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Abstract: Networked microgrid (NMG) is a novel conceptual paradigm that can bring multiple ad-
vantages to the distributed system. Increasing renewable energy utilization, reliability and efficiency
of system operation and flexibility of energy sharing amongst several microgrids (MGs) are some
specific privileges of NMG. In this paper, residential MGs, commercial MGs, and industrial MGs are
considered as a community of NMG. The loads’ profiles are split into multiple sections to evaluate the
maximum load demand (MLD). Based on the optimal operation of each MG, the operating reserve
(OR) of the MGs is calculated for each section. Then, the self-organizing map as a supervised and
a k-means algorithm as an unsupervised learning clustering method is utilized to cluster the MGs
and effective energy-sharing. The clustering is based on the maximum load demand of MGs and the
operating reserve of dispatchable energy sources, and the goal is to provide a more efficient system
with high reliability. Eventually, the performance of this energy management and its benefits to
the whole system is surveyed effectively. The proposed energy management system offers a more
reliable system due to the possibility of reserved energy for MGs in case of power outage variation or
shortage of power.

Keywords: networked microgrid; energy management; clustering; SOM algorithm; k-means algorithm

1. Introduction

Microgrids (MGs) are inevitably a prominent part of the power system due to the
capability of diminishing concerns related to rapid energy growth. Therefore, an optimal
design of MGs has been one of the main issues between researchers and electricians. An
optimal design can bring the following benefits to the system: lower investment cost,
lower maintenance and operation cost, lower power loss, and higher reliability [1,2]. These
benefits can be achieved by utilizing an energy management system (EMS) to coordinate
the production and consumption energies optimally. After the achieved successes in MGs
performance, the idea of networked MG (NMG) came up to enhance MGs’ operation in
grid-connected and specifically in an isolated system [3]. Although EMS in NMG is more
complicated in comparison with individual MG, the flexibility of energy sharing amongst
several MGs can offer extra benefits to the system. Increasing the reliability of the system,
specifically in an isolated operation mode, and the possibility of power management in an
interactive manner between MGs to provide the demand are some of the advantages that
can be gained in NMG [4,5].

Besides MG and NMG, another structure to handle distributed energy resources
(DERs) is known as a virtual power plant (VPP). Although a VPP is able to integrate
demand response, renewable energy generation, and storage energy into the energy storage
system (ESS) in the same way as MGs, there are some particular features in the association
of VPP [6,7]:

- VPPs often are considered as grid-connected systems,
- Due to the non-isolated operation mode of VPP, the absence of ESS is possible in VPP,
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- Due to the dependency of VPP on information technology and data analysis, a wide
variety of energy resources can combine regardless of their deployment distance,

- Due to no particular restricted regulation being associated with VPP, they can partici-
pate in the wholesale trade market.

Like MGs and NMGs, the energy management system plays a crucial role in coordi-
nating the power flows of various power generation units and power demand units in
VPP. Several energy management strategies are proposed in the literature. Centralized
and decentralized control are the most common strategies; however, distributed control
schemes have recently received more attention [8,9]. A review of the cooperation and
operation of microgrid clusters is performed in [10]. Several aspects of the interconnected
MGs are investigated in this reference, such as control and energy-management strategies
and architecture configurations in terms of layout, power conversion technology, and line
frequency technology. Furthermore, energy trading and suitable energy-market designs
for microgrids cluster implementation are addressed. In [11], the microgrid as a single
entity and its possible interactions with external grids is defined. Moreover, the possible
multi-microgrid architectures are defined in terms of layout, line technology, and interface
technology. Parallel connected microgrids with an external grid, a grid of a series of inter-
connected microgrids, and mixed parallel-series connection are three layout architectures
analyzed in [11]. Eventually, a comparison between the different architectures is performed
from the aspect of cost, scalability, protection, reliability, stability, communications, and
business models. A scalable and reconfigurable hybrid AC/DC microgrid clustering archi-
tecture is surveyed in [12]. The proposed energy networking unit (ENU) is used to interface
the AC and DC subgrid in a single hybrid microgrid and also facilitates the connection with
the external power grid. The ENU-based hybrid microgrid clustering architecture provides
scalability, reconfigurability, and modularity architecture. Consequently, this architecture
could realize flexible AC/DC interconnection between microgrids by the same converter
modules with fewer power conversion units.

Based on the proposed energy management systems, various control methods for
NMG and VPP have been presented recently. Blockchain technologies are utilized in [13] to
optimize the financial and physical operations of power distribution systems by providing
a powerful and reliable path for launching distributed data storage and management.
The socioeconomic requirements of transactive energy management at the power distri-
bution level are examined by blockchain technology. In addition, secure optimal energy
transactions between networked microgrids and the local distribution grid are presented
in [13].

A two-stage energy management strategy for networked microgrids with high renew-
able penetration is developed in [14]. In the first stage, a hierarchical hybrid control method
is utilized for networked microgrids to minimize the system operation cost. In the second
stage, the components in microgrids are adjusted optimally in order to minimize the imbal-
ance cost between day-ahead and real-time markets. A cooperative energy management
optimization based on distributed model predictive control (MPC) in grid-connected NMG
is conducted in [15]. In this scheme, a virtual two-hierarchy NMG structure including MGs
and distributed energy resources (DERs) is proposed such that all the DERs represent a
virtual MG (VMG) as an upper level and the MGs belong to the lower level. The VMG can
exchange power with the utility grid, and MGs at the lower level have to use VMS to share
the energy. In [16], a three-level planning model for optimal sizing of networked microgrids
is suggested. This research considers a trade-off between resilience and costs in the form
of three levels. The first level is employed to tackle the normal sizing problem, while
a time-coupled AC optimal power flow (OPF) is utilized to capture stability properties
for accurate decision-making. The second and third levels are combined as a defender-
attacker-defender model. First, the suggested adaptive genetic algorithm (AGA) is utilized
to generate attacking plans that capture load profile uncertainty and contingencies for load
shedding maximization. Then, a multi-objective optimization problem is suggested to
obtain a trade-off between cost and resilience.



Energies 2022, 15, 4915 3 of 15

A novel cooperative MPC-based energy management for urban districts consisting of
multiple microgrids is proposed in [17]. The proposed energy management coordinates the
available flexibility sources of microgrids in order to obtain a common goal. MGs employ
an MPC-based EMS to optimally control the loads and generation devices. The distributed
proposed coordination algorithm guarantees cooperation amongst the microgrids. In [18],
a community-based multi-party microgrid in grid-connected and islanded mode with
different structures and a unique operating point is discussed. An iterative bi-level model
simulates the interaction between the community microgrid operator and multiple parties
for deriving good enough market-clearing results during the microgrid’s normal operation
status. A multi-agent framework for the energy optimization of NMG is proposed in [19].
The game theory optimization model is applied to this paper in order to optimize the
capacity configuration of the agents. In [20], a comprehensive overview of a multi-agent
system-(MAS) based distributed coordinated control in NMG is presented.

This paper proposes a novel control strategy for NMG based on MGs clustering. The
residential, commercial, and industrial MGs with various load patterns are involved in the
NMG. The NMG is structured as a star connection such that all MGs are connected to the
VPP. Therefore, the whole system can operate in either grid-connected or isolated mode.
A similar structure is presented in [15]. However, the collaborative MGs are considered
as a single cluster. In this paper, MGs are clustered by employing two different clustering
algorithms. The k-means and self-organizing map (SOM) algorithms are two well-known
methods of unsupervised and supervised learning clustering. The MGs clustering is based
on the maximum load demand (MLD) and operating reserve (OR) of dispatchable energy
sources such as diesel generators (DGs) for each time step. By determining the MG clusters,
the EMS is responsible for supplying the demand economically. By this approach, the MLD
of the MGs in a particular cluster can be met by the operating reserve of the dispatchable
energy sources. Consequently, the reliability of the system increased significantly, and it
could be concluded that the peak load alleviation in the clustered MG results in efficient
changes in the design of MGs from the capital, replacement, and maintenance and operation
(M&O) cost perspective. The clustering approach makes the performance of EMS more
efficient, especially in large-scale NMG, by concentrating on some specific MGs.

The rest of this paper is organized as follows: in Section 2, the system configuration of
the NMG is presented. Moreover, the k-means algorithm and SOM clustering method are
discussed in this section. In Section 2.4, the applied control strategy and EMS is analyzed.
The simulation results are presented in Section 3, and a comparative analysis is performed
in Section 4. The paper ends with a discussion of conclusions reached.

2. System Configuration, Clustering Methods, and System Operation
2.1. System Configuration

The NMG under study in this paper involves three residential MGs, two commercial
MGs, three industrial MGs, and a VPP. In [21], different types of NMG configurations
with their potential pros and cons are reviewed. Star-connected NMG, ring-connected
NMG, and mesh-connected NMG are the three usual configurations in NMG. As shown
in Figure 1, the star-connected configuration is used for the NMG. In this configuration,
all MGs are connected to the VPP as the central point at the point of common coupling
(PCC). Therefore, the power transaction amongst MGs can be realized through the VPP.
As mentioned, the VPPs are usually grid-connected systems. Therefore, the discussed
configuration is connected to the main grid through the VPP.

Moreover, each MG consists of renewable energy sources (RESs) like photovoltaic
(PV) and wind turbine (WT) conventional energy sources such as DG, and energy storage
systems (ESSs) like batteries. In addition, the VPP is considered to consist of only renewable
energies like PV and WT, a battery bank, and a group of loads. In Table 1, the component
size of each MG is listed. The HOMER is utilized to obtain the size of components. To this
end, the load profiles and geographical location are introduced to evaluate the renewable
resources production.
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Table 1. Component size of MGs and VPP.

PV (kW) WT (kW) DG (kW) Battery (kWh)

MG1 6.5 2 6.8 29
MG2 8.31 3 9.1 38
MG3 16.8 4 15 57
MG4 29.1 0 17 86
MG5 20 0 12 56
MG6 20.6 0 24 36
MG7 14.1 0 29 2
MG8 19 0 23 30
VPP 15 2 - 10

2.2. K-Means Clustering Algorithm

Unsupervised learning is one of the significant problems in artificial intelligence and
machine learning. Clustering-based methods, feature extraction-based methods, and artifi-
cial neural network-(ANN) based methods are the three main approaches to unsupervised
learning. The k-means problem is one of the well-known algorithms widely used in clus-
tering [22]. In this algorithm, the data are clustered based on similarity. It has to be noted
that similarity is a general concept, and it can be inferred as distance, size, etc. Figure 2
illustrates the k-means algorithm. As can be seen from Figure 2, each data x is compared
with the center of clusters, and the norm of the vector is calculated by the norm function
block to evaluate the distance of data and the cluster’s center. In this paper, the Euclidean
norm is utilized as a distance metric. Therefore, the clustering problem can be stated as [22]:

min E =
1
N

N

∑
i=1
‖xi − ck‖, (1)

where N is the number of data, x is data, k is the number of clusters, and ck is the center of
the cluster. To minimize this problem, the k-means algorithm assumed that the following
equation is established for each cluster Sk with the center of ck:

ck =
1
|Sk| ∑

x∈Sk

x (2)
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The k-means algorithm employs two steps to solve the problem: the competition step
and the update step. Each observation is assigned to the cluster in the competition step
with the nearest mean. In addition, in the update step, the clusters’ centers are updated
with the mean value of the cluster’s members. This algorithm proceeds in an iterative
interaction until the converging by observing no significant change in the clusters. This
algorithm does not guarantee the finding of optimum solutions. In addition, the initial
random cluster’s centers have a great effect on the final results. However, the k-means
algorithm can provide a simple solution without mathematical complexity.

2.3. Self-Organizing Map Algorithm

The self-organizing map (SOM) is one of the artificial neural networks that, by employ-
ing supervised machine learning techniques, is widely used in clustering applications and
dimension reduction of high-dimensional data [23]. Figure 3 presents the SOM algorithm
structure. As observed, each data x is applied to the lattice involving a network of neurons.
This stage is similar to the k-means algorithm at the phase of competition in order to evalu-
ate the winner neuron. However, in SOM, the other neurons depending on the distance
from the winner neuron will be stimulated as well. Eventually, the vector quantizer unit
declares the winner neuron.
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Three main phases are involved in designing a SOM, the competitive, cooperative, and
adaptation phases. In the competitive phase, the winner neuron is evaluated by comparing
the similarity of data and neurons. In the cooperative phase, the effect of the winner neuron
on other neurons is evaluated. The neurons with a smaller distance from the winner neuron
are stimulated more in comparison with most far neurons. To this end, the Gaussian
function is an appropriate function to assess the stimulation of neurons [23]:

hi,j(x, t) = exp

(
−1

2
di,j

σ(t)2

)
, (3)

where i is the index of the winner neuron, j is the index of other neurons, d is the distance
of the winner neuron with others, and σ is the standard deviation.

The adaptation phase is based on the Kohonen Learning Rule. This rule determines
the clusters’ centers based on the winner neuron and the adjacent stimulation neurons
as follows:

ωi(t + 1) = ωi(t)− ηhi,j(x, t)× (x−ωi(t)), (4)

where ω is the cluster’s center, η is the Kohonen learning rate usually equal to 0.01, and the
other parameters are defined in (3).

2.4. Control Strategy and Energy Management Algorithm

As mentioned, the proposed control strategy in this paper is based on MGs clustering
by means of unsupervised and supervised algorithms. It means the MGs are clustered
according to their similarities such that the MGs with higher load demand can be supplied
by the operating reserve of dispatchable energy producers such as DGs and micro-gas
turbines. Therefore, the MGs’ similarities are maximum load demand and the operating
reserve of dispatchable energy producers of each MG at each time slot. With this control
strategy, the system’s reliability will increase, and the size of energy production units will
decrease as well. The proposed control strategy consists of three steps:

(1) Load and energy generation units analysis in a certain time step;
(2) MGs clustering by k-means and SOM algorithm;
(3) MGs clustering optimization by EMS.

2.4.1. Load and Energy Generation Units Analysis

In each time step, the load and energy generation units are analyzed in order to evalu-
ate the maximum load demand (MLD) and operating reserve (OR). MLD and OR amounts
of each MG are essential data used by unsupervised and supervised learning clustering
methods to cluster the MGs. The operating reserve is the difference between electric load
and operating capacity. The maximum load for each time step can be obtained according
to the MGs’ load profile in Figure 4. However, to obtain the OR of dispatchable energy
generation units, the optimal operation of each individual MG is evaluated according to
the control strategy illustrated in Figure 5.
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As it can be seen from Figure 5, the optimal values of DG and Batteries of each MG
are calculated by the PSO algorithm. In this control strategy, the loads are preferably met
by renewable energies. However, in case of demanding more energy, the DG and battery
power are used considering the state of charge (SoC) of batteries.

2.4.2. MGs Clustering by K-Means and SOM Algorithm

According to the MLD and OR of each MG obtained in the previous step, the k-
means and SOM algorithms cluster the MGs in a manner that the MGs with higher MLD
are clustered with the MGs with higher operating reserve. Therefore, the reliability of
the system increases significantly due to the possibility of supplying the MLD by the
operating reserve of the clustered MGs. The x for both supervised and unsupervised
clustering methods introduced in this paper is considered (MLD, OR). However, the SOM
algorithm is able to do the clustering by considering ultra-multi-criteria due to mapping the
high dimensional data to reduce data. In order to enhance the performance of clustering
algorithms, the MLD is normalized by considering the peak load (PL) of the load profile,
as follows:

MLD =
MLD

PL
(5)

Furthermore, the clustering algorithms are based on similarities, and the similarity
meters are the distance between the data. Euclidean distance is utilized for the clustering
algorithms in this paper. Therefore, the ORs are applied to the clustering algorithm by
means of the following equation:

OR = 1− OR
ORmax

(6)

The maximum number of clusters is theoretically equal to the number of MGs. How-
ever, in this case, MGs operate individually. In this paper, the clusters’ number is deter-
mined by considering the various load patterns in the NMG, i.e., three clusters.

2.5. MGs Clustering Optimization by EMS

An EMS is applied to each cluster in order to coordinate the MGs in an optimal manner.
The EMS is responsible for supplying loads of the MGs involved in a particular cluster
cost-effectively. Therefore, the performance of the EMS is based on the minimization of
power generation cost functions. The optimization problem can be defined by the objective
function below:

min CF = min

{
CF

(
∑

i∈Cn

PVi

)
+ CF

(
∑

i∈Cn

WTi

)
+ CF

(
∑

i∈Cn

DGi

)
+ CF

(
∑

i∈Cn

BATi

)}
(7)

This minimization is performed for the MGs involved in cluster Cn. The cost functions
of the generation units are presented in [24,25]. Moreover, the optimization problem in MG
applications is constrained to technical and practical considerations. These constraints are
stated below:

∑
i∈Cn

PDGi+ ∑
i∈Cn

PBATi+ ∑
i∈Cn

PPVi+ ∑
i∈Cn

PWTi + ∑ VPP = ∑
i∈Cn

PLoadi
(8)

Pmin
DG ≤ PDG ≤ Pmax

DG (9)

0 ≤ PBAT ≤ Pmax
DG (10)

SoCmin ≤ SoC ≤ SoCmax (11)

(8) represents the power balance in the clustered MG. In (9) and (10), the power
restriction of diesel generators and batteries is presented, respectively. In (11), the state of
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charge (SoC) restriction of batteries is stated. In addition, PV and WT also produce energy
as non-dispatchable generators.

The minimization problem in (7) is solved using the particle swarm optimization (PSO)
algorithm. Amongst different heuristic optimization methods, PSO proposes a robust and
reliable solution over a short-time calculation. In the PSO algorithm, the particles are
identified by position and velocity. At the initial phase, the particles’ position and par best
position are initialized. Then over the several iterations, the particles’ position and velocity
will be updated such that the particles propel toward the global best.

To apply the PSO, the introduced objective function (OF) in (7) has to convert to a
closed-form formulation:

OF =

{
CF

(
∑

i∈Cn

DGi

)
+ CF

(
∑

i∈Cn

BATi

)}
× (1 + α× PBV), (12)

where PBV is power balance violation:

PBV = max

1−

(
∑

i∈Cn

PDGi + PBATi

)
∑

i∈Cn

(
PLoadi

− PPVi − PWTi

) , 0

 (13)

The power balance violation is considered as a multiplicative term for the OF equation
expressed in (12). In addition, α is the co-state variable that determines the amount of
penalty imposed on the OF in the case of existing PBV. The co-state α can be defined as a
constant value, or it could be defined as a variable value in an adaptive problem. Here, α is
considered as a constant value equal to 1000.

Consequently, the EMS determines the optimal operation of each generation unit in
the corresponding cluster. And the same happens to other clusters.

3. Results Analysis

In order to analyze the proposed control strategy, the simulations are performed in
MATLAB. In this paper, to reduce the burden of calculations, the simulation time step
is considered to be 1 h. For instance, for the first step, the load analysis is carried out to
determine the MLD of each MG. Figure 4 shows the load profile of MGs. As can be seen,
the load patterns are different for residential, commercial, and industrial MGs. Therefore,
in each time step, the maximum load power of the MGs is distinct. Afterward, according to
the optimal operation of MGs, the operating reserve of the MGs is evaluated. In Table 2,
the MLD and OR of the MGs for 24 h are presented.

According to the evaluated MLD and OR, the k-means and SOM algorithms are
applied to cluster the MGs. Because [MLD, OR] are applied to both k-means and SOM,
therefore the obtained results of clustering for these methods are similar. However, as
mentioned, the SOM algorithm is potential to cluster the MGs by considering more criteria
such as the produced power of each power generation unit, SoC, and depth of discharge
(DoD) of batteries.

Higher MLD and higher OR define the similarity criteria of clustered MGs. In this
simulation, the number of clusters is considered to be three due to the existing three
different load patterns. The k-means and SOM clustering results for 24 h are presented in
Table 3. As can be seen from Table 3, over the 24 h simulation period, 9 different clusters
appear. Figure 6 illustrates the MGs clustering based on the defined similarities for the
time step 1, 8, and 16.



Energies 2022, 15, 4915 10 of 15

Table 2. Maximum load demand (MLD) and operating reserve (OR) of MGs for different step time.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

MG1
MLD 0.32 0.3 0.29 0.3 0.97 1.5 1.71 1.4 1.25 1.26 1.33 1.67 1.99 1.53 1.21 1.23 1.12 2.12 3.63 3.18 2.09 1.34 0.93 0.58
OR 6.48 6.5 6.51 6.5 5.83 5.3 5.09 5.4 5.55 5.54 4.57 5.13 4.81 5.27 5.59 5.57 5.68 4.68 3.17 3.62 4.71 5.46 5.87 6.22

MG2
MLD 0.42 0.4 0.38 0.4 1.29 1.99 2.27 1.86 1.66 1.67 1.77 2.22 2.65 2.04 1.61 1.64 1.49 2.82 4.83 4.23 2.78 1.78 1.24 0.77
OR 8.68 8.7 8.72 8.7 7.81 7.11 6.83 7.24 7.44 7.43 7.33 6.88 6.45 7.06 7.49 7.46 7.61 6.28 4.27 4.87 6.32 7.32 7.86 8.33

MG3
MLD 1.25 1.35 1.3 1.36 1.28 1.94 3.35 4.22 5.13 5.04 4.63 5.4 4.96 5.09 4.98 5.35 5.33 6.93 7.62 8.19 7.99 7.21 6.03 3.07
OR 13.7 13.6 13.7 13.6 13.7 13 11.6 10.7 9.87 9.96 10.3 9.6 10 9.91 10 9.65 9.67 8.07 7.38 6.81 7.01 7.79 8.97 11.9

MG4
MLD 2 2 2 2 2 2 2 4 8 8 8 8 8 9 9 9 8 6 5 4 2 2 2 2
OR 15 15 15 15 15 15 15 13 9 9 9 9 9 8 8 8 9 11 12 13 15 15 15 15

MG5
MLD 1.5 1.5 1.5 1.5 1.5 1.5 1.5 4 6 6 6 6 6 6.5 6.5 6 6 5 4 3 1.5 1.5 1.5 1.5
OR 10.5 105 10.5 10.5 10.5 10.5 10.5 8 6 6 6 6 6 5.5 5.5 6 6 7 8 9 10.5 10.5 10.5 10.5

MG6
MLD 12.5 12.5 12.5 12.5 12.5 12.5 13 13 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13.2 13 13 13 13 13 12.7 12.5
OR 11.5 11.5 11.5 11.5 11.5 11.5 11 11 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 11 11 11 11 11 11.3 11.5

MG7
MLD 15 15 15 15 15 15 15.5 15.5 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.7 15.5 15.5 15.5 15.5 15.5 15.2 15
OR 14 14 14 14 14 14 13.5 13.5 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.3 13.5 13.5 13.5 13.5 13.5 13.8 14

MG8
MLD 10 10 10 10 10 10 11.2 11.2 11.7 11.2 12.5 12.5 12.5 12.5 12.5 12.5 13 13 12.5 12.5 12.5 11.2 10 10
OR 13 13 13 13 13 13 11.8 11.8 11.3 11.8 10.5 10.5 10.5 10.5 10.5 10.5 10 10 10.5 10.5 10.5 11.8 13 13

Table 3. K-means and SOM clustering results.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Cluster 1 MG1
MG2

MG1
MG2

MG1
MG2

MG1
MG2

MG1
MG2

MG1
MG2

MG1
MG2

MG1
MG2
MG5

MG1
MG2
MG5

MG1
MG2
MG5

MG1
MG2
MG5

MG1
MG2
MG5

MG1
MG2
MG5

MG1
MG2
MG5

MG1
MG2
MG5

MG1
MG2
MG5

MG1
MG2
MG5

MG1
MG2
MG3
MG5

MG1
MG2
MG3

MG1
MG2
MG3

MG1
MG2
MG3

MG1
MG2
MG3

MG1
MG2
MG3

MG1
MG2
MG3

Cluster 2

MG3
MG5
MG6
MG8

MG3
MG5
MG6
MG8

MG3
MG5
MG6
MG8

MG3
MG5
MG6
MG8

MG5
MG6
MG8

MG5
MG6
MG8

MG3
MG5
MG6
MG8

MG3
MG6
MG8

MG3
MG4
MG6

MG3
MG4
MG6

MG3
MG4
MG6
MG8

MG3
MG4
MG6
MG8

MG3
MG4
MG6
MG8

MG3
MG4

MG3
MG4

MG3
MG4

MG3
MG4
MG6
MG8

MG4
MG6
MG8

MG5
MG6
MG8

MG5
MG6
MG8

MG5
MG6
MG8

MG5
MG6
MG8

MG5
MG6

MG5
MG6

Cluster 3 MG4
MG7

MG4
MG7

MG4
MG7

MG4
MG7

MG3
MG4
MG7

MG3
MG4
MG7

MG4
MG7

MG4
MG7

MG7
MG8

MG7
MG8 MG7 MG7 MG7

MG6
MG7
MG8

MG6
MG7
MG8

MG6
MG7
MG8

MG7 MG7 MG4
MG7

MG4
MG7

MG4
MG7

MG4
MG7

MG4
MG7
MG8

MG4
MG7
MG8
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Eventually, an EMS is exploited for each cluster to optimize the operation of MGs.
By this optimization approach, the MLD of MGs can be met by the operating reserve of
the clustered MGs even if the MGs’ power generation units are not capable of supplying
the load. In other words, the reliability of the system increases significantly by clustering
the MGs such that MGs with high MLD are grouped by MGs with high OR. To this end,
the OR of individual MGs is compared with clustered MGs in next section. Moreover,
increasing the reliability of the whole system can result in increasing the efficiency and
enhancing the performance of NMG due to the possibility of reducing the component size
of the power generation units and consequently reducing the capital, replacement, and
M&O cost. However, the possibility of the effect of clustering on component sizing is not
analyzed in this paper.

Furthermore, the virtual microgrid operates as an energy exchange node in this
configuration. However, in the case of an existence shortage of energy or extra energy, the
energy can be traded by the main grid.

Consequently, the proposed control strategy provides a reliable operation in NMG
to supply the load. In this paradigm, even by accidentally losing the energy generators,
the loads can supply efficiently by utilizing the operating reserve of adjacent MGs in the
clustered MG.

4. A Comparative Analysis

The SOM clustering is able to cluster the MGs based on the multi-criteria considered
in NMG. However, in this paper, the results of k-means and SOM are almost similar due to
clustering 8 MGs and considering two criteria (MLD and OR) for both clustering methods.
The PSO is utilized as an optimization method to obtain the optimal operation of MGs.
The clustered MGs are able to exchange energy via VPP, and the extra energy or energy
shortage can be compensated by VPP. In [14,15], the same structure is proposed to share
the energy of MGs in the lower level via virtual MG as an upper level. In [10], an algorithm
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is proposed to allow multiple MGs to exchange their excess energy when one or more
MGs require a supply of energy. The scalable networked microgrids in [13] are able to
offer reserves for their peers to reduce the probability of power outages in the utility grid.
Table 4 presents a comparison of proposed energy management.

Table 4. Energy management comparison.

k-Means SOM Ref [15] Ref [14] Ref [10] Ref [13]

Num. of MGs + VPP 8 + 1 8 + 1 3 + 1 3 + 1 5 7
Num. of clusters 3 3 1 1 2 1

Optimization method PSO PSO Logarithmic-barrier
method

Mixed integer linear
programming

Linear
programming

Blockchain
technologies

Operation mode Grid-connected &
isolated

Grid-connected &
isolated Grid-connected Grid-connected Grid-connected &

isolated Grid-connected

Moreover, in order to investigate the NMG operation from the reliability point of view,
Figures 7–9 are provided to compare the operating reserve of MGs in individual operation
mode and NMG operation mode. To this end, the OR is illustrated for the first time step.
As can be seen from Figures 7–9, in clustered operating mode, the MLD is the maximum
MLD of MGs that existed in the cluster. However, the OR is the summation of OR that
existed in the cluster.
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5. Conclusions

This paper applies supervised and unsupervised learning clustering to an NMG
consisting of residential, commercial, and industrial MGs. By means of the SOM and
k-means algorithm, the MGs are clustered such that the higher peak load MGs collaborate
with higher operating reserve MGs in order to supply the loads efficiently. This control
strategy can also affect component sizing and, consequently, the capital, replacement,
and M&O cost of components by reducing the MGs’ peak loads. The employed EMS
offers several advantages to the system: the clustered MGs can perform effectively in this
control strategy due to providing reliable and efficient operation for the clustered MGs
even if losing power generation units accidentally; the efficiency, security, and dynamic in
the proposed networked microgrids is improved due to contributing the MGs in case of
encountering DER output variation; the system can expedite the restoration of electricity
services in case of facing extreme event disruptions such as natural disasters and massive
cyber or physical attacks.
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Nomenclature
The following abbreviations are used in this article:
AGA Adaptive Genetic Algorithm
ANN Artificial Neural Network
DER Distributed Energy Resource
DG Distributed Generation
DoD Depth of Discharge
EMS Energy Management System
ENU Energy Networking Unit
ESS Energy Storage System
MAS Multi-agent System
MG Microgrid
MILP Mixed Integer Linear Programming
MLD Maximum Load Demand
M&O Maintenance and Operation
MPC Model Predictive Control
NMG Networked Microgrid
OF Objective Function
OPF Optimal Power Flow
OR Operating Reserve
PBV Power Balance Violation
PCC Point of Common Coupling
PSO Particle Swarm Optimization
PV Photovoltaic
RES Renewable Energy Source
SOM Self-organizing Map
SoC State of Charge
VPP Virtual Power Plant
WT Wind Turbine
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