DL3 with a
fault resistance (r) equal to 0.1 Ω. Figure 5a shows the fault currents if two DGs are located
at buses 4 and 6, Figure 5b with one DG connected at bus 4, and Figure 5c without DG,
respectively. For the DR and CE-ZO protection strategies, the fault is cleared in a time of
less than 15 ms. However, as shown in Figure 5a, the trip is faster for the CE-ZO algorithm
than DR, because for DR the trip signal depends on the differential current value, while for
CE-ZO, it depends on the DPF criteria.
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Table 2. OCR settings.

Parameter (OCR) Value

Pick up current (pu) 1

Time Dial (TD) 0.5

Current Transformer (CT) 500:1

Table 3. DR settings.

Parameter (DR) Value

Differential current (pu) 1.08

Biased characteristic (K) 0.5

Current Transformer (CT) 500:1

As seen in Figure 5a for OCR, PD5 will trip, but PD6 will not trip as the settings of
the relay need to be updated. When two MGs are connected at buses 3 and 4, and if a
three-phase fault occurs at DL3, the faulted line will be fed from two points. The short-
circuit current passing through PD5 is equal to the short-circuit current when one MG is
connected at bus 3. However, the short-circuit current is different when an MG is connected
at bus 4, as PD6 will be supplied from the MG. This case is important to show the difference
between OCR and the other protection strategies. It can be concluded that the DR and
CE-ZO protection strategies can disconnect the faulted part of the system rapidly, and for
OCR and DR, the relay settings must be updated if DG penetration or grid configuration
changes. In Figure 6, the trip signals for the three relays are presented in a 3-D preview for
several DG penetrations, fault types, and fault resistance. It can be observed that the OCR
protection strategy is not a good option as the fault persists for many periods, and its trip is
affected by the DG penetration.
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Figure 6. Trip signal of OCR, DR, and CE-ZO behavior during symmetrical and unsymmetrical faults
with different fault resistance (a) with two DGs, (b) with one DG, and (c) without DG.

When two DGs are connected at buses 3 and 4, the power flow and the current values
are reduced in DL3 as MG1 and MG2 are close to the loads, so less power comes from bus
3. In the case of a single-phase to ground fault, as the ground connection is made through a
zigzag transformer with grounding reactance, the fault current during a single-phase fault
will be limited. Therefore, the DR will not trip in this case, as shown in Figure 7. However,
during a three-phase fault, the fault current will be high in both cases, with and without
MGs, as there is no influence from the zigzag transformer as shown in Figure 7.
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Figure 7. Short-circuit current for DR behavior during a single-phase fault in DL3 with fault resistance
r = 0.1 Ω (a) without DGs, and (b) with two DGs.

The DR protection strategy is also affected by significant changes in MG penetration,
which is averted using the CE-ZO protection strategy. The CE-ZO protection strategy can
disconnect the fault with several DG penetrations, as shown in Figures 5–7. Moreover, the
CE-ZO protection strategy can guarantee the fast disconnection of the fault even when
the grid changes the operation conditions. The results shown in Figure 6 support these
conclusions, where the OCR, DR, and CE-ZO protection strategies’ trip signals during
different fault types with different fault resistances in different locations are represented.
It can be concluded that the CE-ZO protection strategy presents better behavior under
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various grid operation conditions, generation, consumption, fault conditions, and also with
reconfigurations of the grid.

These results are some examples to emphasize the importance of the CE-ZO protection
strategy. This methodology can be adapted to other grid configurations. The scheme is
tested with other grid configurations changing load consumption, different fault locations,
DG penetration, fault types, and HV/MV transformer settings.

5. Experimental Results and Discussion

In this section, the experimental verification of the proposed algorithm is presented
using a scaled physical grid, along with the conventional protection strategies, OCR and
DR, and the proposed protection algorithm, CE and ZO. An equivalent model was built in
the laboratory to give the same response and dynamic performance of the studied grid. A
numerical relay based on the DSP TMS320F28335 type was used to implement the proposed
strategy, which processes the measurement data obtained from the sensors, executes the
algorithms, and finally gives the appropriate trip signals decision. The Solid-State Relay
(SSR) was used as a PD in the studied grids. In addition, an inductor LE was added to
emulate the impedance of the main grid, as shown in Figure 8b.
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(b) analyzed grid.

In the authors’ previous work [28], the SSR behavior was checked by simply sending
the data of the faulted line, generated by the dSPACE, to be processed by the DSP. However,
in this paper, a scaled system was designed and built experimentally in the laboratory
for the MV DS to check the performance of the proposed protection scheme practically in
different grid scenarios and configurations unlike the previously published work in the
literature. The protection strategy was tested for which the grid shown in Figure 1 was
adapted. The equivalent experimental system built in the laboratory is shown in Figure 9.



Energies 2022, 15, 4933 11 of 18

The system’s parameters are shown in Table 4. The base values for the DS in Figure 1
are: vB = 20 kV, iB = 721.7 A, ZB = 16 Ω, and for the grid in Figure 8 are: vB = 75 ×

√
3 V,

iB = 2.4 A, ZB = 31.25 Ω. The conceptual diagram of the algorithms to be applied practically
is shown in Figure 8a, and Figure 8b shows the implemented grid that consists of three DLs
and an inverter connected between DL1 and DL2.

Several tests were done in the laboratory. Figure 10 presents the trip signals of OCR,
DR, and CE-ZO protection strategies for symmetrical and unsymmetrical faults when the
fault is located at F1 and F2, as seen in Figure 8b. The relay settings for the OCR and
DR protection strategies were updated for each operation condition in the presence of
DG. The trip times obtained for the reduced scale grid in Figure 10b are close to those
obtained by simulation of the actual grid (see Figure 6). The CE-ZO algorithm was tested
for different grid reconfigurations experimentally and using simulation. One experimental
case is shown in Figure 11 to present the evolution of the abc voltages and currents for
symmetrical and unsymmetrical faults with CE-ZO algorithms. It can be noticed that the
simulation and experimental results are matched, and as is explained in Section 3, the
CE-ZO protection strategy gives the best performance. Moreover, no relay setting updating
is required.
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Table 4. System parameters.

Components Parameters Values

CINERGIA Inverter
Rated power 10 kVA

Rated voltage 400 V

Filter
Inductance (L) 10 mH

Resistance (R) 0.2 Ω

DC bus DC rated voltage 800 V

Three-phase Pacific
Power Source 345AMXT 4.5 kVA

SSR Crydom H12WD4850 48–660 VAC

Distribution Lines
(LN1, LN2, LN3)

Inductance (L1, L2, L3) 2.74, 1.37, 4.11 mH

Resistance (R1, R2, R3) 1250, 625, 1875 mΩ

Capacitance (C1, C2, C3) 0.632, 0.316, 10, 30 µF

Loads
Inductance (L1, L2) 10, 30 mH

Resistance (R1, R2) 14.5, 42 Ω
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Figure 10. Digital output of OCR, DR, and CE-ZO with DG during a (a) single-phase fault, and
(b) three-phase fault.

Figure 12 shows the experimental and simulation behavior of the OCR, DR, and
CE-ZO protection schemes and demonstrates the differences between them using the abc
currents at both ends of the faulted line. The algorithms were tested when a three-phase
fault was at F1 and F2 (see Figure 8b). The results show that the CE-ZO protection and
the DR in the tested cases give a faster trip decision than OCR, as shown in the third
row of Figure 12. Table 5 shows the effectiveness of the proposed strategy with other
strategies operating under similar conditions. The proposed protection strategy compared
to other protection strategies in terms of experimental verification, grid reconfiguration,
trip time, advantages and disadvantages, is shown. It can be concluded that the proposed
strategy provides fast tripping, and can deal with variable DG penetration, fault locations,
fault types, (HV/MV) transformer configurations, and fault resistances. However, the
disadvantage is the communication problems.
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Table 5. Comparison of the proposed strategy among other topologies operating under similar
conditions.

References Protection
Strategy

Experimental
Verification

Grid
Reconfiguration

Trip
Time Advantages Disadvantages

[22] DNN Yes No 14 ms

Fast tripping, Variable
DG penetration,
Different fault
resistance

Communication
problems, The offline
calculation, Not
adaptable for network
modifications

[27] Multi-terminal
DR Yes No 90 ms

Fast tripping, variable
DG penetration,
different fault
resistance

Communication
problems

Proposed
method [16] CE-ZO Yes Yes 10 ms

Fast tripping, variable
DG penetration, fault
locations, fault types,
(HV/MV) transformer
configuration, fault
resistance.

Communication
problems

[35] Dual setting
OCR No Yes >100 ms

Variable DG
penetration, high fault
resistance

Offline calculation

[37] OCR No No >200 ms
High DG penetration,
different fault
resistance

Offline calculation, not
adaptable for network
modifications

[38] MAS and OCR No No 300 ms High DG penetration,
no central controller

Communication
problems

[45]

Centralize
controller and

Linear
programming

No Yes 421 ms

Variable DG
penetration, no need
for training, obtain
relay settings
simultaneously

Communication
problems, knowledge
of DG and PD status,
more complex with
large no. of buses

6. Conclusions

Smart grids with MGs have several configurations due to load consumption, reconfig-
urations due to faults or maintenance, and DG penetration dynamic changes. Therefore,
renewable energies connected to smart grids require advanced protection strategies to
avoid undesired tripping, and the parameters of OCR and DR protection strategies are
complicated to fit and cannot be adapted to these changes in some cases. These drawbacks
can only be solved through a complex updated process of the protection settings, which
may not be possible when MGs are connected to smart grids. The major contribution
is the comparison and the experimental validation of the proposed protection strategies
with OCR and DR strategies. In addition, the drawbacks of conventional strategies are
highlighted experimentally in the lab and solved with the developed AI protection. A
protection strategy was developed using AI, which was used to solve the highlighted
drawbacks of conventional protections and was validated experimentally to protect smart
grids effectively to avoid these drawbacks. The protection scheme is based on two AI-based
strategies to guarantee backup protection. The protection strategies based on a directional
relay with an ANN can adapt to different grid reconfigurations. In addition, the trip deci-
sion is faster than conventional relays. The new approach improves the system’s accuracy
and speeds up the response of the protection system to unexpected changes in the grid.
A comparison between conventional OCR, DR, and AI CE-ZO protection strategies illus-
trated the effectiveness of the proposed protection strategy. Moreover, the given strategies
were tested experimentally in the laboratory for several grid situations through a scaled
model designed and built to emulate the analyzed MV DS. Furthermore, the trip time
speed of the PD was compared with other topologies operating under similar conditions.
The AI-based protection strategies showed their practical advantages over conventional
protections similar to the simulation results.
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