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Abstract: Modular multilevel converter battery energy storage systems (MMC-BESSs) have become
an important device for the energy storage of grid-connected microgrids. The efficiency of the power
transmission of MMC-BESSs has become a new research hotspot. This paper outlines a multi-stage
charging method to minimize energy consumption and maximize the capacity of MMC-BESSs. Firstly,
based on condition monitoring and data collection, the functional relationship between the internal
resistance/capacity and other states of lithium batteries is established. Since the energy consumption
of the battery is related to internal resistance, current, and time, the energy consumption calculation
expression of the battery pack is established, and the objective function is designed to optimize energy
consumption and capacity in order to determine the charging current curve of each stage. Compared
with the constant current charging method, the proposed multistage current charging method for an
MMC-BESS decreases energy consumption by 4.3% and increases the capacity of 5 SOC intervals
by 1.56%.

Keywords: battery energy storage system (BESS); modular multilevel converter (MMC); energy
consumption; data collection; multistage current charging method

1. Introduction

The wide applications of electric vehicles (EV) cause the problem of retired batteries.
However, retired power batteries remain at 70–80% capacity and can be used for wind or
solar energy storage, power grid peak cutting, and valley filling [1–3]. Therefore, battery
energy storage systems (BESSs) have been grown in microgrid applications. Additionally,
with the expansion of the scale of microgrids, the requirements for the capacity of BESSs are
gradually increasing. Because of their diversified topology, BESSs are widely used. Under
the constraints of power device performance and battery characteristics, the range of BESSs
capacity that can be achieved by different topologies varies from kW to tens of MW.

When reusing retired batteries, it is important to know their state of health (SOH), so
that batteries of similar SOH can be reassembled together, allowing the states of each battery
in a BESS to be fully utilized, as the internal resistance and capacity of each battery various
with its SOH. However, it is not possible to employ all retired batteries with a similar SOH
in implementation because of the accuracy of existing SOH measurement methods and
the state variability of retired batteries. There are many sources of health state uncertainty,
including model parameter uncertainty, model structure uncertainty, degradation state
uncertainty, and sensor measurement data uncertainty [4,5]. Some parameters can be
directly measured and acquired that reflect the SOH of the target system, while some
parameters cannot be directly reflected, so data are at the core of SOH monitoring [6].
Despite this, large-scale battery packs in a BESS with a serious SOH deviation during
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high-frequency and high-intensity operation under general charging/discharging control
methods can be explained by the deformation (volume change) and fracture/crack of
electrode materials caused by diffusion-induced stresses during cycling, which can result
in short circuits that render electrode active materials incapable of storing Li-ions [7–12].

In practical applications, the energy consumption of battery packs has a close relation-
ship with internal resistance, current, and operational temperature, but large-scale BESSs
such as modular multilevel converter battery energy storage systems (MMC-BESSs) with
high modularization and serviceability can offer a flexible power management capability
and generally have sufficient space and low-cost measurements to effectively manage
thermal behavior [13,14]. Therefore, the battery current will dominate energy consumption
under the charge and discharge process. Efficient battery management systems include
lithium-ion battery health management and life prediction, such as information perception,
condition monitoring, and data collection. Among them, an accurate SOC estimation
can balance the differences between single cells, optimize the charging and discharging
strategy, prevent overheating, and prevent overcharge and overdischarge [15]. In [16–19],
the authors used an MMC-BESS alternative to the classical grid battery storage system.

When managing batteries, stage-of-charge (SOC) should be fully considered [20–22].
Regulating SOC prevents the overcharge/over-discharge of battery packs. In practical
applications, a balanced SOC in MMC-BESSs regulates circulating current [23]. However, it
is clear that the SOC balancing of various SOH causes additional energy consumption. In
order to minimize energy consumption, and consider the influence of current combinations
on energy consumption during the charging/discharging in [24], a genetic algorithm is
used to realize the multi-stage constant current charging method. In [25], H. Gui proposed a
minimized energy consumption technique, which comprehensively considers the coupling
relationship between initial/final current and temperature, SOH, and reactant concentration
of a battery. Eventually, the minimized loss target of charging is achieved under variable-
weight multi-stage constant current charging technology. The optimization of power
consumption in [26] is based on the efficiency curve of a single device under various input
variables. The optimization equation of the system consumption is established with all
loads as constraints, and the power distribution with a minimized energy consumption is
accurately calculated by the Lagrangian method. In the hardware structure, T. Vo proposed
a balanced circuit structure with the highest energy utilization efficiency considering SOC
balance in battery pack designed by the depth-first search algorithm [27].

In order to limit the charging time, traditional constant current fast-charging meth-
ods are widely used in lithium batteries, which have a lot of adverse effects on lithium
batteries, such as large energy consumption, large temperature rise, high terminal voltage,
and short life [28]. The multi-stage constant current charging method is considered to
be a reasonable charging method that improves the capacity and service life of lithium
batteries in engineering applications. Its advantages include long battery life, high battery
charging/discharging efficiency, and short charging time [29,30].

To summarize, the existing charging methods have deficiencies in considering the
capacity of lithium batteries and the flexibility of MMC-BESSs. To solve these problems,
this paper proposes a multi-stage charging method for MMC-BESSs that comprehensively
considers the energy consumption and capacity of lithium batteries. At first, the definition
of SOH based on capacity and internal resistance is presented. Then, the internal resistance
and other state variables of lithium batteries are analyzed according to experimental data.
Based on this theory, the energy consumption and capacity of a lithium battery can be
optimized by adjusting the charging current, thereby increasing the efficiency and capacity
of the battery pack. A corresponding optimization method is proposed in this paper to
solve the excessive energy consumption and capacity squeeze of the lithium battery pack.
MATLAB/Simulink simulation results validate the proposed method.
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2. Working Principle of MMC-BESS
2.1. MMC-BESS

Unlike traditional MMC, energy storage batteries in MMC-BESSs are distributed by
integrating SMs, which are inserted or bypassed by controlling SM.

The topology of an MMC-BESS is shown in Figure 1, where several SMs and one filter
inductor are series-connected. Batteries are distributed into SMs as DC power sources.
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Figure 1. Topology of an MMC-BESS and application scene.

The power of an MMC-BESS is flexibly adjusted by inserting or bypassing the number
of SMs, which can be in both discharging and charging states. The switch status is shown
in Table 1. Each phase leg has N SMs in the inserting state at any time for stable operation
of the system.

Table 1. Switch status of MMC-BESS.

State S1 S2 iSM uSM State

1 1 0 >0 VSM charging
2 1 0 <0 VSM discharging
3 0 1 >0 0 /
4 0 1 <0 0 /
5 0 0 / 0 bypassing

The voltage of the upper and lower legs of each phase is as shown in Equation (1),
assuming that all battery voltages are fixed [31]:

upk =
N
∑

j=1
dpkjupkj =

udck
2 − uk + Larm

dipk
dt

unk =
N
∑

j=1
dnkjunkj =

udck
2 + uk + Larm

dink
dt

(1)

where dpkj and dnkj are the duty cycle of jth SM of the upper and lower legs of k-phase, upkj
and unkj are the battery voltage of jth SM of the upper and lower legs of k-phase, udck is
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the DC voltage of k-phase, uk is the AC voltage of k-phase, Larm is the inductance of the
MMC-BESS legs. The current of the upper and lower legs of the k-phase are:{

ipk = idiffk − ik
ink = idiffk + ik

(2)

where ik is the grid-side current of k-phase, and idiffk is the differential current of k-phase.
Integrating Equations (1) and (2) provides the dynamic equation of an MMC-BESS:{

2Larm
didiffk

dt = udc − udck

uoo′ = usk − uk − ( Larm
2 + Ls)

dik
dt

(3)

where uoo’ is the voltage between the virtual midpoint of the DC side of an MMC-BESS
and the neutral of the power grid. It follows that the DC power is controlled by differential
current. The control strategy of an MMC-BESS is shown in Figure 2, where, id* and iq* are
the q-axis and d-axis current references for MMC-BESS respectively, ua*, ub*, and uc* are
the voltage reference for the NLM strategy.
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2.2. States of Lithium Battery

The second-order RC ladder model shown in Figure 3 is selected for the battery
equivalent circuit model due to its high precision and relatively low computation [32].
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The SOC is estimated by calculating the accumulated power of the battery during
the charging and discharging period, called the ampere-hour integral method, which is
commonly used for the SOC estimation [3]:

SOCt= SOC0 −
∫ t

0 i(t)dt
Qmax

(4)

where Qmax is the maximum capacity of the battery. The SOH of the battery refers to
the ratio of the maximum capacity to the rated capacity of the battery [3]. Generally, the
maximum capacity slowly decreases with the cycles of the battery:

SOHQ =
Qt

Q0
× 100% (5)

where Qt is the t moment capacity of the battery, and Q0 is the rated capacity of the
battery. Battery aging not only causes a decrease in capacity but also the ohmic resistance
of the battery monotonically increases, so the SOH can also be estimated by its internal
resistance [3]:

SOHR =
R0(end)− R0(t)
R0(end)− R0(0)

× 100% (6)

where R0(end) is the life termination resistance of the battery, Rt is the t moment resistance
of the battery, and R0 is the initial resistance of the battery. Equations (4)–(6) are used to
evaluate the battery performance, and then select the internal resistance and capacity of the
battery according to the experimental results in Figures 4–6.
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3. Energy Efficiency Optimization Method

The energy consumption of an MMC-BESS comprises battery consumption and con-
verter consumption. The converter consumption keeps constant when an MMC-BESS is
under stable operation and each SM is inserted or bypassed only once in a current cycle.
However, the switching sequence of batteries in various conditions causes a huge variation
in energy consumption, so the optimization strategy in this paper only considers the energy
consumption of batteries.

3.1. Energy Consumption of Lithium Battery

In the application of grid-connected energy storage systems with recycled batteries,
the capacities of lithium batteries are usually higher than 55%. In this region, it is assumed
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that the internal resistance of the battery aligns with its SOC and there is a coupling
relationship between capacity and internal resistance; its capacity is also related to the
charging/discharging current. The internal resistance, cycles, SOC, and capacity results
are summarized in Figures 4–6, where the internal resistance of the battery is defined as
the sum of Rs, R1, and R2. It appears that internal resistance varies depending on the SOC,
tending to increase at a high SOC [2,8,29,33–36].

With the cyclic charging and discharging of batteries, the capacity of the battery
will decrease, and the internal resistance will increase. The function of the resistance
and capacity of the calculated results for lithium batteries in Figures 4–6 are shown in
Equations (7)–(9) [2,8,29,33–36]:

R∗SOC = 1.06 + 0.16 cos(5 .5soc) + 0.12 sin(5 .5soc) + 0.13 cos(11soc) + 0.05 sin(11soc) (7){
R∗SOH = −1.97L3 + 3.1L2 − 2.5× 10−4L + 1.017
Q∗SOH = 7.04× 10−11L3 − 1.3× 10−8L2 + 1.06× 10−4L + 1.005

(8)

Q∗I = −0.028Ibat
3 + 0.16I2

bat − 0.26Ibat + 1.126 (9)

where RSOC is the internal resistance varying with the SOC, RSOH is the internal resistance
varying with the number of cycles of the battery, R0 is the initial resistance, and L is the
cycles [37].

Generally, according to Ohm’s law and the electric power calculation formula, the
power of energy consumption during the charging process is:

P = I2R (10)

where RSOC is the internal resistance that varies with the SOC, and Ibat is the battery current.
Thus, from Equations (7)–(9), the capacity can be inferred from the internal resistance
and current: {

RSOH = R∗SOH·R0
RSOC = R∗SOC·RSOH

{
QSOH = Q∗SOH·Q0

QI = Q∗I·QSOH
(11)

RSOC = R0(−1.97L3 + 3.1L2 − 2.5× 10−4L + 1.017)
×(1.06 + 0.16 cos(5.5soc) + 0.12 sin(5 .5soc) + 0.13 cos(11soc) + 0.05 sin(11soc))

(12)
L = 0.275

3√H
+ 3
√

H + 0.525

H =

√(
(0.254RSOC − 0.405)2 − 0.0208

)
− 0.254RSOC + 0.402

(13)

QIbat = Q0(7.04× 10−11N3 − 1.3× 10−8N2 + 1.06× 10−4N + 1.005)× (−0.028Ibat
3 + 0.16I2

bat − 0.26Ibat + 1.126) (14)

So, the capacity can be calculated from Equation (14), and the energy consumption of
a single battery can be calculated from Equation (15), where t1 is a function of the SOC and
current. The battery is charged with 0–3 C current, and the power of consumption with
various SOC is shown in Figure 7:{

Pbat_loss = I2
batRSOC

WBat_loss =
∫ t1

t0
Pbat_lossdt

(15)

Evidently, the current is positively related to the power of consumption, but the
charging time is inevitably considered in practical engineering applications. Therefore,
according to Figure 7, the charging current path with a minimized energy consumption can
be found with time as a constraint.
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0 0

SOC SOC

c c

c c

W W i R t

Q Q i t

= =

= =

 = =

 = + = +


 

 
 (16)

where M is the number of discretized SOC intervals; ic and tc are the current and charging 

time of discretized SOC intervals, respectively; 
loss

cW  and 
bat

cQ  are the charging con-
sumption and capacity of the battery in the cth interval, respectively. The charging strat-
egy satisfies the constraint:  

M M
bat

c
c
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the current capacity of the battery.

3.2. Principle of Proposed Optimization Method

The charging consumption and capacity of the battery can be calculated as the sum of
each SOC interval: 

Wbat
loss

=
M
∑

c=0
Wc

loss
=

M
∑

c=0
ic2RSOCtc

Qbat = SOC0 +
M
∑

c=0
Qc

bat
= SOC0 +

M
∑

c=0
ictc

(16)

where M is the number of discretized SOC intervals; ic and tc are the current and charging
time of discretized SOC intervals, respectively; Wc

loss
and Qc

bat
are the charging consumption

and capacity of the battery in the cth interval, respectively. The charging strategy satisfies
the constraint:

t =
M

∑
c

tc =
M

∑
c

Qbat
M
· 1
ic

(17)

where t is the charging time, and Qbat is the capacity of the battery. The effect of the
charging method is theoretically verified as supported by the simplified example (M = 2)
shown in Figure 8. Once the value of the SOC interval is determined, the amplitude of
i is determined by Equation (17). As shown in Figure 8b,c, the energy consumption of a
battery of the proposed multistage current charging method is reduced by 1.3% compared
with that of the constant current charging method. Moreover, the charging capacity for the
proposed multistage current charging method is increased by 0.9% compared with that
of the constant current charging method, and the total charging time for both methods is
the same.



Energies 2022, 15, 4526 9 of 15

Energies 2022, 15, 4526 9 of 15 
 

 

loss

N N
tot

loss_i

1 1

N N

bat bat_i

1 1

( ,SOC , )

( , )

i i i

i i

i i

i i

W W g I t

Q Q f I t

= =

= =


= =



 = =


 

 
 (18) 

where Wloss_i is the energy consumption of the ith battery, and N is the number of SMs. 

Therefore, an optimization function Equation (18) is established to calculate the energy 

consumption of the system, which takes the minimized energy consumption of the system 

and the corresponding power distribution as the result, with charging time as the con-

straint. The flow charts to calculate the reference current of an MMC-BESS and the control 

strategy of an MMC-BESS are shown in Figures 9 and 10, respectively: 

SOC 0%~60% SOC 60~100% Saving Loss

Adaptive
Current

Constant
Current

Energy Loss [%]
0 100604020 80

59.8% 40.2%

63.2% 35.5%

SOC [%]
0 100604020 80N

o
rm

a
li

ze
d

 C
u

rr
e
n

t 
[C

]

1.00

1.05

0.95

0.90

0.85

1.10

(a)

(b)

Costant Current

Adaptive Current

SOC 0%~60% SOC 60~100%

Adaptive
Current

Constant
Current

Normalized Charging Time [%]

60% 40%

55.7% 44.3%

(c)

0 100604020 80

Adaptive
Current

Constant
Current

Normalized Capacity [%]

100%

100.9%

(d)

0 100604020 80

 

Figure 8. Example of the multistage current charging method. (a) Sets of normalized charging cur-

rents for the multistage current charging method. (b) Energy consumption comparison by charging 

method. (c) Charging time comparison by charging method. (d) Normalized capacity comparison 

by charging method. 

Figure 8. Example of the multistage current charging method. (a) Sets of normalized charging
currents for the multistage current charging method. (b) Energy consumption comparison by charging
method. (c) Charging time comparison by charging method. (d) Normalized capacity comparison by
charging method.

From the above analysis, it was found that current affects the energy consumption of a
battery during charging, which is closely related to the duty cycle and switching sequence
of the SM. So, the efficiency of an MMC-BESS can be optimized by adjusting SMs. The
energy consumption and capacity of an MMC-BESS expressed as the sum of each SM is:

Wtot
loss

=
N
∑

i=1
Wloss_i =

N
∑

i=1
g(Ii, SOCi, ti)

Qbat =
N
∑

i=1
Qbat_i =

N
∑

i=1
f (Ii, ti)

(18)

where Wloss_i is the energy consumption of the ith battery, and N is the number of SMs.
Therefore, an optimization function Equation (18) is established to calculate the energy
consumption of the system, which takes the minimized energy consumption of the system
and the corresponding power distribution as the result, with charging time as the constraint.
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The flow charts to calculate the reference current of an MMC-BESS and the control strategy
of an MMC-BESS are shown in Figures 9 and 10, respectively:

min Wloss =
N
∑

i=1
g(Ii, SOCi, ti)

max Qbat =
N
∑

i=1
f (Ii, ti)

subject to t1 ≤ t, t2 ≤ t, · · · , tN ≤ t

(19)

where t is the maximum charging time. If the battery packs are still charging when they are
already fully charged, this will cause serious security risks. Therefore, the SOC constraints
are added to Equation (19), which is expressed as Equation (20). Therefore, the minimized
energy consumption is an optimization of nonlinear equations under multiple constraints.
Generally, the number of discretized SOC intervals is between 4 and 10. According to
the computational complexity and optimization results, the number of discretized SOC
intervals is five, and the ∆SOC of each interval is 20%.

min Wloss =
N
∑

i=1
g(Ii, SOCi, ti)

max Qbat =
N
∑

i=1
f (Ii, ti)

subject to t1 ≤ t, t2 ≤ t, · · · , tN ≤ t

SOC1 +
∫ t1

0 I1dt
Q1

= SOC2 +
∫ t2

0 I2dt
Q2
· · · = SOCN +

∫ tN
0 INdt

QN
= 100%

(20)
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Figure 9. Flow chart to calculate reference current of MMC-BESS. Figure 9. Flow chart to calculate reference current of MMC-BESS.
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Figure 10. Multistage current charging method for MMC-BESS.

4. Validation of Results

The verification process of this paper is shown in Figure 10. The energy consumption
optimization equation of charging, Equation (18), can be calculated by the initial conditions
of the battery pack. Additionally, the calculated current preset value is used as the MMC
input to verify the superiority of the multistage current charging method in an MMC-BESS
with 8 sub-modules per phase. All of the batteries being fully charged indicates the end
of the MMC-BESS charging, and the initial parameters of the battery pack in each SM
(phase A) are shown in Table 2.

Table 2. Upper leg battery parameters of phase A.

Bata1 Bata2 Bata3 Bata4 Bata5 Bata6 Bata7 Bata8

SOC0 0% 0% 0% 0% 0% 0% 0% 0%
Qbat(Ah) 81.02 92.59 121.53 97.22 108.02 86.81 114.38 92.59

Vbat 1400 1400 1400 1400 1400 1400 1400 1400

Figures 11–14 show the variables of one battery in the sub-module of phase A until
fully charged, including the current of each interval, SOC of the battery, power of energy
consumption, energy consumption, and battery capacity. The comparison of energy con-
sumption and capacity of an MMC-BESS with a constant current and multistage current is
shown in Figure 15.
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of one battery in SM of phase A.
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Figure 13. Power of energy consumption of multistage current and constant current charging method
of one battery in SM of phase A.

In this paper, the intervals of the multistage current charging method are divided into
five categories by SOC, which means that the current is switched for every 20% of the SOC;
the constant charging method keeps the current at 1 C, as shown in Figure 11.

Since the currents of two methods in various SOC are different, the charging rate of
the multistage current charging method is lower than that of the constant current charging
method until the current exceeds the constant current, according to Equation (4). Eventually,
the battery is fully charged at the same time.

According to Equation (4), within the same ∆SOC, the charging time is inversely
proportional to the current. Additionally, it is shown from Equation (15) that the energy
consumption of the battery is related to charging current, internal resistance, and charging
time. So, the power of energy consumption is not divided into five equal intervals like SOC,
as shown in Figure 13. The multistage current switches for the first time at 774 s, which is
54 s longer than the average 720 s. The delay in the switching time of the current is because
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the multistage current is less than the constant current in the first ∆SOC, which can infer
the switching time of the subsequent current in each ∆SOC.
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Figure 14. Energy consumption of multistage current and constant current charging method of one
battery in SM of phase A.
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Figure 15. Energy consumption and capacity of multistage current and constant current charging
method of MMC-BESS.

The formula expression of SOC is similar to the energy consumption, as shown in
Equations (4) and (15). The trend of energy consumption is consistent with SOC, but the
energy consumption and capacity are different, representing the differences between the
variables of internal resistance and capacity, according to Equations (7)–(14). Therefore, the
energy consumption of the multistage current charging method decreases, but the capacity
increases when the battery is fully charged.

Figure 15 shows the comparison results of the energy consumption and capacity of an
MMC-BESS under the constant current charging method and multistage current charging
method, in which energy consumption is decreased by 0.92 kW·h, and the capacity is
increased by 0.05 MWh.
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5. Conclusions

This paper proposes a multistage current charging method for an MMC-BESS consid-
ering the energy consumption and capacity of lithium batteries. The detailed conclusions
are summarized as follows by specific case studies:

(1) According to the theoretical analysis and the existing experimental results, the internal
resistance of a lithium battery is related to its SOC, and increases with the cycles.
The capacity of a lithium battery not only decreases with the increase in cycles,
but is directly related to the charging/discharging current. Therefore, the energy
consumption and capacity of a lithium battery can be optimized by adjusting the
charging current.

(2) As a large-scale energy storage equipment, an MMC-BESS undertakes heavy power
transmission tasks. The energy consumption optimization model proposed in this
paper considers the states of the battery pack, including resistance, capacity, SOC,
current, charging time, etc., which are superior in the large-scale battery packs. The
simulation results demonstrate that the proposed multistage current charging method
decreased the energy consumption of an MMC-BESS by 4.3% and increased the
capacity of an MMC-BESS by 1.56% for five SOC intervals.

From the above analysis, it can be seen that the optimization results of the energy
consumption and capacity of batteries are related to the resistance, SOC, SOH, and intervals
of the multistage current charging method. The status of the battery should be monitored
in real-time, and the intervals should be set to infinite to minimize the energy consumption
and maximize capacity. Therefore, this is a research direction for accurately measuring
the status of the battery in real-time and reducing the calculation time, while increasing
the intervals.
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