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Abstract: The power quality of the Electrical Power System (EPS) is greatly affected by electrical
harmonics. Hence, accurate and proper estimation of electrical harmonics is essential to design
appropriate filters for mitigation of harmonics and their associated effects on the power quality of
EPS. This paper presents a novel statistical (Least Square) and meta-heuristic (Grey wolf optimizer)
based hybrid technique for accurate detection and estimation of electrical harmonics with minimum
computational time. The non-linear part (phase and frequency) of harmonics is estimated using
GWO, while the linear part (amplitude) is estimated using the LS method. Furthermore, harmonics
having transients are also estimated using proposed harmonic estimators. The effectiveness of the
proposed harmonic estimator is evaluated using various case studies. Comparing the proposed
approach with other harmonic estimation techniques demonstrates that it has a minimum mean
square error with less complexity and better computational efficiency.

Keywords: grey wolf optimizer; electrical harmonics; harmonic estimation; total harmonic distortion

1. Introduction

Recently, estimation and mitigation of electrical harmonics have attained much atten-
tion due to excessive integration of non-linear, power electronic components and renewable
energy sources in an Electrical Power System (EPS) [1,2]. Harmonics can be described as
distortion in the fundamental voltage/current waveform of the electrical signal. In an
EPS, a higher value of Total Harmonic Distortion (THD) can cause various drawbacks
like deterioration of electrical components, increased power loss, and interferences for
communication systems. The power quality of EPS is directly influenced by electrical
harmonics. Hence, it is necessary to properly estimate and mitigate the electrical harmonics
for smooth and stable operation of EPS. Moreover, various regulations and standards have
been developed for harmonic levels by authorized organizations like the International
Electrotechnical Commission (IEC) and Institute of Electrical and Electronics Engineers
(IEEE) [3,4].

So far, various studies have been performed to model, eliminate, measure, and esti-
mate electrical harmonics to mitigate their adverse effects. The essential problem among
mentioned studies is the estimation of electrical harmonics, and different methodologies
were proposed in literature to solve this issue. The accurate approximation of electrical
harmonics in EPS is an extremely complex and multimodal problem [5]. Moreover, electri-
cal harmonics are getting more prominent due to the continuous integration of non-linear
power electronics equipment. Time varying noisy environment makes this problem even
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more complex and dynamic. So, the solution to the harmonic estimation (HE) problem
needs to be upgraded [6,7]. The harmonic estimation problem deals with two types of
approximations. The first one is the detection of harmonics amplitude and the second one
is the detection of the harmonics phase. Amplitude estimation of particular harmonics is a
linear problem, while phase and frequency estimation of particular harmonics is a nonlin-
ear problem [8,9]. Frequency estimation of power system harmonics and their transient
analysis are also sometimes resolved in harmonic estimation problem [4,10,11].

In literature, researchers solved HE problem via various mathematical, statistical, and
heuristic methodologies stated in Figure 1. Initially, mathematical techniques like Fourier
transform, fast Fourier transform, and discrete Fourier transform are applied, but their
disadvantages, like spectral leakage, picket fence, and those which were only applicable for
static signals, lead the researchers to explore more efficient tools for HE problem [12–14].
Partial accuracy was achieved by applying Hilbert and wavelet transformation [11,15].
To achieve greater accuracy, artificial intelligence techniques like Fuzzy Logic, Neural
Network, Expert systems, and ADALINE are also used [16,17]. Although they had accurate
results but their computational efficiency is very low.
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Figure 1. Classification of methodologies used for HE problem.

To enhance computational efficiency, several statistical techniques like Kalman filter
(KF), Least square (LS), Least mean square (LMS), Recursive least square (RLS), and
Least average value (LAV) were adopted to solve HE problem [18–22]. These techniques
had a simple structure, linear behavior, and higher efficiency than mathematical and AI
techniques. However, their flaws, like requirement of system information and fine-tuning
of the system make them difficult to be utilized.

Recently, hybrid statistical and nature inspired meta-heuristic techniques have ac-
quired huge attention of researchers due to their self-adaptive nature, less computational
efficiency, smooth structure, and solving complex engineering problems. Different strate-
gies were reported in literature for addressing HE problem, i.e., Local Ensemble Kalman
filter (LETKF) [23,24], Kalman filter and least error square (KFLES) [25], Phase-locked
loop (PLL) [24,26], Particle swarm-Passive congregation (PSOPC) [27,28], Genetic Algo-
rithm (GA) [29], Bacterial Foraging-Recursive (BFO-RLS) [30,31], Bacterial Swarming [32],



Energies 2021, 14, 2587 3 of 26

Firefly algorithm (FFALS) [33], Artificial bee (ABCLS) [34], Biogeography-RLS [35], Differ-
ential search [36], Gravity search-RLS [37], A modified ABC (MABC) [3], and Frequency
shifting-filtering method (FSF) [38]. GWO equipped with evolutionary operators [39] is
also implemented for HE problems but it has large computational time due to the addition
of tournament, selection, crossover, and mutation operators. Although the accuracy and
computational efficiency of the aforementioned techniques are better but they offer complex
structures with large controlling parameters. Moreover, above-mentioned studies have
not estimated the frequency component of the signals, and the effectiveness of proposed
estimators have been validated only on steady state conditions. However, few studies in
the literature estimate the frequency component of the electrical signals [40,41], but they
have not included transient conditions to authenticate the performance of HE estimator.
While there is a dearth of studies [4,10,11] that considered transient conditions in HE prob-
lem, the methodologies utilized in the referred studies are based on statistical techniques
that provide better accuracy, but their computational efficiency is very low. The accurate
estimation of harmonics in an electrical signal (both in steady and transient state) can be
further improved with the latest advancements in solution tools.

From the literature survey, it could be observed that each methodology implemented
on the HE problem has its own pros and cons. Some techniques had optimal results
but poor computational efficiency and some provide great computational efficiency but
compromise accuracy. The authenticity of the literature harmonic estimators in the dynamic
and composite power system, tends to be lessening. The investigators are advancing
towards an updated estimator that can perform well in both steady and transient conditions
with less complexity level, more accuracy, and low computational efficiency. So, it still
needs a proper solution that can tackle the HE problem with better accuracy, having less
computational time than the state-of-the-art techniques. The major contribution of this
paper is as follows:

• A novel Grey Wolf Optimizer (GWO) and LS-based hybrid estimator is proposed for
accurate estimation of harmonics in EPS.

• The proposed GWO-LS has the ability to cope with HE problems timely in the modern
dynamic and complex smart grid/system.

• GWO is utilized for accurate estimation of non-linear part, and LS is used for accurate
estimation of the linear part of HE problems.

• GWO is also utilized for the accurate estimation of frequency components of integral,
sub, and inter harmonics.

• The transient analysis of the case studies is done to ascertain the effectiveness of the
proposed GWO-LS harmonic estimator.

• The proposed harmonic estimator performed better in dynamic and noisy signals,
reduces complexity level, and improves the presented harmonic estimator’s computa-
tional efficiency and accuracy.

• The effectiveness of the proposed estimator is evaluated on standard test systems used
by various researchers.

The rest of the manuscript is organized as: Section 2 discusses the HE problem
formulation; Section 3 describes the proposed harmonic estimator. Various case studies are
stated in Section 4, the final conclusion is given in Section 5, and future suggestions are
conferred in Section 6.

2. Problem Formulation of Harmonic Estimation

The estimation of electrical voltage or current signals having electrical harmonics of
dynamic nature is computed in two stages. The first stage deals with the non-linear approx-
imation of harmonic’s phase and frequency by GWO, while the second stage deals with the
harmonic’s amplitude approximation. Generally, an electrical signal containing harmonics
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is represented by the summation of sine-cosine functions having higher frequencies values
that are integral multiples of the fundamental frequency and is given as [3],

Y(t) =
I

∑
i=1

Kisin(ωit + ϕi) + Kdcexp(−γdct) (1)

where i represents harmonic order, Ki shows harmonic amplitude, ωi indicates angular
frequency while ϕi states harmonic’s phase. DC offset is shown by Kdcexp(−γdct) and ωi
is given as,

ωi = 2π × f (2)

The entire model of a signal having noise is given by [37]:

Y(t) =
I

∑
i=1

Kisin(ωit + ϕi) + Kdcexp(−γdct) + Nt (3)

here, Nt stands for total noise in a specific signal. The digital representation of the above
signal is represented as:

Y(sTs) =
I

∑
i=1

Kisin(ωisTs + ϕi) + Kdcexp(−γdcsTs) + NsTs (4)

where s shows sample number and Ts represents sampling time. Applying trigonometric
identity on the above equation yields:

Y(s) =
I

∑
i=1

[Kisin(ωisTs)cosϕi + Kicos(ωisTs)sinϕi] + Kdcexp(−γdcsTs) + NsTs (5)

Expanding decaying offset and neglecting higher frequency terms update the above
equation as,

Y(s) =
I

∑
i=1

[Kisin(ωisTs)cosϕi + Kicos(ωisTs)sinϕi] + Kdc − KdcγdcsTs + NsTs (6)

The equation to be estimated for the estimated signal becomes:

∧
Y(s) = X.S(s)T (7)

X = (K1cosϕ1, K1sinϕ1 · · · · · ·Kicosϕi, Kisinϕi, Kdc, Kdcγdc, 1) (8)

S(s)T =
l

∑
i=1

[sin(ω1sTs), cos(ω1sTs) · · · · · · sin(ωisTs), cos(ωisTs)], 1,−sTs, NsTs (9)

where S(s)T and X is the matrix of known and unknown parameters, respectively, while

X is updated successfully to approximate signal
∧
Y(s). The amplitude and phase of an

unknown ith harmonic with the decaying dc component after the X matrix is updated can
be as:

Ki =
√

ϕ2
2i + ϕ2

2i−1 (10)

ϕi = tan−1(
ϕ2i

ϕ2i−1
) (11)

Kdc = ϕ2i+1 (12)

ϕdc =

(
ϕ2i+2

ϕ2i+1

)
(13)
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Finally, the objective function for the harmonic estimation problem is formulated
as [6]:

S = min
I

∑
i=1

MSE2
i (i) = min

l

∑
i=1

[
Y(s)−

∧
Y(s)

]2
(14)

here, Y(s) is our actual power signal while
∧
Y(s) is the final approximated signal by GWO-LS.

3. Proposed Methodology
3.1. Grey Wolf Optimizer

GWO is a nature inspired-heuristic algorithm proposed by Seyed Ali Mirjalili [42]
and is widely employed to obtain the optimal solution for various optimization problems.
GWO is inspired by the social behavior of grey wolves; naturally, they live in a group form
called packs, and the members of each group vary from 5 to 12. Strong social hierarchy is a
unique feature of grey wolves. This social hierarchy is based on four ranks of wolves that
are termed as alpha (α), beta (β), delta (δ), and omega (ω) wolf. The ‘α’ is the superior of
all because of its leadership quality, managerial skills, and decision-making power, while
‘β’ wolf is inferior to α and acts as its adviser but discipliner for the rest of the pack. The
third level belongs to delta wolves, and they submit themselves to both alpha and beta
wolves. They are also helpful in hunting, care-taking of the whole pack. The lowest level
of the pack is an omega wolf having lethargic nature.

Another fascinating phenomenon of grey wolves is their unique hunting mechanism,
which undergoes five steps: (1) tracking, (2) chasing, (3) encircling, (4) harassing, and
(5) attacking. Figure 2 displays the complete hunting process of grey wolves. Figure 2A
shows the wolf tracking and chasing, while Figure 2B–D reveals how wolves encircle and
harass their prey. Similarly, the attacking behavior of wolves is depicted in Figure 2E. The
encircling behavior of the grey wolf is modeled using the following equations.

D =

∣∣∣∣→C .
→
P p(y)−

→
P(y)

∣∣∣∣ (15)

→
P(y + 1) =

→
P p(y)−

→
A×

→
D (16)

where y presents the current iteration, D shows the distance between specific wolf and

prey while
→
A and

→
C are the control variables for updating iteration.

→
P indicates the best

location of grey wolves (Local best) while
→
P p depicts the position of prey with respect to

the grey wolf (Global best). The coefficient vectors
→
A and

→
C are computed as follows:

→
A = 2

→
a .c1 −

→
a (17)

→
C = 2.c2 (18)

where
→
a is computed using

→
a = 2− 1 ∗ (2/max_iter), and its value decreases from 2 to 0.

→
C is a control variable having a value in the range of 0–2 while c1 and c2 are two random
numbers between [0, 1]. The hunting mechanism of the grey wolf is modeled by:

→
Dα =

∣∣∣∣→C1.
→
Pα −

→
P
∣∣∣∣ (19)

→
Dβ =

∣∣∣∣→C1.
→
Pβ −

→
P
∣∣∣∣ (20)

→
Dδ =

∣∣∣∣→C1.
→
Pδ −

→
P
∣∣∣∣ (21)
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→
P1 =

∣∣∣∣→Pα −
→
A1.

→
Dα

∣∣∣∣ (22)

→
P2 =

∣∣∣∣→Pβ −
→
A1.

→
Dβ

∣∣∣∣ (23)

→
P3 =

∣∣∣∣→Pδ −
→
A1.

→
Dδ

∣∣∣∣ (24)

→
P(y + 1) =

→
P1 +

→
P2 +

→
P3

3
(25)

here, Pα and Dα represent the position of α from the prey and distance between α and
prey, respectively. Similarly, Pβ, Pδ, Dβ, and Dδ describe the position and distance of
respective wolves. The grey wolves terminate the hunting step by attacking the prey, and
the attacking phenomenon relates to the exploitation phase of the GWO algorithm. The
value of a decreases from 2 to 0 to model the attacking behavior. The position vector A
is a random value in the range of [−2a, 2a]. When the value of variable A lies in [−1, 1],
the new position of the searching agent can be generated at any point between its current
location and the prey location. If |A| < 1 (convergence), this value compels the wolf
for attacking the prey, while if |A| > 1 (divergence) wolves search more for the better
prey (exploration process) as shown in Figure 3. Another coefficient vector C supports the
searching mechanism of GWO, and it describes the obstacles which can occur in nature
during the hunting step. The value of C allows the wolf to prevent obstacles and approach
the prey. Therefore, we can say that A and C are the control variables here.
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3.2. Hybrid GWO-LS Harmonic Estimator

In this paper, a hybrid of statistical technique Least square method (LSM) [43] and
a meta-heuristic technique GWO is proposed to solve the HE problem. The purpose of
hybridizing two different nature techniques is to minimize the computational burden,
increasing computational efficiency and accurate estimation of harmonics. The prominent
feature of GWO is its social hierarchy and is well adapted for solving complex problems,
and its working methodology is explained in the previous section, while the selection of
LSM to develop the proposed harmonic estimator is based on various reasons. Firstly, it
reduces the computational time of the GWO. Secondly, it moves to an exact solution as a
statistical technique rather than trapping in local optima. So, it provides accurate results in
linear estimation (Estimation of harmonic amplitude) of the HE problem. Thirdly it reduces
the computational burden of the GWO and improves the convergence characteristics of
GWO-LS as a whole. In the proposed hybrid harmonic estimator, LSM is utilized for
accurate estimation of the linear part (harmonic amplitude) of the HE problem, while
GWO is utilized for a proper approximation of the non-linear part (harmonic phase and
frequency) of the HE problem.

For proper estimation of harmonics in the desired signal, Ht which is a matrix of
grey wolves having t number of searching agents are initialized according to a number of
power system harmonics to be estimated. The objective function of the HE problem is to
minimize Mean Square Error (MSE). First of all, a matrix of t number of searching agents
(Grey Wolves) is defined where the location of a single searching agent consists of t number
of harmonics.

Hi =
(

Hi
1, Hi

2, Hi
3 · · · · · · , Hi

n

)
(26)

Numerous searching agents combine to form an agent matrix Ht.

Ht =


H1

1 H1
2 H1

3 · · · H1
i

H2
1 H2

2 H2
3 · · · H2

i
H3

1 H3
2 H3

3 · · · H3
i

...
...

...
...

...
Ht

1 Ht
2 Ht

3 · · · Ht
i

 (27)

here, t indicates the population size of grey wolves, and i is the total harmonics number
in a single search agent. A single searching agent consists of various locations, and these
locations are equal to the total number of harmonics in a signal. The location of each search
agent is initialized randomly as follows:

Ht
i = BL + rand(BU − BL) (28)

where BL and BU are the lower and upper bounds specified by the HE problem, respectively.
The GWO-LS estimator aims to properly approximate the harmonics’ amplitude and phase
of the harmonics in a time-varying noisy environment.

The error signal, which is obtained by the comparison of the actual signal and ap-
proximated signal, is fed to the optimization framework. This framework operates to
derogate the estimation error until best result is obtained. The proposed harmonic estima-
tor GWO-LS is said to be the least complex estimator due to the smaller number of control
variables. It has only two control variables irrespective of GA-LS having four, PSO-LS
having five, BFO having four, F-BFO-LS having six, BFO-RLS having four, BBO-RLS having
four, GSA-RLS having five, and MABC having four controlling variables that improve the
computational time ultimately. The detail description of GWO-LS tuning parameters is
given in Table 1 while the detailed flowchart of GWO-LS is depicted in Figure 4.
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Table 1. Tuning Parameters for GWO-LS framework.

Control Variables Range Description

a (2–0) Linearly decreased 2 to 0 over the course of iterations

A (−2a, 2a)
A is the random value in the interval [−2a, 2a].
If A < 1, then the Exploitation process occurs;
otherwise, exploration process.

C (0–2)
It supports the exploration process and models the
obstacles which can occur in nature during the
hunting step.
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3.3. Computational Procedure

The proposed methodology to solve the HE problem comprises of following steps:

• Load input database.
• A signal named “original signal” is formulated by utilizing an input database.
• Initialization of HE and GWO-LS parameters.
• GWO-LS is applied for updating unknown parameters.
• Formation of estimated signal by updated parameters.
• Comparison of the original signal and estimated signal to evaluate objective func-

tion (MSE).
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4. Simulation Results and Discussion

In this paper, two case studies are utilized to validate the effectiveness of the proposed
harmonic estimator. These case studies are widely used in literature for the comparative
analysis of the HE problem and are given as:

1. Test System I: Estimating integral harmonics without including Sub and Inter harmonics in
time-varying noisy environments.

2. Test System II: Estimation of integral harmonics including Sub and Inter harmonics in a
time-varying noisy environment.

The signal-to-noise ratio levels are selected as 10 dB, 20 dB, and 40 dB for a fair
comparison of the proposed estimator with literature available estimators. In addition to
creating time varying noisy environment, the constructed signals are made more complex
for estimation by including transients at different time intervals. Moreover, three different
performance indicators are utilized to examine the performance of the proposed GWO-LS
estimator in comparison with the state-of-the-art estimator available in the literature. The
selected performance indicators are given as:

• Mean Square Error (MSE) which can be computed using (13).
• Residual Sum of Squares (RSS) and is calculated as:

RSS = ∑
[

Y(s)−
∧
Y(s)

]2
(29)

• Performance Index (PER) is another evaluation indicator used in this study for the
comparison of GWO-LS with the state of art techniques and is determined as:

PER =
∑
[

Y(s)−
∧
Y(s)

]2

Y2 × 100% (30)

The simulation work is carried out in MATLAB 2019a programming environment on
a personal computer having Windows 8 operating system with a 2.30 GHz processor and
6GB RAM.

4.1. Test System I: Estimation of Integral Harmonics without Including Sub and Inter Harmonics
in Time-Varying Noisy Environment

The test signals generated by variable frequency drives (VFDs), electric arc furnaces,
and power electronics devices are used for the estimation of integral harmonics in the
current study. These signals are extensively used in literature for the comparative analysis
of various harmonic estimators. The data of frequency, phase, and amplitude required
for these signals is given in Table 2. The original test signal, which is a continuous signal,
is generated using data provided in Table 1 [3,39]. The test signal is modeled and dis-
cretized by a renowned Nyquist criterion having 64 samples in one cycle, and the sampling
frequency is set to be 3.2 kHz. The GWO-LS framework has been applied to estimate
harmonics in this test signal having multiple levels of adaptive noise with the inclusion of
decaying DC offset. The time-varying noisy environment is created by adding the different
random noises and DC offset values in the original signal. To validate the performance of
presented estimator in approximating dynamic parameters, a short transient is produced
in 5th harmonic from 0.12 s to 0.26 s.
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Table 2. Harmonic Contents of Actual Signal.

Harmonics Number Frequency (Hz) Amplitude (p.u) Phase (Degree)

1 50 1.5 80
3 150 0.5 60
5 250 0.2 45
7 350 0.15 36
11 550 0.1 30

The simulation parameters for the HE problem and GWO-LS are stated in Table 3.
These values are taken from the literature harmonic estimators [3,39,43]. Moreover, the
parametric values of Table 3 are selected in such a way so that a fair comparison between
the proposed and literature harmonic estimator can be performed. The searching agent is
an important simulation parameter. Its value is selected as 50 because the MSE comes out
to be least for this value. The variation of Evaluation parameters with respect to searching
agents is shown in Figure 5.

Table 3. Case Study I Parameters for Simulation.

Model Parameters Parametric Value

Number of Iterations 1000
Grey wolves (Searching Agents) 50

Number of trials 25
Nyquist Criterion Samples per cycle 64

Sampling frequency 3.2 kHz
Noise levels in dB 40, 20, 10

DC Offset 0.5 exp (−5t)
Number of Iterations 1000
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Two signals are generated using the proposed harmonic estimator; the first one is
the actual original signal made from input data with five integral harmonics. The second
signal is an approximated one that is obtained by GWO-LS containing the approximated
harmonics amplitudes and phases. These two signals are compared via MSE. The actual
and approximated harmonics are then compared with respect to the percentage error.
The simulation is carried out on four signals which are actual signals with no noise, a
signal having 40 dB, 20 dB, and 10 dB noises (SNRs). The output values of best and worst
harmonics amplitudes and phases with their percentage errors from actual harmonic values
are tabulated in Table 4.
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Table 4. Case Study I Parameters after Simulation.

Model Parameters Parametric Value

Best MSE 2.01×10−5

Worst MSE 2.31×100

Average MSE 3.16×10−1

Standard deviation 6.47×10−1

Total Harmonic Distortion 1.43×10−1

The comparison of actual and estimated signals is shown in Figure 6 at different SNRs.
It is evident from Figure 6a that the estimated signal using GWO-LS exactly matches the
original signal. However, it can be observed from Figure 6c,d that the signals become
corrupted with the addition of different noise levels and decaying DC offset. In the presence
of a 40 dB noise level, the proposed GWO-LS estimator accurately approximates the original
signal while small deviations are observed in the original and the approximated signal
when added noise is 20 dB. The estimation of the signal is more difficult in the presence of
a 10 dB noise level, but a comparison of results from Table 5 indicates that the GWO-LS
estimator outclasses the state of art techniques in such complex signal estimation.
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Table 5. GWO-LS Numerical Comparison for Case Study I.

Techniques Parameter 1st
Harmonic

3rd
Harmonic 5th Harmonic 7th Harmonic 11th

Harmonic
Computational

Time (s)

Test Signal

Frequency
(Hz) 50 150 250 350 550

-
Amplitude
(per unit) 1.5 0.5 0.20 0.15 0.1

Phase
(degree) 80 60 45 36 30

F-BFO-LS

Amplitude
(per unit) 1.49× 100 4.89× 10−1 2.08× 10−1 1.47× 10−1 1.02× 10−1

10.532Percentage
Error (%) 7.33× 10−1 4.89× 10−1 4.00× 100 2.13× 100 1.90× 100

Phase
(degree) 7.99× 101 6.12× 101 4.72× 101 3.67× 101 3.05× 101

Percentage
Error (%) 1.75× 10−1 1.93× 100 4.93× 100 1.83× 100 1.73× 100

BFO-RLS

Amplitude
(per unit) 1.50× 100 4.92× 10−1 2.01× 10−1 1.48× 10−1 1.02× 10−1

9.345Percentage
Error (%) 1.95× 10−1 1.59× 100 4.54× 10−1 1.41× 100 1.48× 100

Phase
(degree) 7.99× 101 5.91× 101 4.63× 101 3.64× 101 3.01× 101

Percentage
Error (%) 1.06× 10−1 1.54× 100 2.84× 100 1.24× 100 2.14× 10−1

BBO-RLS

Amplitude
(per unit) 1.50× 100 5.00× 10−1 2.01× 10−1 1.49× 10−1 9.99× 10−2

5.852Percentage
Error (%) 1.05× 10−1 7.85× 10−2 4.45× 10−1 9.56× 10−1 1.00× 10−1

Phase
(degree) 8.00× 101 5.95× 101 4.55× 101 3.61× 101 3.00× 101

Percentage
Error (%) 6.25× 10−2 7.45× 10−1 1.16× 100 3.28× 10−1 4.10× 10−2

GSA-RLS

Amplitude
(per unit) 1.50× 100 5.00× 10−1 2.01× 10−1 1.50× 10−1 9.99× 10−2

5.6545Percentage
Error (%) 9.45× 10−2 5.52× 10−2 3.55× 10−1 7.56× 10−1 9.00× 10−2

Phase
(degree) 8.00× 100 5.96× 101 4.55× 101 3.61× 101 3.00× 101

Percentage
Error (%) 5.15× 10−2 6.55× 10−1 1.11× 100 3.08× 10−1 3.25× 10−2

MABC

Amplitude
(per unit) 1.50× 100 5.00× 10−1 2.00× 10−1 1.50× 10−1 1.00× 10−1

1.0110Percentage
Error (%) 5.30× 10−2 4.41× 10−2 1.39× 10−1 3.19× 10−2 1.84× 10−2

Phase
(degree) 8.00× 101 6.01× 101 4.52× 101 3.60× 101 3.00× 101

Percentage
Error (%) 2.50× 10−2 2.09× 10−1 3.64× 10−1 3.60× 10−3 1.40× 10−1

GWO-LS

Amplitude
(per unit) 1.50× 100 4.99× 10−1 2.00× 10−1 1.50× 10−1 9.99× 10−2

0.571Percentage
Error (%) 2.17× 10−2 1.83× 10−2 7.65× 10−2 1.33× 10−2 3.50× 10−3

Phase
(degree) 8.00× 101 6.00× 101 4.50× 101 3.60× 101 3.00× 101

Percentage
Error (%) 7.70× 10−3 1.48× 10−2 6.60× 10−2 2.70× 10−3 8.33× 10−2

The convergence characteristics of the proposed GWO-LS estimator using selected
indicators at different noisy signals are shown in Figure 7. The proposed estimator con-
verges in less than 120 iterations for a non-noisy signal estimation. Similarly, GWO-LS
takes 145, 162, and 184 iterations to converge for the 40 dB, 20 dB and 10 dB signal, re-
spectively. Figure 7 indicates that the number of iterations to converge increases as the
signal’s noise level increases. It is evident from this Figure that the proposed harmonic
estimator takes a higher time for the convergence of signal having a higher noise level.
The computational time comparison of GWO-LS with the literature techniques is given
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in Table 6. It can be observed that the computational efficiency of the proposed harmonic
estimator is much higher.
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The convergence behavior of GWO-LS for estimation of integral harmonic’s amplitude
and phases is shown in Figure 8. It can be seen from Figure 8a that the proposed harmonic
estimator speedily converges for the first harmonic, whereas a large number of iterations
are required to converge for the seventh harmonic. Figure 8b depicts that the proposed
GWO-LS framework requires almost the same number of iterations for all harmonics. The
estimation of amplitude and phase of the seventh harmonic is much more complex than
the rest of the harmonic contents under a non-noisy and noisy environment within the
framework of time-varying nature.
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Table 6. GWO-LS Numerical Comparison for Case Study II.

Techniques Parameter Sub Harmonic 1st Inter
Harmonic

2nd Inter
Harmonic

Computational
Time (s)

Test Signal

Frequency
(Hz) 20 180 230

-
Amplitude (per unit) 0.505 0.25 0.35

Phase (degree) 75 65 20

F-BFO-LS

Amplitude (per unit) 5.21× 10−1 2.61× 10−1 3.71× 10−1

13.253
Percentage Error (%) 3.25× 100 4.40× 100 6.00× 100

Phase
(degree) 7.46× 101 6.43× 101 1.97× 101

Percentage Error (%) 5.20× 10−1 1.03× 100 1.39× 100

BFO-RLS

Amplitude (per unit) 5.11× 10−1 2.58× 10−1 3.64× 10−1

12.837
Percentage Error (%) 1.19× 100 3.24× 100 3.97× 100

Phase
(degree) 7.48× 101 6.53× 101 1.99× 101

Percentage Error (%) 2.53× 10−1 5.30× 10−1 6.61× 10−1

BBO-RLS

Amplitude (per unit) 4.94× 10−1 2.46× 10−1 3.50× 10−1

6.7525
Percentage Error (%) 1.13× 100 1.65× 100 7.88× 10−2

Phase
(degree) 7.49× 101 6.52× 101 2.00× 101

Percentage Error (%) 9.05× 10−2 2.63× 10−1 1.12× 10−1

GSA-RLS

Amplitude (per unit) 4.94× 10−1 2.03× 10−1 3.50× 10−1

6.1575
Percentage Error (%) 1.11× 100 1.45× 100 6.58× 10−2

Phase
(degree) 7.49× 101 6.50× 101 2.00× 101

Percentage Error (%) 7.55× 10−2 2.25× 10−1 1.04× 10−1

MABC

Amplitude (per unit) 5.05× 10−1 2.50× 10−1 3.50× 10−1

1.4860
Percentage Error (%) 4.68× 10−2 1.33× 10−2 1.10× 10−1

Phase
(degree) 7.50× 101 6.49× 101 2.00× 101

Percentage Error (%) 6.15× 10−2 9.64× 10−2 2.00× 10−1

GWO-LS

Amplitude (per unit) 5.05× 10−1 2.50× 10−1 3.50× 10−1

1.17976
Percentage Error (%) 2.16× 10−2 9.11× 10−3 1.11× 10−3

Phase
(degree) 7.50× 101 6.50× 101 2.00× 101

Percentage Error (%) 1.90× 10−2 4.07× 10−2 1.62× 10−1
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To evaluate the proposed GWO-LS harmonic estimator’s effectiveness, the obtained
results are compared with available harmonic estimators in literature, including F-BFO-LS,
BFO-RLS, and BBO-RLS GSA-RLS and MABC in terms of percentage error and computa-
tional time. The comparison of GWO-LS with literature techniques is tabulated in Table 5.
The percentage error of GWO-LS for the 1st, 3rd, 5th, 7th, and 11th harmonic phase are
7.70×10−3, 1.48×10−2, 6.60×10−2, 2.7×10−3, and 8.33×10−2, respectively. The minimum
error is achieved for 1st, 3rd, 5th, 7th, and 11th using GWO-LS in comparison with other
harmonic estimators. The comparison between the proposed and literature harmonic
estimator in case of harmonics amplitude and phase can be better seen in Figures 9 and 10.
It is clear from both the Figures that the proposed GWO-LS estimator has the least per-
centage error for all the harmonic contents. The behavior of the proposed estimator for
approximating frequency components of integral harmonics is demonstrated by Figure 11.
It can be clearly seen from Figure 11 that GWO-LS takes a greater number of iterations for
estimating frequency than the harmonics amplitude and phase estimation. The proposed
harmonic estimators approximate the fundamental frequency in 284 iterations, frequency
of 3rd, 5th, 7th, and 11th harmonic in 266, 257, 261, and 276 number of iterations, respec-
tively. It indicates that estimation of fundamental frequency takes higher iterations in
case of integral harmonics approximation. It can be concluded form the pictorial and
tabular analysis that GWO-LS accurately estimates the frequency components of integral
harmonics along with the amplitude and phase of the harmonics.
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Figure 12 demonstrates the GWO-LS behavior for estimating the amplitude of the
harmonics in both steady and transient conditions. It is evident from Figure 12 that
GWO-LS gives accurate estimation results in steady-state cases while a slight variation is
observed for the transient case. The proposed estimator shows estimation variation from
0.17 s to 0.20 s clearly visible in Figure 12b. Similarly, the computational time of GWO-LS to
accurately estimate a signal is 0.572 s. It can be observed from Table 5 that the time required
to estimate a signal in a noisy environment is minimum for GWO-LS in comparison with
all other techniques and it estimates the harmonic amplitudes and phases accurately in the
least computational time.

1 
 

 
Figure 12. Estimation in harmonics amplitude (a) steady state condition (b) transient in 5th harmonic.

4.2. Test System II: Estimation of Integral Harmonics Including Sub and Inter Harmonics in a
Time-Varying Noisy Environment

In this test system, the power signal is made more complex and distorted by the
inclusion of sub and inter harmonics. These sub and inter harmonics have amplitude
magnitudes of 0.505, 0.25, and 0.35, respectively, while their phase are 75, 65, and 20, having
the frequency of 20, 180, and 230 Hz, respectively [3,38]. The resultant power signal is
simulated under both noisy and non-noisy environments. All the other harmonic contents
(Amplitudes and phases of integral harmonics) and model evaluation setup remains the
same as presented in the previous case study. However, to validate the performance of the
presented estimator in approximating dynamic parameters, a short transient is produced
in 1st inter harmonic from 0.38 s to 0.5 s.

The numerical values obtained after simulation for this case study are presented in
Table 7. If we compare this Table with Table 4 we can see that all values of MSE become
higher after considering sub and inter harmonics which indicates that consideration of
such harmonics is difficult to estimate. The variation of MSE for the case study for different
values of searching agents is presented in Figure 13. It can be seen that the minimum value
of MSE is achieved for the 50 number of searching agents. The MSE for this case study is
greater than that of case study I due to the inclusion of sub and inter harmonics.
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Table 7. Case Study II Parameters after Simulation.

Model Parameters Parametric Value

Best MSE 4.30235×10−5

Worst MSE 4.05× 100

Average MSE 3.89× 10−1

Standard deviation 9.06× 10−1
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Figure 13. Searching agents for case study-II.

The pictorial form of the original and estimated signal for the GWO-LS estimator
can be seen in Figure 14. It can be observed that the power signal is completely changed
after the inclusion of sub and inters harmonics. The GWO-LS estimates the non-noisy and
40 dB signal exactly with great accuracy, as shown in Figure 14. The power signal having
10 dB noise is much difficult to estimate than the others due to higher noise. However, still
proposed estimator provides better results than estimators presented in the literature.

The convergence characteristics for this case study are shown in Figure 15. Figure 15
indicates that the number of iterations to converge increases as the signal’s noise level
increases. It is evident from this Figure that the proposed harmonic estimator takes a
higher time for the convergence of signal having a higher noise level. Moreover, the
presented harmonic estimator takes greater time to converge when compared to case study
I. The GWO-LS takes fewer iterations, i.e., 136, to converge for non-noisy signal, but the
number of iterations increases with the addition of sub and inter harmonics. GWO-LS
takes maximum iterations for 10 dB noisy cases that are 190 iterations.
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Figure 14. Actual and Estimated signal comparison (a) non-noisy, (b) 40 dB noise level, (c) 20 dB 
noise level and (d) 10 dB noise level. 
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increases. It is evident from this Figure that the proposed harmonic estimator takes a 
higher time for the convergence of signal having a higher noise level. Moreover, the pre-
sented harmonic estimator takes greater time to converge when compared to case study 
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Figure 14. Actual and Estimated signal comparison (a) non-noisy, (b) 40 dB noise level, (c) 20 dB noise level and (d) 10 dB
noise level.

The convergence behavior of GWO-LS estimator for the approximation of sub and
inter harmonics over the course of iterations is described in Figure 16. The amplitude
and phase of subharmonic take more iteration to converge and more difficult than the
amplitude and phase of inter harmonics. Sub and inter harmonics are hard to approximate
due to their fractional frequency nature. The amplitudes of subharmonics and second inter
harmonic converge in 314 and 323 iterations, while first inter harmonic takes 289 iterations
to converge. The phase of sub and inter harmonics converge in 300, 272, and 288 iterations,
respectively. The presented estimator takes more iterations to converge for approximating
sub and inter harmonics amplitudes and phases than the integral harmonics under time
varying noisy environment but still it gives better results than the state of art techniques.
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Figure 15. The convergence characteristics of the GWO-LS framework for case study II (a) non-noisy signal (b) 40 dB (c)
20 dB and (d) 10 dB.
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The behavior of the proposed estimator for approximating frequency components of
sub and inter harmonics is demonstrated by Figure 17. It can be clearly seen from Figure 17
that GWO-LS takes a greater number of iterations for estimating frequency than the har-
monics amplitude and phase estimation. The proposed harmonic estimators approximate
the sub frequency in 317 iterations, frequency of first and second inter harmonics in 298 and
264 number of iterations, respectively. It reveals that estimation of sub harmonic frequency
takes higher iterations while considering all harmonics. Figure 18 demonstrates the GWO-
LS behavior for estimating the amplitude of the harmonics in both steady and transient
conditions. It is evident from Figure 18 that GWO-LS gives accurate estimation results in
steady state cases while a slight variation is observed for the transient case. The proposed
estimator shows estimation variation from 0.45 to 0.5 s clearly visible in Figure 18b.
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Figure 17. Frequency estimation for case study II.

The comparison of the GWO-LS framework with the literature techniques in terms of
percentage error between original and approximated harmonic amplitudes and phases is
plotted in Figures 19 and 20. Both the Figures demonstrate that the proposed estimator
has the minimum percentage error while estimating integral, sub and inter harmonics.
Moreover, the comparison of the results of the GWO-LS estimator is also stated in tabular
form as Table 6. It is evident from the Table 6 analysis that GWO-LS harmonic estimator is
computationally far better than literature estimators by taking 1.17976 s for the approxi-
mation of power signal having a sub and inter harmonics. The percentage error between
the original harmonic amplitude and phase and the GWO-LS also proved the proposed
methodology’s effectiveness. The performance comparison of the presented harmonic
estimator with the state of art techniques in terms of performance index also proved the
effectiveness of the GWO-LS in the estimation of the sub, inter, and integral harmonics
demonstrated in Figure 21 and Table 8. It can be derived from Table 8 and Figure 21
that the proposed estimator has 3.11×10−4, 2.61×10−2, 1.83×10−1 performance indexes
for the 40 dB, 20 dB, and 10 dB cases; respectively, which are better than the literature
results. Hence, we can conclude that the given harmonic estimator gave promising results
in harmonic parameters estimation (sub, inter, and integral harmonics) under a highly
noisy and time-varying environment.



Energies 2021, 14, 2587 22 of 26Energies 2021, 14, x FOR PEER REVIEW 21 of 26 
 

 

 
Figure 18. Estimated harmonic amplitude (a) steady state condition and (b) transient in 1st inter harmonic. 

The comparison of the GWO-LS framework with the literature techniques in terms 
of percentage error between original and approximated harmonic amplitudes and phases 
is plotted in Figures 19 and 20. Both the Figures demonstrate that the proposed estimator 
has the minimum percentage error while estimating integral, sub and inter harmonics. 
Moreover, the comparison of the results of the GWO-LS estimator is also stated in tabular 
form as Table 6. It is evident from the Table 6 analysis that GWO-LS harmonic estimator 
is computationally far better than literature estimators by taking 1.17976 s for the approx-
imation of power signal having a sub and inter harmonics. The percentage error between 
the original harmonic amplitude and phase and the GWO-LS also proved the proposed 
methodology’s effectiveness. The performance comparison of the presented harmonic es-
timator with the state of art techniques in terms of performance index also proved the 
effectiveness of the GWO-LS in the estimation of the sub, inter, and integral harmonics 
demonstrated in Figure 21 and Table 8. It can be derived from Table 8 and Figure 21 that 
the proposed estimator has 3.11 × 10ିସ, 2.61 × 10ିଶ, 1.83 × 10ିଵ performance indexes for 
the 40 dB, 20 dB, and 10 dB cases; respectively, which are better than the literature results. 
Hence, we can conclude that the given harmonic estimator gave promising results in har-
monic parameters estimation (sub, inter, and integral harmonics) under a highly noisy 
and time-varying environment. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6
 Estimated 2nd Inter 1st Inter Sub

Am
pl

itu
de

 (p
.u

)

Time (sec)
(a)

Am
pl

itu
de

 (p
.u

)

Time (sec)
(b)

  

 

 

Figure 18. Estimated harmonic amplitude (a) steady state condition and (b) transient in 1st inter harmonic.
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Table 8. PER comparison of GWO-LS with Literature harmonics estimator for Noisy signals.

Harmonics Number
Frequency (Hz) Amplitude (p.u) Phase (Degree)

40 dB 20 dB 10 dB

GA-LS 1.83× 10−1 1.20× 100 1.07× 101

PSO-LS 1.57× 10−1 9.55× 10−1 7.36× 100

BFO 1.38× 10−1 8.07× 10−1 5.25× 100

F-BFO-LS 1.12× 10−1 8.02× 10−1 5.19× 100

BFO-RLS 9.23× 10−2 7.87× 10−1 4.55× 100

BBO-RLS 7.50× 10−2 5.74× 10−1 3.86× 100

GSA-RLS 6.52× 10−2 5.48× 10−1 3.65× 100

MABC 9.54× 10−4 9.54× 10−2 9.54× 10−1

GWO-LS 3.11× 10−4 2.61× 10−2 1.83× 10−1

5. Conclusions

In this paper, a hybrid harmonic estimator GWO-LS is proposed to estimate harmonics
in a power signal. In the proposed harmonic estimator, GWO and LS estimate the non-linear
part (phase and frequency) and linear part (amplitude) of a power signal, respectively. For
validation of the proposed estimator, two test systems are adopted, among which the first
test system contains power harmonics while the second test system considers sub and inter
harmonics. Moreover, three different performance indicators are utilized to examine the
effectiveness of the proposed approach. The obtained results were compared with recently
developed harmonic estimators BFO, F-BFO-LS, ABC-LS, BBO-RLS, GSA-RLS, and MABC.
Comparative evaluation of results in terms of percentage error, performance index, and
computational time depicts that the proposed GWO-LS estimator estimates the harmonics
in a power signal more accurately. The proposed estimator provides less computational
complexity, which is essential for the detection of harmonics timely to maintain power
quality. The proposed GWO-LS estimator requires 43.5% and 20.6% less time to accurately
estimates harmonics in comparison with MABC. Moreover, the obtained percentage error
for phase and amplitude indicates that GWO-LS estimates harmonics in a power signal
with better accuracy. Furthermore, the proposed estimator accurately estimates harmonics
having transient at different time intervals. In addition, the proposed estimator’s PER
values are much smaller than the state of art techniques, which clearly verifies that the
developed methodology performs the HE problem more accurately and rapidly with a
simple structure having fewer controlling parameters.

6. Future Recommendations

• Practical and industrial implementation of proposed research for accurate estimation
of electrical harmonics amplitude and phase.

• Proposed harmonic estimator can be helpful in designing active filters to nullify the
effects of harmonics thus improving power quality.

• Determine the emission level of higher harmonic components and identifying the
source of voltage distortion in the power supply system of industrial enterprises.

• Detailed Analysis of the Steady and transient Conditions of the electrical signals
having sub, inter, and integral harmonics.
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