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Abstract: Critical infrastructures have recently been integrated with digital controls to support
intelligent decision making. Although this integration provides various benefits and improvements,
it also exposes the system to new cyberattacks. In particular, the injection of false data and commands
into communication is one of the most common and fatal cyberattacks in critical infrastructures.
Hence, in this paper, we investigate the effectiveness of machine-learning algorithms in detecting
False Data Injection Attacks (FDIAs). In particular, we focus on two of the most widely used
critical infrastructures, namely power systems and water treatment plants. This study focuses on
tackling two key technical issues: (1) finding the set of best features under a different combination of
techniques and (2) resolving the class imbalance problem using oversampling methods. We evaluate
the performance of each algorithm in terms of time complexity and detection accuracy to meet
the time-critical requirements of critical infrastructures. Moreover, we address the inherent skewed
distribution problem and the data imbalance problem commonly found in many critical infrastructure
datasets. Our results show that the considered minority oversampling techniques can improve the
Area Under Curve (AUC) of GradientBoosting, AdaBoost, and kNN by 10–12%.

Keywords: Data Injection Attack; machine learning; critical infrastructure; smart grid; water treat-
ment plant; power system

1. Introduction

Today, the umbrella term ’Industry 4.0’ represents the integration of digital control,
Information and Communications Technology (ICT), and intelligent decision-making into
critical infrastructures. This upgrade is possible due to the amalgamation of information
and industrial technologies into standard components and processes [1,2]. This shift, from
the traditional system to Industry 4.0, has helped improve the overall performance and
productivity of critical infrastructures that have become the fundamental building blocks
of modern society. For instance, electricity distribution and usage can be optimized in
smart grids. In water systems, in-time data about usage and plant treatment capacity
can reduce water wastage. Along with various benefits and improvements, the addition
of new components into critical infrastructures presents new vulnerabilities [3–5]. This
critical infrastructure is especially sensitive to cyberattacks. Even a low-scale attack that
causes a few critical infrastructure components to malfunction can impact the whole system.
For example, even a short disruption in the power grid can halt the functioning of many
industries and infrastructures, from food processing plants to hospitals. The attack on
the Ukraine grid infrastructure and a recent ransomware attack on a colonial pipeline are
some of the many alarming examples that call for improvements to be made to the defense
techniques which protect critical infrastructures [6,7].

The injection of data or commands at the source or during communication is collec-
tively called False Data Injection Attack (FDIA). Data injection refers to the manipulation
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of the value generated from sensors, actuators, and other devices, while the command ’in-
jection’ refers to changing server-issued instructions. The FDIA is one of the most common
attacks and can be launched on any critical infrastructure by penetrating the communication
sessions between different devices. FDIAs can damage physical components, induce huge
economic losses, and even create life-threatening scenarios [8,9]. Therefore, it is essential
to prevent and detect FDIAs in any critical infrastructure. However, most of the existing
solutions are only theoretical or adopt techniques from the cyber environment, such as
Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS), which are used
to protect conventional computer networks. These existing approaches are missing the
specific security requirements and properties of critical infrastructure, such as a higher rate
of event, the need for real-time interaction and detection, the need for proactive defense,
and complex physical and cyber interfaces. Therefore, this study addresses these limitations
by applying machine learning techniques to detect injection attacks.

This study work addresses two key issues to fulfill the requirements of proactive
detection, low response time, and detection of minority classes of critical infrastructures:
(1) finding the set of best features under different selection techniques and (2) resolving the
class imbalance problem using oversampling. Our work uses a smart power system [10]
and a water treatment plant [11] as case studies. We found the best features using different
filter and wrapper selection methods (top- and bottom-ranked features). We also tested
the performance of various machine-learning algorithms with different sets (with varying
sizes) of the best features. Further, to improve the detection performance, especially for
the minority class, i.e., attack class, we applied different oversampling methods to increase
the sample for the minority class. We also solved common issues in the datasets, such as
missing and corrupted values.

The contribution of this study is summarized below.

1. We provide a comprehensive analysis of machine-learning algorithms for FDIA detec-
tion using the two representative datasets, namely power system and water treatment
datasets.

2. We determine the subset of features which can be used to achieve the best performance
using different filter and wrapper approaches.

3. We mitigate performance bias in imbalanced datasets using four different oversam-
pling methods.

The remainder of the paper is organized as follows. The related works are presented
in Section 2. A detailed explanation of both critical infrastructures (power system and
water treatment plant) from which data about events have been recorded for datasets
creation is presented in Section 3. Section 4 presents the three feature selection approaches
and provides a ranking of the features. The class imbalance issue and oversampling
methods are discussed in Section 5. The results of training and testing and the outcome
of oversampling are presented in Section 6. Lastly, Section 7 provides the conclusion and
future research directions.

2. Related Work

In the section, we present the details of FDIA and other attacks targeted to the Cyber-
Physical System (CPS) and provide a summary of existing FDIA detection methods based
on machine learning. Further, the limitations and research gaps in the existing literature,
which motivated the current study, are discussed.

With the fast transition of the traditional grid to the smart grid, the effective imple-
mentation of FDIA is critical to the success of the smart grid. There have been many FDIA
attacks demonstrated in the literature. In the last five years (2015–2020), some surveys
provided discussion and a comprehensive summary of challenges and countermeasures
regarding FDIA. The role and importance of Artificial Intelligence (AI) and big data tech-
nologies for FDIA detection were also highlighted [9,12–14]. The financial impact of FDIAs
was demonstrated in [8]. The authors assumed an insider attack and simulated an injection
attack by changing the value of the memory location of the Programmable Logic Controller
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(PLC). Experimental results showed that the injection attack could directly impact the
electric usage billing system, generating a manipulated final bill.

Traditionally, state estimation and time-series analysis are the main methods used
for FDIA detection. Recently, many AI-based approaches have been adapted to improve
detection performance [15]. Class labeling and class-balanced datasets are two critical chal-
lenges for developing a machine learning-based FDIA detection system for the smart grid
because of the small sample size for FDIA class and complex labeling. Maglaras et al. [16]
used a One-Class Support Vector Machine (OCSVM) with normal events to resolve these
two challenges for a Supervisory Control and Data Acquisition (SCADA)-based critical
infrastructure. Due to the challenges involved in dataset preparation, FDIA detection
with minimum training and prediction time is required to handle the high rate of data
generation in the smart grid. Reducing the vectors of features using Principal Component
Analysis (PCA) and speeding up the training time using Distributed SVM are used to
achieve low computation requirements of the smart grid [17]. Further, FDIAs in the smart
grid are grouped into ‘direct’ and ‘stealth’, where ‘stealth FDIAs’ are more challenging
to detect than ‘direct FDIAs’. Yan et al. [18] used supervised machine learning to build
FDIA detection systems by formulating the detection as binary classification (direct and
stealth). The authors also tested detection performance for balanced vs. imbalanced class
distribution using the IEEE 30-bus simulation dataset. More recently, the Artificial Neural
Network (ANN) has been applied for FDIA detection. Khanna et al. [4] used ANN and
Extreme Learning Machine (ELM) to detect Data Injection Attacks on the consumer side
of the smart grid and classified electric meters as either benign malicious. The NYISO
load data was mapped to an IEEE 14-bus system for performing simulation, experiments,
and validation of results. Data generation sources in the smart grid can be grouped into
cyber or physical space. Wang et al. [19] have collected simulated and real-world mea-
surements of synchronized PMUs and applied the Margin Setting Algorithm (MSA) for
detection. The ensemble of Machine Learning (ML) algorithms was shown to improve
the detection performance in [15]. In this direction, the performance of ensemble learning
for multi-class classification was tested for a total of 37 classes, including FDIA in [20].
The experiments were executed using a dataset containing measurements of four Phasor
Measurement Units (PMUs) and network communication data to and from the firewall
and IDS of the experimental power system [10]. FDIA detection is also formulated as a
three-class problem, rather than a binary classification, in the literature. Panthi et al. [21]
used machine-learning algorithms and the publicly available power dataset [10] to build a
classifier to group events into natural, no-event, or attack classes.

A fingerprinting-based detection of stealthy cyber-attacks in water treatment plants
was proposed in [22]. An IDS using a semi-supervised system for attack localization
and deep neural network learning for anomaly detection was proposed in [23]. More
recently, a two-level attack-detection framework using a decision tree for detection and
deep learning for attribution was proposed in [24].

Based on the summary of existing literature, we observe that machine learning-based
FDIA detection approaches can improve detection performance and address some of the
key requirements, such as real-time large-scale data generation in the smart grid. Such
improvement will promote machine learning models for FDIA detection in smart grids and
other critical infrastructure. Our literature also indicates that most existing research works
have used the power system dataset and formulated FDIA classification as a multi-class
problem. So, to explore a novel dimension, we consider FDIA classification as a binary
problem and made pre-processing necessary to the dataset to experiment under various
environments. The power system dataset [10] used also contains a binary version that
was formulated the classification as ‘Attack’ and ‘Normal’. In contrast, the classification
problem was formulated as ‘FDIA’ and ‘non-FDIA’ in this study. Feature selection is useful
and required to reduce time complexity but is seldom used with critical infrastructure
datasets. Therefore, we experimented with feature selection methods and machine-learning
algorithms. We aim to find the best performance of classifiers given the selected features.
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As shown in Table 1, the data imbalance issue is rarely addressed. Therefore, we also
performed minority class oversampling to balance the class distribution beyond identifying
the imbalanced dataset’s effect on detection accuracy.

Table 1. Summary of related work on FDIA detection using machine learning

Ref. Method Dataset

Samples
Ratio
(Normal,
Attack)

Feature
Selection

[18]
Supervised Learning
(SVM, kNN, and ENN)

Simulations
IEEE 30-bus system 0.1 No

[4] ANN and ELM
NYISO load data
IEEE 14-bus system NA NA

[19]
Data Centric
(Big Data and MSA)

Simulated
(6 bus power system)
and real-world
(Texas
synchrophasor network)

100 K, 0.334,
0.196, 0.086 No

[20]
Voting on ML-classifier,
dataset divided per PMUs

4 PMUs events
and firewall log [10] Balance Yes

[16] OCSVM Network traces 1570, NA NA

[15] Ensemble Learning
Measurement data and
power system audit logs Balance Yes

[17] Distributed SVM and PCA
IEEE standard
test systems NA Yes

[21]
Machine Learning
(One R, J-Ripper, NB, RF) Power system [10] NA No

[22] Fingerprinting and
OCSVM

Water treatment (SWaT) NA NA

[23] AutoEncoder SWaT NA Yes

[24] DT and Deep learning SWaT and gas pipeline 214 K, 21.86% Yes

3. Critical Infrastructure Experimental Framework

The critical infrastructure is any physical infrastructure, such as a power system,
healthcare [25], or gas pipeline, that is essential to support our daily lives [26]. Hence,
disturbance to these systems has a huge impact on society, the economy, and the environ-
ment [27]. Recently, the development in computer and network technologies has enabled
the fast adoption of ICT in such critical infrastructures. For example, the traditional power
grid is now controlled, operated, and monitored using ICT, migrating the century-old
power grid into a smart grid. Such integration is also evident in almost all critical in-
frastructures. However, cyber involvement in the physical system makes it vulnerable to
various cyber attacks such as FDIA, unauthorized access, etc. In our study, we considered
FDIA detection in power systems and water treatment plants using two very popular
open datasets.

3.1. The Experimental Framework for Power System Data

Power generation, storage, and distribution tasks are continuously performed in the
smart grid. Moreover, the complexity and large scale make it infeasible to experiment
with the real infrastructure. Moreover, data access in the smart grid environment is highly
restricted due to privacy and security concerns. Research is often performed on a reduced
scale or using simulated datasets, such as IEEE 14/30 buses, to accommodate the abovemen-
tioned limitations. In 2015, the Mississippi State University and Oak Ridge National Labora-
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tory dataset (https://www.sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
(accessed on 8 November 2021)) produced a scaled-down version of the power system and
recorded a dataset with various simulated attacks in addition to normal events [10]. The ex-
perimental power system has two power generators (G1 and G2), four Intelligent Electronic
Devices (IEDs) (R1 to R4), and four breakers (BR1 to BR4). Two lines were created in the
power system using the pairs of breakers (BR1 and BR2; BR3 and BR4). The four IEDs, R1
to R4, were configured to open or close the four breakers, BR1 to BR4, respectively. A server
controls the physical part of the power framework in the control room, and these cyber and
physical parts are connected using a switch and a Power Distribution Center (PDC).

3.1.1. Dataset Pre-Processing

The power system environment discussed in Section 3.1 helped to create a suitable
dataset for conducting machine learning-based detection experiments [10]. The complete
dataset is available and being distributed as 15 sets. The dataset comprises 37 power
system events that can be grouped into three main scenarios: (1) Natural, (2) No Events,
and (3) Attack Events (data injection and command injection) containing 8, 1, and 28 events,
respectively. Regrouping and resampling are performed using these three types of events,
and three datasets are created for binary, three-class, and multi-class classifications. For the
multi-class classification, each event type is considered a class therefore, it has 37 classes.
The binary and three-class datasets are distributed in CSV file format. However, the multi-
class dataset is available only as an ARFF (an Attribute-Relation File Format (ARFF) is a file
format created to be used by the Waikato Environment for Knowledge Analysis (WEKA)
tool. It is a Graphical User Interface (GUI) tool for performing machine learning tasks such
as per-processing, training, exporting models, and creating an ML pipeline.).

Building a multi-class machine learning classifier is complex and resource-consuming.
It also creates a dataset’s class imbalance problem. Considering this, we reformulated the
FDIA detection as a binary classification with ‘FDIA’ and ‘Non-FDIA’ classes. However,
the existing dataset was unsuitable for this study, so we grouped samples based on the type
of events. Before resampling, we converted the multi-class ARFF to CSV format to simplify
further pre-processing, training, and testing. Filtering and merging were performed on all
15 sets to group all scenarios into two predefined classes; Normal/non-FDIA classes were
1–6, 13, 14, and 41, while “FDIA” classes were 7–12. Further, the Normal/non-FDIA sample
was labeled as 0, and the FDIA sample was labeled as 1. The total number of samples that
the final pre-processed and resampled dataset contained was 32,296. Figure 1 shows the
class distribution. There are 22,714 samples in the ‘Normal/non-FDIA’ class and 9582 in
the ‘FDIA’ class. As shown in Figure 1 and listed in Table 2, it is clear that the power system
dataset is an imbalanced dataset where ‘Normal/non-FDIA’ is the majority class. All four
features related to impedance for IEDs relays such as ‘R1-PA:Z’ had infinite value, and so,
as a pre-processing step, they were replaced with 0.

https://www.sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets
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Figure 1. Number of samples per class in the dataset.

Table 2. Distribution of the classes (normal and FDIA) in the dataset.

Class Type Number of Samples

Power System Water Treatment
Normal 22,714 395,298

FDIA 9582 54,621

Total 32,296 449,919

3.1.2. Description of Features

There is a total of 128 features in the dataset, consisting of PMUs measurement and
software logs. A total of 29 measurements were recorded for each PMU, so a total of
116 features were collected from 4 PMUs. The logs were recorded from three sources: snort,
relay, and control panel. Each had 4 values, so logs contributed a total of 12 features. Each
feature was given a name based on the combination of a source of data and type of value.
For example, PMUs features begin with R#−Signal Reference and log features start with the
source of logs such as snort, control_panel, and relay. The # for PMU features was a number
between 1–4, indicating the PMUs number, while postfix Signal Reference was the type of
measurement. These measurements fall into two groups: first, phase angle and magnitude
for voltage and current, and, second, frequency, frequency delta, appearance impedance,
and appearance impedance angle for relays. Details of these features are presented and
explained in the original dataset description document (http://www.ece.uah.edu/~thm0
009/icsdatasets/PowerSystem_Dataset_README.pdf (accessed on 8 November 2021)).

It is important to understand the impact of false data injection on individual features.
We used a data distribution approach and created an overlapped histogram for individual
features. For example, a histogram for R1-PA1:VH features is plotted for all normal and
FDI samples. We can observe from Figure 2 that the count for the specific value range is
higher in the FDI sample, which indicates data injection.

http://www.ece.uah.edu/~thm0009/icsdatasets/PowerSystem_Dataset_README.pdf
http://www.ece.uah.edu/~thm0009/icsdatasets/PowerSystem_Dataset_README.pdf
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Figure 2. Histogram comparison of normal, injection, and all dataset events for R1-PA1:VH.

3.2. Water Treatment Plant

For the same reason as for a power system, a testbed, i.e., a scaled-down version of a
real water treatment plant or pipeline, is normally created to experiment and collect data.
In this study, we used a similar dataset, the Secure Water Treatment (SWaT) testbed [11] (a
fully operational scaled-down water treatment plant), for FDIA detection. The configuration
and framework of the experimental water treatment plant are depicted in Figure 3. It has
six processing stages for water treatment labeled P1–P6. In total, the testbed has 24 sensors,
27 actuators, and 6 PLCs (one for each stage). The count for each type of sensor and actuator
is listed in Table 3.

Figure 3. The water treatment plant in [11], where P1–P6 denotes total six stages of processing in
the plant.

3.2.1. Dataset Pre-Processing

In the SWaT testbed, there are PLCs, Human Machine Interfaces (HMIs), SCADA,
and a Historian in a layered communication network. Data from field devices are available
to SCADA via PLCs and transferred to the Historian for analysis. The dataset contains
events from physical and network activities against the 36 predefined attacks. The complete
dataset was collected during a period of 11 days, during which the plant was running
continuously for 24 h each day.
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Table 3. Description of different sensors and actuators used for data generation. Features are
named as combination of type (i.e., MV, P, FIT etc.) and suffix (process number and device number).
For example, FIT-101 can be read as being a first flow meter sensor of process stage 1.

Field Device Type Description Total
(51)

Actuators
(27)

MV Motorized Valve 6
P Pump 19
LIT Level Transmitter 1
UV Dechlorinator 1

Sensors
(24)

FIT Flow Meter 9
LIT Level Transmitter 2
AIT Analyzer 9

DPIT Differential Pressure
Indicating transmitter 1

PIT Pressure meter 3

3.2.2. Feature Description

The collected dataset contains 449,919 physical events and 51 features mainly gen-
erated from 24 sensors and 27 actuators. Table 3 provides the details of the sensors and
actuators used in the water treatment process. The network data are packets communica-
tion between PLCs and SCADA. They have 18 features based on network attributes such
as date, time, IPs, etc. This sub-part of the dataset is not used in this study. The dataset was
collected, stored, and distributed on CSV files. The attacks on both physical and network
were injection type attacks, i.e., on either the value of sensor or actuators.

The power and water system datasets were obtained using different field devices
and operational environments. In the power system dataset, the majority of features are
measurements of PMUs, whereas, in the water treatment dataset the events were collected
by sensors and actuators. Differences in the data source provide varying data types: PMUs
provide voltage, current phase angles, and magnitude, while sensors and actuators provide
numerical or Boolean values.

4. Feature Selection

A feature represents a characteristic of any object. In ML, a sample is decomposed
into a set of features before training and testing for tasks, such as classification, prediction,
or clustering. The dimension of a feature vector can be small to large, and each feature has
unequal discriminative potential. So, there is a need to select the best possible set of features
without significantly impacting the model’s performance. The different feature-selection
approaches provide various ways to rank and select a set of features. The selection of
features is performed in relation to the output variable that can be a class for classification
or the predictive variable. Feature selection provides two key benefits. First, it helps to
improve the model’s performance in terms of accuracy, precision, and recall. Second, it
reduces the computation cost (time and space) for the training, testing, and deployment
of ML models. As a result of these two benefits, feature selection (as a part of feature
engineering) is critical in the ML model. Based on the technique of feature ranking and
selection, various feature selection methods are grouped into three main classes: the filter,
wrapper, and embedded methods [28].

4.1. Filter Method

The filter method examines the dependency relationship of features X and class labels
Y to select features based on their strength level with Y. The dependency strength level of
the variables is calculated using traditional statistical tests, such as ANOVA, Z-test, T-test,
chi-square, and Pearson Correlation Coefficient. Due to the individual evaluation of each
feature, the filter method is also called univariate selection; it also speedily calculates and
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easily interprets results [28]. In this study, under the filter method, the ANOVA F-value
was used as the statistical test; the dataset features were ranked, and the best set of features
was selected.

Figure 4 and the left four columns of Table 4 show the results of feature selection using
a filter-for-power system and water treatment plant (SWaT dataset) respectively. The results
are represented as feature name and score from the top (ten features) and bottom (ten
features) of the feature rank list. In the case of the power system dataset, from Figure 4,
we can observe that magnitude-related measurement of PMUs achieves larger scores and
is top-ranked using the filter approach. Based on the value of the magnitude features in
the dataset, we can observe that the larger values influence the statistical test. In contrast,
angle-based features fall into a smaller value range (negative to a small positive value),
and the statistical test was given a low score and was lower-ranked.
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Figure 4. Ten top and bottom features with individual score using filter method
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Table 4. Water Treatment Plant: Ten top and bottom features with their importance values using the
filter and wrapper methods.

Filter Method Wrapper Method

Top Features Bottom Features Top Features Bottom Features

Feature Value Feature Value Feature Value Feature Value

FIT401 6.281 FIT601 0.00066 FIT504 0.223181 P204 0.000403
FIT504 6.218 P602 0.00058 FIT401 0.125924 P206 0.000313
FIT503 6.105 P403 0.00008 P501 0.105114 P402 0.000114
UV401 6.076 P202 0.0 PIT502 0.070205 P403 0.000035
P501 6.075 P301 0.0 FIT503 0.063296 P202 0.000000

PIT501 5.972 P401 0.0 P102 0.040979 P301 0.000000
FIT501 5.906 P404 0.0 LIT301 0.040890 P401 0.000000
PIT503 5.899 P502 0.0 LIT101 0.030181 P404 0.000000
FIT502 5.860 P601 0.0 LIT401 0.027320 P502 0.000000
P402 5.550 P603 0.0 DPIT301 0.022423 P601 0.000000

In the SWaT dataset, the top three features are FIT401, FIT504, and FIT503, and all
these are flow control sensors placed in the crucial stages, i.e., the 4-th and 5-th stages of a
6-stage process. Similarly, other top features also have critical roles and are found in later
stages of the plant process. From Table 4, we can observe that the two bottom features are
P601 and P60. These are two actuators placed in the last stage. Interestingly, these two were
not implemented in SWaT, and the features selection correctly placed these at last. Other
bottom features, P401, P404, and P502, are actuators. These were implemented as backups,
and so, for this reason, they are not considered during attack events.

4.2. Wrapper Method

Compared to the filter method, features ranking is performed concerning a particular
algorithm in the wrapper method. So, the best-selected feature set works well with the
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machine-learning algorithm, and the feature set differs when the selection is made using
another algorithm. Unlike the filter method, the wrapper feature selection process is costly
in terms of time and space. Most wrapper methods use greedy search, which is not optimal,
and suffer from false starts (wrongly choosing the first best feature) [28]. Figure 5 and the
right four columns of Table 4 show the best-selected feature sets and their importance for
the wrapper method for the power system dataset and the water treatment plant dataset
(SWaT dataset), respectively.
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Figure 5. Ten top and bottom features with individual score using wrapper method

Table 4: Water Treatment Plant: Ten top and bottom features with its importance value
using Filter and Wrapper method

Filter Method Wrapper Method
Top Features Bottom Features Top Features Bottom Features

Feature Value Feature Value Feature Value Feature Value
FIT401 6.281 FIT601 0.00066 FIT504 0.223181 P204 0.000403
FIT504 6.218 P602 0.00058 FIT401 0.125924 P206 0.000313
FIT503 6.105 P403 0.00008 P501 0.105114 P402 0.000114
UV401 6.076 P202 0.0 PIT502 0.070205 P403 0.000035
P501 6.075 P301 0.0 FIT503 0.063296 P202 0.000000

PIT501 5.972 P401 0.0 P102 0.040979 P301 0.000000
FIT501 5.906 P404 0.0 LIT301 0.040890 P401 0.000000
PIT503 5.899 P502 0.0 LIT101 0.030181 P404 0.000000
FIT502 5.860 P601 0.0 LIT401 0.027320 P502 0.000000
P402 5.550 P603 0.0 DPIT301 0.022423 P601 0.000000
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In the case of the power system dataset, as shown in Figure 5, the features based on
magnitude and angle are top-ranked in a nearly equal proportion, i.e., 6 and 4, respectively.
So, the feature rank list differs from the filter method in which magnitude-related features
were dominating. This study used a tree-based classifier as a wrapper method. In this
approach, features are selected based on their impact on classification accuracy, rather than
number of features. Similar behavior can be observed in the control log features listed at the
bottom of the feature list. These features are Boolean and sparse, and their contribution to
the classification is negligible, i.e., with an importance value of zero.

In the SWaT dataset, FIT401 and FIT504 are ranked as top features. The other top
features, i.e., P501 and PIT502, are the actuator and the sensor for a pump and a pressure
meter, respectively. The bottom features are similar to those from the filter methods, which
verify the importance of ranking these features.

4.3. Embedded Method

The embedded method combines the techniques of the filter and wrapper approaches.
The purpose of the combination is to take advantage of both approaches in terms of the
speed and performance of the filter and wrapper methods, respectively. From the imple-
mentation perspective, feature selection becomes part of training in the embedded method.
The algorithm starts training with the seed feature set (i.e., all features) and recursively
selects a set of best features for the next round of training based on the importance of the
features in the trained model [28]. The retraining continues until the predefined termination
condition, e.g., based on the algorithm’s convergence criteria or expected performance.
The commonly used embedded methods are LASSO and RIDGE regression.

5. Imbalance Dataset: Issue and Solution

In a supervised ML case, if the training sample for each classification class is approx-
imately equal, then the given dataset is considered imbalanced [29–31]. If the dataset is
imbalanced, the training is highly influenced by the majority class sample (i.e., the class
with the largest samples). Hence, the trained model lacks generalization in the real world
and misclassifies the minor class.

The imbalance issue is more prominent in the cases such as this study, where the task is
to detect a rare event, i.e., an anomaly, maliciousness, an attack, etc. In contrast, the normal
events contribute the majority of the dataset. Both of our datasets are of an imbalanced
nature, as can be verified from Table 2 and the bar plots in Figure 1. The power system
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dataset has an imbalance ratio of 1:2.5. In contrast, the water treatment plant dataset has an
imbalance ratio of 1:7.23, meaning that the samples for normal events are 70% and 88% of
the total sample, respectively.

Imbalanced datasets are a major issue and create a bottleneck in machine learning,
so there have been many methods to address and resolve the problem of training with
imbalanced datasets. These techniques mainly work on two principles: oversampling and
under-sampling. Oversampling suggests increasing the sample in the minority class, while
under-sampling is the process of reducing the sample in the majority class. The under-
sampling method goes against the basic principle of machine learning, which mainly aims
to obtain more samples to achieve better performance. So, under-sampling is suitable only
when the dataset has a very large sample for the majority class, and removing the sample
will have a very low or no impact on training. In this study, we adopted the oversampling
technique, given the limited number of samples, and focused on increasing the sample of
the minority class.

5.1. Synthetic Minority Oversampling Technique (SMOTE)

SMOTE is a minority-class oversampling method that creates synthetic examples.
The synthetic examples are created by performing operations in data space and are nearly
free from any particular application domain. The synthetic examples are plotted against
the minority class samples, and the required samples, denoted as k, are randomly selected
as k nearest neighbors [30].

5.2. Borderline-SMOTE

Borderline-SMOTE is also a minority oversampling method. There are two vari-
ants [32]: borderline-SMOTE1 and borderline-SMOTE2. Both the methods only oversample
those minority samples on the borderline of class separation. The algorithm first finds
the borderline samples from minority groups, then generates synthetic examples. It is
assumed that borderline samples of minority classes are more prone to misclassification
than samples far from the classification line.

5.3. Borderline Oversampling

Borderline Oversampling is similar to other oversampling methods that try to create
synthetic samples around the classification line. Support Vector Machine (SVM) can be
used to create a classification line and select boundary samples for oversampling [33].
First, the SVM model is trained on the complete dataset. Later, the trained model is used
to identify the borderline, and synthetic/new samples for minority class are generated
around the borderline. The number of samples, i.e., nearest neighbors, are generated either
using interpolation or extrapolation depending upon the density of majority class instances
around the borderline. This method differs from SMOTE, mentioned above, by choosing a
new sample (i.e., nearest neighbor). SMOTE chooses randomly, while this method chooses
the first k nearest neighbors.

5.4. Adaptive Synthetic (ADASYN) Sampling

Adaptive Synthetic (ADASYN) sampling incorporates weighting for oversampling of
the minority class as per the difficulty level in learning [34]. The method claims to improve
learning in two aspects, first, by reducing the bias induced by class imbalance, and second,
by adapting to the classification decision boundary as per the difficult examples. The diffi-
cult examples are those samples from minority classes close to the decision boundary. They
often result in false classifications. The algorithm starts by calculating the degree of class
imbalance (d), i.e., d = ms/ml , where d ∈ (0, 1) and ms and ml are the number of samples
in the minority and majority classes respectively. The values of d in the used power system
and water treatment plant datasets, respectively, are 0.4, 219 and 0.1, 382. The value of d is
compared with the preset threshold value d-th for the maximum tolerated degree of class
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imbalance. Further, the total required synthetic samples (G) is calculated, and then the
algorithm generates those samples.

Apart from the aforementioned oversampling methods, new methods have been pro-
posed in the recent literature for improving model performance with an imbalanced dataset.
Elyan et al. [35] have proposed class decomposition-based SMOTE (CDSMOTE). The pro-
posed method improves performance by taking two actions: first, to reduce the dominance
of the majority class by applying class decomposition, and second, to increase the rep-
resentation of the minority class by oversampling. Moreover, a two-step hybridization
of minority oversampling (SMOTE) and a novel data cleaning method (Weighted Edited
Nearest Neighbor rule, or WENN) was proposed in [36]. Fajardo et al. [37] have applied
deep conditional generative models for learning to the distribution of minority classes and
then generated synthetic samples for solving the class imbalance in the dataset to improve
the model’s performance. Similarly, Bellinger et al. [38] have proposed a new training
approach of a deep learning model (CNN) which mixes three techniques (batch resampling,
instance mixing, and soft labels) to create a robust model from a long-tailed or imbalanced
dataset. Krawczyk et al. [39] have studied the issues of the imbalanced dataset for multi-
class classification. The authors have proposed a two-step under-sampling approach; in
the first step, a one-class SVM is trained for all classes. An evolutionary under-sampling
approach is applied to each learned classifier in the second step. Using under-sampling on
the set of support vectors instead of on the original dataset, the authors claimed significant
computational and performance improvements.

All the methods mentioned above for handling class imbalances in learning are suitable
for single-model-based learning algorithms. They can be extended to suit ensemble-based
learning algorithms [39]. SVM is a good choice for dealing with imbalanced datasets [33].
All these oversampling methods were tested on the power system dataset, and the results
are presented in Section 6.4 along with explanations.

6. Experiments and Results

This section provides details of various experiments conducted to analyze the perfor-
mance of ML algorithms for feature selection and improvement of minority class detection
for imbalance datasets. Figure 6 illustrates the steps, structures, and components of the
conducted experiments.

Figure 6. A summary of the steps, structures, and components of the conducted experiments.

These experiments were designed to test and validate the different hypotheses. For ex-
ample, performance comparison for the train–test split vs. cross-validation, identifying
the impact of the imbalanced dataset on performance, testing oversampling techniques to
improve the performance, and finding the classifiers’ performance on a different subset of
features (ALL, Top10, Top20, Top30, Top40, and Top50). All the experiments were tested
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against standard performance metrics such as accuracy, precision, recall, and F1-score.
The Receiver Operating Characteristic(ROC) and Area Under ROC(AUC) are additionally
used to show performance.

6.1. Experimental System

The experimental system was prepared with Ubuntu OS in the Python development
environment. The python environment was prepared with required machine learning
modules and frameworks such as Pandas, NumPy, matplotlib, CSV, and Scikit-learn [40].

6.2. Machine Learning Algorithms

In our work, ML algorithms were chosen based on their working principles. We tried
to keep a diverse set of algorithms for a better understanding and performance comparison.
For example, Naive Bayes (NB) works on conditional probability, while kNN applies a
distance function to associate a node to a group or cluster [41]. Based on this, we initially
selected nine algorithms and later, due to relatively much large training time, dropped the
Bagging (SVC) and XBoost algorithms from further experiments. The selected algorithms
were Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), k-Nearest
Neighbour (kNN), Naive Bayes (NB), Regression, Bagging, and Boosting. Training and
testing with such a diverse set of algorithms helped the authors to understand and find
suitable features and algorithms. All the algorithms were tested with default parameters
available in the scikit-learn framework. However, parameter setting is explicitly mentioned
wherever the default value changes. Some critical parameters for the best performing
model, i.e., random forest, are the number of trees: 100; split method: Gini; and the
minimum number of samples required to split: 2. Hyper-parameter-tuning finds the best
value for the algorithm’s parameters from the search space. This study did not perform
hyper-parameter-tuning; however, this is a possible area of research for future work.

6.3. Training and Testing

The power system and SWaT datasets were divided into training and testing sets.
Each algorithm was trained on the training set, while the performance evaluation of the
model was completed on the testing set. Percentage split and cross-validation are two main
methods for splitting the dataset into training and testing sets. The percentage split simply
divides the original samples into two sets based on the given percentage of the sample to
be considered for training and testing. However, the cross-validation divides the original
samples into N folds containing equal numbers of samples. We used a 70/30 ratio for
percentage split, while 10 folds (i.e., N = 10) were used with cross-validation. As cross-
validation is an iterative process, the algorithm’s performance was taken as the mean
of N rounds of training and testing. In each round, N − 1 folds were used for training,
and the remaining fold was used for testing. Training and testing in multiple folds provide
diversity to the dataset, cross-validation provides robust training, and the trained model
was generalized well on an unseen sample [42].

6.3.1. Percentage Split (70–30)

As mentioned earlier, based on the required percentage for training and testing sam-
ples, the percentage split method divides the samples into two sets. We used 70% for
training and the remaining 30% for testing. This split method randomly selects the sample
from the dataset for training. Training on a train–test dataset (from the split method)
provides an approximate model, because randomly selected training samples do not rep-
resent actual data distribution. As such, the trained model suffers from over-fitting, i.e.,
it performs poorly on unseen samples. We trained and tested all nine algorithms on train-
ing and testing sets obtained from a percentage split (70–30%) to measure training time
and approximate performance of FDI classification. Tables 5 and 6 show the precision,
recall, F1-score, and accuracy of all algorithms for the power system and SWaT dataset,
respectively. Except for accuracy, the other three metrics provide results for both classes



Energies 2022, 15, 212 14 of 22

(Normal and FDI). From Table 5, we can observe that, with an accuracy score 92%, Random
Forest performance is the best performed as an ensemble algorithm, while Decision Tree
has an accuracy score of 85% and is the best performer as a single model. The accuracy
value is biased towards the majority class, and the model suffers for the minority class.
This is evident from the precision, recall, and F1-score value from Table 5 for both classes.
The performance reduced by about 6–10% for best-performing classifiers. In the case of
the SWaT dataset, all the classifiers have an accuracy above 95%. The precision, recall,
and F1-score for the normal class is as per the accuracy but reduced for the FDI class for
many classifiers. From Table 6, we can observe that kNN, DT, and RF show a perfect 100%
score for all metrics; this is indicating over-fitting. Over-fitting can be attributed to the
water treatment dataset having fewer features and many samples. Therefore, kNN, DT,
and RF can memorize the class distribution for training data. We have investigated these
three algorithms further with cross-validation, and the results are presented in Section 6.3.2.

Table 5. Classifiers’ performance in the power dataset.

ML
Model

Precision Recall F1-Score Accuracy

Normal FDI Normal FDI Normal FDI –

NB 0.71 0.33 0.98 0.02 0.82 0.04 0.70
SVM 0.97 0.29 0.01 1.0 0.01 0.46 0.30
kNN 0.86 0.70 0.88 0.66 0.87 0.68 0.82
DT 0.90 0.75 0.90 0.75 0.90 0.75 0.85
RF 0.91 0.93 0.98 0.78 0.94 0.85 0.92
Ada 0.72 0.53 0.96 0.10 0.82 0.16 0.71
LR 0.71 0.49 1.0 0.01 0.83 0.02 0.71

Table 6. Classifiers’ performance in the water treatment dataset.

ML
Model

Precision Recall F1-Score Accuracy

Normal FDI Normal FDI Normal FDI –

NB 0.96 0.98 1.0 0.70 0.98 0.82 0.96
SVM 0.96 0.99 1.0 0.71 0.98 0.83 0.96
kNN 1 1 1 1 1 1 1
DT 1 1 1 1 1 1 1
RF 1 1 1 1 1 1 1
BagSVC 0.96 0.99 1 0.66 0.98 0.80 0.96
LR 0.95 0.99 1 0.62 0.97 0.76 0.95

In critical infrastructure, decision making needs to be quick. So, a low prediction
time is required from the machine learning model. In this study, time is one of the key
performance metrics. So, the time taken for training and testing by each algorithm is
measured. The training time will help find a suitable algorithm for the power system or
other critical infrastructure. Training time is also essential because data generation is fast,
and the models often require retraining. A model with a lower training time will be more
suitable. Table 7 presents the training and testing times (in seconds) of all nine algorithms.
As mentioned earlier, Naive Bayes (NB) is a fast and probabilistic algorithm, because it
uses prior probability values to calculate the posterior. Probability values can be calculated
in advance, so NB training is faster than others. However, conditional independence is one of
the critical assumptions that attributes need in order to be satisfied. Bagging is an ensemble
method that creates multiple base models on the subset of the dataset. These subsets are
created using random sampling. Table 7 shows that NB has the lowest training time of all
algorithms, while Bagging (with SVC) has the highest training time. Hence, the highest
training time is the accumulation of time taken for dataset generation, multiple model
training, and testing.
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Table 7. Training and testing time of machine-learning algorithms.

Classifiers NB SVC kNN DT RF Ada BSVC LR XGB

Time (S) 0.132 9.770 7.280 3.580 17.900 11.800 533.00 1.140 62.0

6.3.2. Testing with Cross-Validation

The previous section shows the detection performance and training time of algorithms
for the training and testing set created using a percentage split. With this initial estimation,
the algorithms were further trained and tested with 10-folds cross-validation to know
the trained model’s generalization capacities. We compared the detection accuracy of all
algorithms for the percentage split and cross-validation of the power-system dataset. We
have two key observations; first, five algorithms (DT, SVC, kNN, GB, and RF) achieved
lower accuracy in the 10-fold cross-validation than the percentage split. Second, four
other algorithms (Adaboost, Bagging (ensemble), LR, and NB) had minimum impact,
i.e., accuracy either reduced with smaller margin or remained constant. Based on these
two observations, we can conclude that the former five algorithms over-fit inherently,
while the latter four algorithms have the inbuilt function to overcome over-fitting during
training. Considering this outcome, for the SWaT dataset, we performed training with
10-fold cross-validation for the three most over-fitted classifiers, i.e., kNN, DT, and RF.
Figure 7 shows the AUC of all classifiers for 10 folds training. For RF, although 4 passes
have an AUC value of 1.0, the mean performance of all three classifiers reduced to 0.79,
0.75, and 0.81 from 1.0 for kNN, DT, and RF, respectively.

Figure 7. AUC with 10-fold cross-validation for the water treatment plant dataset.

The previous section presented the outcome of the filter and wrapper methods. One
further key objective of this study is to test the performance of all algorithms on the
selected set of features. For this, we experimented only on the power-system dataset.
A total of ten datasets were created to train and test different machine-learning algorithms
using sets of the selected top features, five sets each from the filter and wrapper method.
The experimental results are shown as Top10, Top20, Top30, Top40, and Top50 for feature
selection sets, and ALL represents all features. These 11 sets of the dataset were used to
train and test all algorithms in 10-fold cross-validation. Figure 8a shows the results for the
filter method sets. The detection accuracy in Adaboost, SVC, and GB decreased, while the
detection accuracy in DT, kNN, and LR increased. The performance of RF and NB was
unaffected (insignificant change) by the change in the number of features.
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Figure 8. AUC with 10-fold cross-validation for water treatment plant dataset

(a) Filter method (b) Wrapper method
Figure 9. Accuracy of classifiers with selected features for power system dataset
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Similarly, five datasets were created using the feature ranking of the wrapper method.
Further, using the 10-fold cross-validation approach, all algorithms were trained and tested
on all five sets. Figure 8b shows the performance of all algorithms. Unlike the filter method
case, there was no change in the performance of Logistic Regression; the performance of
Naive Bayes decreased significantly. In either selection method, kNN had a similar pattern,
i.e., accuracy increased with the number of selected features. However, there was no clear
pattern in the performance change of Adaboost, RF, GB, DT, and SVC. The performance
of RF and DT decreased and had the lowest accuracy with thirty top features, while there
were no significant changes in accuracy with other sets of features (top10, top20, top40,
and top50). In other groups, the accuracy of SVC and Adaboost did not seem related to the
number of features.

6.4. Imbalance Dataset and Impact

As discussed in Section 5, with an imbalanced dataset, ML models suffer performance
degradation while making predictions about minority classes. This is because a model
learns mainly from the majority class or is over-fitted to the majority class. Accuracy is the
most-used metric for measuring the performance of machine-learning algorithms, but it is
not suitable for imbalanced datasets [30]. Values from Tables 5 and 6 verify the performance
degradation of the model with more robust metrics such as precision, recall, and F1-score.

The two main approaches for handling the imbalanced dataset are oversampling the
minority class and under-sampling the majority class. While oversampling is suitable for
maximum use-cases, under-sampling only suits when the majority class has many samples
and the minority class also has enough samples to represent the nature of the distribution.
In this study, we have adopted the oversampling approach, and the minority class is
oversampled using four different sampling techniques. SMOTE is the main technique
for oversampling, and the other three, i.e., Borderline-SMOTE, Borderline-SMOTE with
SVM, and Adaptive Synthetic Sampling, are variants of SMOTE. As explained in Section 5,
in borderline-SMOTE, only the borderline sample from the minority class is used for
oversampling. In the original borderline-SMOTE algorithm [32], kNN is used for sample
selection, while in the modified version (borderline-SMOTE with SVM [33]), SVM is used
for sample selection. To understand and highlight the impact of the imbalanced dataset,
we have used AUC as a performance metric. After applying each oversampling technique,
we trained all ML algorithms on the imbalanced dataset and again trained the algorithms.
Figure 9 depicts the algorithms’ AUC values with the imbalanced dataset, i.e., Figure 9a
and after balancing the dataset (making an equal sample for both classes by oversampling
minority class, i.e., FDI class) using SMOTE, shown in Figure 9b. From Figure 9, it is evident
that imbalance datasets have varying impacts on the different types of ML algorithms.
These are obvious, because each performs training differently. Further, this observation
can be broken down into two: first, some algorithms are not impacted (they can have high
performance, i.e., DT and RF, or low-performance, i.e., NB and LR) by the ratio of samples
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for each class, so oversampling also fails to impact performance. Second, some algorithms
(GradientBoost, AdaBoost, and kNN) have a high impact on the imbalanced dataset, and so
the performance of these algorithms improves after oversampling. Table 8 shows the AUC
values of different classifiers for the imbalanced dataset and after applying four selected
oversampling methods. In Table 8, borderline-SMOTE and SVM-based borderline-SMOTE
is coded as BSMOTE and BSMOTE-SVM. From Table 8 we can observe that all oversampling
techniques improve the AUC values of almost all classifiers. The magnitude of improvement
depends upon the type of algorithm used. As mentioned previously, the best improvement,
i.e., 10–12%, was observed for GradientBoost, and AdaBoost algorithms, while kNN had
a 6–8% improvement with different oversampling techniques. DT and RF are considered
robust against imbalanced datasets, but these algorithms achieved a 2–3% performance
improvement after applying oversampling.
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(a) ROC with imbalance dataset

                                  (b) ROC after SMOTE
Figure 10. ROC for classifiers with imbalance and SMOTE balance power system dataset
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Table 8. Comparison of classifiers (on AUC %) for imbalanced datasets and different oversampling
methods for the power system dataset.

Classifiers Imbalance Smote Bsmote Bsmote-Svm Adasyn

LR 0.592 0.590 0.550 0.595 0.565
GNB 0.559 0.548 0.578 0.544 0.596
GBoost 0.747 0.847 0.839 0.839 0.845
BagSVC 0.504 0.505 0.512 0.515 0.513
AdaBoost 0.672 0.783 0.777 0.747 0.785
kNN 0.855 0.924 0.917 0.926 0.910
DT 0.826 0.830 0.835 0.847 0.831
RF 0.974 0.984 0.982 0.988 0.983

In this study, we used robust performance metrics such as precision, recall, and F1-
score calculated using a confusion matrix. In addition to this, to visualize the model’s
performance, we selected the best performing model in both the imbalanced and balanced
dataset and plotted the confusion matrix. Figure 10 shows the results for both cases.
As shown in Figure 10a,b, the detection performance of the attack class improved with a
balanced dataset but decreased for normal class. However, improved attack detection is
critical and required for critical infrastructures.
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(a) Imbalance dataset (b) Balance dataset (SMOTE)
Figure 11. Confusion matrix for best model (RF) on imbalance and SMOTE balanced power
system dataset

Table 9: Comparison with previous works on FDIA detection for power system dataset

Work Algo. Accuracy Precision Recall F1-measure AUC

[43] DAE 0.941 0.996 0.886 0.938 -
XGBoost 0.848 0.990 0.703 0.82 -

[44] – - 0.96 - 0.95 -
[20] Ensemble 0.9391 - - - -
Proposed
Work RF - - - - 0.984

rate (FPR). A higher AUC value indicates a better classification performance of the604

model. The proposed work has achieved an AUC value of 0.984, which is better than605

existing works.606

7. Conclusion and Future Scope607
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Figure 10. Confusion matrix for best model (RF) on imbalance and SMOTE balanced power sys-
tem dataset.

6.5. Comparison with Previous Works

In this section, we compare the performance of our best model with those described
in the existing literature. Jingyu wang et al. [43] used deep autoencoder to detect data
manipulation attacks in power systems. Adhikari et al. [44] combined Non-Nested Gen-
eralized Exemplars (NNGEs) and the STate Extraction Method (STEM) for cyber-attack
event detection. Defu Want et al. [20] divided the features as per each PMU and then used
an ensemble approach to combine the results of five classifiers (the authors trained four
classifiers on four PMUs data and the fifth with combined features). Table 9 shows the per-
formance comparison of the best model of earlier studies and this study. The performance
of this study is shown as an AUC value. AUC is a robust metric that represents the total
area under ROC (trade-off between True Positive Rate (TPR) and False Positive rate (FPR)).
A higher AUC value indicates better classification performance of the model. This study
has achieved an AUC value of 0.984, which is better than the existing literature.
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Table 9. Comparison with previous works on FDIA detection for the power system dataset.

Work Algo. Accuracy Precision Recall F1-Measure AUC

[43] DAE 0.941 0.996 0.886 0.938 -
XGBoost 0.848 0.990 0.703 0.82 -

[44] – - 0.96 - 0.95 -

[20] Ensemble 0.9391 - - - -

Current
Study RF - - - - 0.984

7. Conclusions and Future Scope

We examined and improved the performance of machine-learning algorithms for
detecting FDIAs in critical infrastructure by determining the best features and mitigat-
ing imbalanced dataset problems. Performance improvement was tested and validated
through various experimental results. These experiments included feature selection meth-
ods, oversampling techniques, and training and testing ML algorithms on two popular
datasets related to power systems and water treatment plants. Our results show that the
performance of algorithms varies significantly depending on the feature selection and the
number of features. For example, the performance of NB is unaffected by increasing the
number of features in the filter method while decreasing the number wrapper features. We
also found that selection methods rank features differently. We found that RF is generally
suitable for building an FDIA detector based on detection performance and training time
trade-offs. Additionally, model training with 10-fold cross-validation is suitable because
it highlights the over-fitting issues. Moreover, we analyzed the impact of the imbalanced
dataset and applied minority oversampling techniques to improve detection performance.

New sampling techniques based on deep learning and hybrid sampling approaches
are proposed in the literature [35–39]. Future studies can explore these recent techniques
with the power system and other critical infrastructure datasets. The binary classification
formulation in this study can be further divided and reformulated as a multi-class classifi-
cation for training machine-learning algorithms. Moreover, consideration of the space and
computation requirements of critical infrastructures can motivate new research objectives.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
AI Artificial Intelligence
ARFF Attribute-Relation File Format
AUC Area Under Curve
CPPS Cyber-Physical Power System
CPU Central Processing Unit
CSV Comma-Separated Value
DT Decision Tree
FDIA False Data Injection Attack
GB Gradient Boost
GUI Graphical User Interface
HMI Human–Machine Interfaces
ICT Information and Communication Technology
IDS Intrusion Detection System
IPS Intrusion Prevention System
IED Intelligent Electronic Device
kNN k Nearest Negibour
LR Linear Regression
LTS Long Term Support
ML Machine Learning
NB Naive Bayes
OCSVM One-Class Support Vector Machine
PCA Principal Component Analysis
PDC Power Distribution Center
PLC Programmable Logic Controllers
PMU Phasor Measurement Unit
RF Random Forest
ROC Receiver Operating Characteristic
SCADA Supervisory Control and Data Acquisition
SVC Support Vector Classifier
SVM Support Vector Machine
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