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Abstract: In order to reduce the load demand of buildings in Japan, this study proposes a grid-
tied hybrid solar–wind–hydrogen system that is equipped with a maximum power point tracking
(MPPT) system, using a fuzzy logic control (FLC) algorithm. Compared with the existing MPPTs, the
proposed MPPT provides rapid power control with small oscillations. The dynamic simulation of the
proposed hybrid renewable energy system (HRES) was performed in MATLAB-Simulink, and the
model results were validated using an experimental setup installed in the Chikushi campus, Kyushu
University, Japan. The techno-economic analysis (TEA) of the proposed system was performed to
estimate the optimal configuration of the proposed HRES, subject to satisfying the required annual
load in the Chikushi campus. The results revealed a potential of 2% surplus power generation from
the proposed HRES, using the FLC-based MPPT system, which can guarantee a lower levelized cost
of electricity (LOCE) for the HRES and significant savings of 2.17 million yen per year. The TEA
results show that reducing the cost of the solar system market will lead to a reduction in LCOE of the
HRES in 2030.

Keywords: hybrid renewable energy system; fuzzy logic; renewable energy; fuel cell; techno-
economic analysis

1. Introduction
1.1. Background and Literature Review

Today, the earth faces a significant environmental problem, which is global warming.
Renewable energy is one of the best ways to solve this problem. After the Great East Japan
Earthquake, the share of nuclear electricity in Japan has decreased significantly [1]. This
is because the public’s concern about nuclear power plants has risen due to the nuclear
accident. As a result, the dependence on thermal power generation has increased. However,
Japan lacks energy resources; its energy self-sufficiency rate is meager compared to that of
other OECD countries [2,3].

In 2013, the Japanese government promoted an initiative (3E + S) to achieve energy
security, economic efficiency, and environmental compatibility, with safety as a priority [2].
According to this plan, the desirable future energy mix in 2030 is as represented in Figure 1.

As shown in Figure 1, renewable energy is an effective countermeasure to increase
energy resilience in Japan. For the current electricity market in Japan, renewable energy
sources (RES) utilization mostly focuses on individual power sources, including solar
photovoltaic systems, wind turbines, micro-hydropower, etc. However, the big concern
with RES is their intermittency due to dependence on uncertain climate conditions [4].
Consequently, reliance on an individual power system can result in over-sizing of the
system and also a significant rise in the total cost of the system. The hybridization of
variable renewables can allow for smooth, durable, and reliable output to power grids to
improve the safety, reliability, and stability of dispatched power, which is cheaper than
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investing in single renewable technologies [5–7]. Numerous scholars have focused on
optimal designing and planning of the hybrid renewable energy systems (HRES) in Japan.
Yoshida and Farzaneh applied the particle swarm optimization (PSO) method to find the
optimal configuration of a stand-alone microgrid (Photovoltaic (PV)/wind/battery/diesel)
used in providing the required electricity for the residential area in Fukuoka [8]. Takatsu
and Farzaneh proposed a hybrid hydrogen-based microgrid, consisting of a biomass
supercritical gasifier and a solar water electrolyzer to provide the residential demand
load requirement in Shinchi-machi, Fukushima Prefecture [9]. Shaqour et al. proposed
an efficient control scheme and design for a hybrid renewable energy system consisting
of PV, wind turbine generator, lead-acid battery, inverter, and control unit installed in a
typical Japanese house located in Kasuga City, Fukuoka Prefecture [10]. Guohong Wu et al.
designed a hybrid microgrid energy system consisting of PV, wind, battery storage, and an
electrical double-layered capacitor as secondary battery storage implemented at the Tagajo
campus Tohoku Gakuin University, Japan [11]. Sugimura et al. developed a hybrid energy
microgrid system consisting of a PV, wind generator, and diesel generator as the primary
power sources, with battery energy storage for Aguni Island, located in Okinawa, Japan.
They investigated the operation schedule of both the battery system and diesel generator
and the optimal system configuration in terms of capacity under the application of demand
response programs [12].

Figure 1. Japan’s energy mix outlook in 2030 (Adapted from [2]).

The output power of the proposed HRES varies on environmental variables such as
solar irradiance, wind, and operating temperature. The maximum power point tracking
(MPPT) control technique is mainly used to extract the maximum capable power of the
HRES with respective solar irradiance, wind speed, and temperature at a particular instant
of time point.

The MPPT controller will make use of nearly 100% of the available power. In recent
years, there has been great interest in the study, improvement, and implementation of
MPPT algorithms [13]. MPPT aims to regulate the actual operating voltage of solar panels
to the voltage at the MPP. For this purpose, MPPT adjusts the output power of the inverter
or DC converter. If the PV output voltage is higher than the maximum power point voltage,
then transferred power to the load or network is increased; otherwise, it is decreased. The
MPPT methods can be classified into indirect and direct methods. The indirect methods,
such as short-circuit and open-circuit methods, need a prior evaluation of the PV panel,
or they are based on mathematical relationships or a database not valid for all operating
meteorological conditions. Therefore, they cannot obtain exactly the maximum power
of a PV panel at any irradiance and cell temperature. Conversely, the direct methods
operate at any meteorological condition and act in real time on the voltage reference
variable, corresponding to the maximum power provided by the PV system. MPPT can be
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realized in the wind power generation control by adjusting the power or torque command.
The input of the control block is the rotor speed. The optimum power corresponding to
this speed will be generated and will be passed to the outer power control block as the
power command. Even though a few improvement methods have just been utilized for
MPPT, different and new methods may prompt better outcomes and are suggested for
future research. Many algorithms have been developed to efficiently track the maximum
power point, such as incremental conductance (INC), hill climbing, or perturbation and
observation (P&O) [14]. Zhang et al. proposed a hybrid MPPT algorithm that combines an
iterative learning controler (ILC) and P&O to extract maximum power from PV systems. In
their research, the ILC was proposed to obtain the maximum power point (MPP) in steady-
state operation under periodic long-term variations in irradiance and temperature, where
the working power point oscillates near the MPP. A high-frequency P&O was proposed
to overcome the ILC’s shortcomings under highly changing irradiance, improving the
dynamic response under such conditions [15]. Messalti et al. proposed and tested two new
artificial neural network (ANN) MPPT controllers based on fixed and variable step size. The
neural network was trained based on data collected, using the P&O algorithm for the offline
phase of training, configuring the neural network, and using the ANN in a PV system [16].
Ahmed and Salam introduced a modified P&O MPPT algorithm in order to reduce steady-
state oscillations and decrease the occurrence of tracking direction errors for the P&O-
based MPPT controller. They introduced a modified scheme that dynamically alters
the perturbation size coupled with introducing a dynamic boundary condition to prevent
divergence from the tracking locus, indicating about 1.1% improvement over the traditional
P&O when there is a slow change in irradiance levels and about 12% increase in efficiency
under fast irradiance changes [17]. Mei et al. implemented a novel incremental-resistance
MPPT with variable step size, addressing the advantages of the ILC-based MPPT. They
reported a significant improvement in MPPT response speed and accuracy at the steady-
state condition, with an extensive operating range [18]. Sher et al. presented a hybrid MPPT
algorithm that combines the fractional short circuit current (FSCC) measurement and the
P&O algorithm. The two-stage algorithm proposed increases performance under changing
weather conditions, and the reliability of the model under environmental scenarios was
satisfactory with both software and experimental validation [19]. Table 1 shows the recent
MPPT techniques for PV and wind renewable energy systems.

As mentioned above, although there is substantial research concerning the different
MPPT algorithms, there are two challenges with the application of them in HRES:

1. Most of them suffer from the drawback of being slow tracking, due to which the
utilization efficiency is reduced.

2. Furthermore, intermittency, rapid irradiation, and temperature changes may cause
the MPPT to be oscillating around one of the multiple local peaks of power.

Table 1. A review of recent maximum power point tracking (MPPT) techniques for PV and wind renewable energy systems.

Configuration Energy
Sources MPPT Technique Target of

Control Description Ref

Stand-alone/grid
connected PV–wind

Radial basis
function network

(RFBN)-based
single MPPT.

Boost
converter

A single (RFBN)-based single MPPT
controller was used to control both boost
converters connected to the PV and wind
systems, whereas one for each is used in

conventional systems. They achieved
higher performances over modified

(improved) P&O.

[20]

Stand–alone PV–wind-
battery

P&O, FLC,
sliding mode

control (SMC),
hill climbing
search (HCS)

Boost
converter

A hybrid method of P&O, FLC, and SMC
was used for PV MPPT, and a hybrid of

HCS and FLC were utilized for wind
MPPT. The results show significant

performance over conventional P&O,
FLC, and robust sliding mode

control (RSMC).

[21]
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Table 1. Cont.

Configuration Energy
Sources MPPT Technique Target of

Control Description Ref

Stand-alone PV–battery
Harris Hawk
optimization

(HHO)

Boost
converter

The HHO control was tested under
highly varying irradiance, partial

shading, complex partial shading, and
accurate atmospheric data. It was then
compared to PSO, cuckoo search (CS),
grey wolf optimization (GWO), and
dragonfly optimization algorithm
(DFOA), where it showed 10–30%

tracking time improvement, and to P&O,
where it showed 95.45% steady-state

oscillation reduction.

[22]

Stand-alone
PV–wind–

battery–fuel
cell

Speed-control
and single input
fuzzy logic (SIFL)

controllers

Buck
converter

Validated with an experimental setup,
the speed-control was used for MPPT to

the wind turbine while the SIFL
controller was used for PV. A fractional
order PID (FOPID) controller was used
to control the Bi-directional buck-boost

converter for the battery. The results
show good potential and performance.

[23]

Stand-alone PV–wind–
battery

Ant colony
optimization

(ACO)

Buck
converter

The ACO MPPT controls a single buck
converter for optimizing wind turbine

power and battery charging. ACO
achieved seven times faster convergence
than particle swarm optimization (PSO).
A fuzzy logic controller (FLC) was used

to control the inverter.

[24]

Grid connected

PV–wind–
battery–fuel
cell–diesel
generator

A hybrid of P&O
and Q-Learning

(h-POQL)

Boost
converter

A combination of the reinforcement
learning (RL)-based Q-Learning

algorithm and P&O was used for MPPT
of the PV system, where it showed

improved performance over
conventional P&O.

[25]

Stand-alone
PV–battery–

fuel
cell

Fuzzy
sliding-mode

controller
optimized with

water cycle
algorithm (WCA)

Boost
converter

The WCA was used for the first time in
renewable energy systems to optimize
the input and output gain of the fuzzy

sliding-mode controller. The main target
of the control system is to optimize for
maximum PV power generation and

DC–bus voltage error reduction.

[26]

Grid connected PV–wind

Adaptive
incremental
conductance

(AIC), modified
P&O

Boost
converter

A variable step-size AIC was used for
MPPT of the PV system, while a

modified P&O was used for MPPT of the
wind system. The results were validated

with accurate monthly weather data.

[27]

Stand-alone PV

Grey wolf
optimized

adaptive fuzzy
logic controller

(AFLC)

Boost
converter

GWO was used to optimize the
membership functions of the AFLC

MPPT controller and was tested on four
shading patterns where it overcame the

drawback of conventional FLC and P&O
MPPT methods.

[28]

Stand-alone PV
A novel beta

parameter-based
FLC

Boost
converter

A third intermediate beta parameter to
the FLC was introduced to reduce the
complexity of the fuzzy rule function
and cover wider operating conditions

reducing the user’s dependence on
system knowledge.

[29]
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Table 1. Cont.

Configuration Energy
Sources MPPT Technique Target of

Control Description Ref

Stand-alone PV

Bayesian fusion
general-purpose
adaptive MPPT,
PID controller

Boost
converter

Bayesian fusion, which is a machine
learning-based method, is used to avoid
PowerPoint local minima under partial
shading cases, while a PID controller is

used to minimize steady-state
oscillations. Results show enhanced

response time and efficiency compared
to state-of-the-art techniques.

[30]

1.2. What Will Be Elucidated in this Research

Based on the above discussion, this study aims to introduce a hybrid renewable energy
system (HRES) equipped with an advanced MPPT, which is envisioned to be installed
at Kyushu University’s Chikushi Campus in Kasuga, Japan (Figure 2). To overcome the
drawbacks mentioned on the existing tracking systems, such as the P&O method, this
study aims at introducing a MPPT system based on fuzzy logic control (FLC), which
provides rapid control, and small oscillations once it reaches the MPP, under varying
weather conditions. The proposed FLC-based MPPT controls the DC–DC converter, which
is connected to the solar panel and wind turbine. The determination of input and output
magnitude is the most notable feature of the FLC-based MPPT. The FLC determines the
numerical input as a linguistic magnitude based on its own rules. It then selects the
linguistic output corresponding to the linguistic information and finally converts it into an
output value as a number. Thus, the FLC-based MPPT is faster and more accurate than
other MPPT controllers, such as P&O, because it has the flexibility to change the magnitude
of the output values depending on the position of the points, resulting in more power
output from the HRES.

Figure 2. Hybrid renewable energy system (HRES) at the Chikushi campus of Kyushu university.

The research flow diagram in this paper is shown in Figure 3. The first part of
this research includes developing a detailed dynamic simulation performed in MATLAB
Simulink to simulate the technical performance of the PV arrays and wind turbine, which
are equipped with the FLC-based MPPT. The Simulink is used to evaluate the effectiveness
of the FLC-based MPPT in rapid tracking of the MPP and extracting surplus power from the
HRES, compared with a conventional P&O-based MPPT. The detailed meteorological data
used in this study are collected from the Japan Meteorological Agency for Fukuoka City.
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Figure 3. Research flow in this paper.

The second part of the study discusses a detailed techno-economic analysis (TEA) of
the proposed HRES, including the hydrogen production and storage components. TEA
is used to find the optimal configuration of the HRES and verify the balance of electricity
and hydrogen generation for securing the operation feasibly during the system’s lifetime.
Furthermore, it addresses the role of the FLC-based MPPT in reducing the levelized cost of
electricity (LCOE) of the proposed HRES and, finally, the impact of the future costs of each
component (solar, wind, fuel Cell) on the LCOE in 2030 will be evaluated.

2. Model Development
2.1. Solar Power Simulation Model

Figure 4 shows the whole solar-module Simulink model, including FLC–MPPT sys-
tems. The technical specification of the solar panel used in this study is given in Table 2.
Figure 5 shows the schematic diagram of the buck converter. The DC–DC converter is used
as an impedance matching system to track the MPP. The buck converter switches ON and
OFF to adjust the output voltage by referring to the duty cycle from the MPPT, following
the MPP voltage.

Figure 4. PV Simulink model.
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Table 2. Technical specifications of the solar panel [31].

Parameter Value

Maximum Power [W] 160

Voltage at MPP [V] 17.9

Current at MPP [A] 8.94

Open circuit voltage [V] 21.6

Short circuit current [A] 9.47

Temperate coefficient of Isc 1 [%/◦C] 0.10 ± 0.01

Temperate coefficient of Voc 2 [%/◦C] −(0.38 ± 0.01)%/◦C

The number of cells on the PV panel 36
1 Short-circuit current. 2 Open circuit voltage.

Figure 5. Schematic diagram of the buck converter.

Table 3 shows the technical parameters of the buck converter. In this buck converter,
an insulated-gate bipolar transistor (IGBT) buck converter is connected to each PV panel.
The pulse width modulation (PWM) is controlled by combining IGBTs and diodes, followed
by inductors, freewheeling diodes, and capacitors.

Table 3. Parameter of the buck converter [10].

Parameter Value

Capacitance (C1) 2.2 [mF]

Capacitance (C2) 2.2 [mF]

Resistance (R) 10,000× 103 [Ω]

Inductance (L) 3 [mH]

Fuzzy logic is a type of multi-valued logic that can express linguistic variables by
using values from 0 to 1, similar to human thinking. The fuzzy logic controller comprises
three components: fuzzification, rule interface, and defuzzification, as shown in Figure 6.

In the stage of fuzzification, numeric input variables are transformed into linguistic
variables. Typically, the input variables of the controller are the error (E) and the variation
of error (CE). The error shows the operating point of the PV system concerning the MPP,
where it should be zero, and its variation shows how this point moves in the power-voltage
curve. The transformation is carried out by applying the membership functions set for
different input variables ranges, and its value varies between 0 and 1. The interface is
responsible for implementing the rule-based functions that define the behavior of the
controller. The controller output will be a linguistic variable that establishes the duty ratio
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of the converter and iteratively makes the error tend to zero. In the defuzzification stage,
the membership functions are applied to obtain the numerical output values.

Figure 6. Structure of fuzzy controller.

The FLC judges the operating point (OP) position by using two inputs. These are the
slope of the power–voltage (P–V) curve’s tangential line

(
dP
dV

)
and displacement direction

of the operating point
(

d2P
dV2

)
, which are shown in Figure 7.

Figure 7. PV fuzzy controller Simulink model.

The FLC judges the MPP position by using two inputs. These are the slope of the
P–V curve’s tangential line

(
dP
dV

)
and displacement direction of the operating point

(
d2P
dV2

)
.

These two inputs are expressed following equations, respectively.

E(k) =
P(k)− P(k − 1)
V(k)− V(k − 1)

(1)

CE = E(k)− E(k − 1) (2)

where, P (k) and V (k)are the power and voltage of the PV panel at sample time k.
These input values are converted to the linguistic variables through membership

functions. Figures 8 and 9 show the membership functions for input values in this research.
Linguistic variables are divided into five categories: NB (negative big), NS (negative small),
ZE (zero), PS (positive small), PB (positive big).



Energies 2021, 14, 1960 9 of 23

Figure 8. PV fuzzy logic control (FLC) membership function for E [19].

Figure 9. PV FLC membership function for CE [32].

Table 4 shows the fuzzy rule used in this research [33]. These 25 rules determine fuzzy
outputs. In the power–voltage curve, there are three regions, as shown in Figure 10. In
region 1©, E(k) is positive. This indicates that the operating point is on the left side of the
MPP. To reach the MPP, the duty ratio should be decreased. For example, when E(k) is
PS and CE(k) is NS, it means OP is approaching MPP from the left side. At this time, the
fuzzy controller outputs ZE not to make oscillations. In region 2©, E(k) is zero, and OP
is close to MPP. When CE(k) is NB, the OP is moving towards the right side. And the
controller outputs PS to stop the OP from moving. In region 3©, E(k) is negative. When
CE(k) is negative, the OP is getting away from MPP towards the right side. At this stage,
the controller increases the duty cycle to bring the OP closer to MPP. Finally, the outputs
(∆D) from the fuzzy controller are converted into numerical values, as shown in Figure 11,
and duty cycle D(k) is calculated by the following equation:

D(k) = D(k − 1) + ∆D (3)

Table 4. Fuzzy rules for the PV panel.

E
CE

NB NS ZE PS PB

NB ZE PB PB PB PB
NS PB PB PS ZE ZE
ZE PS ZE ZE ZE NS
PS ZE ZE NS NB NB
PB ZE NB NB NB ZE



Energies 2021, 14, 1960 10 of 23

Figure 10. Power –voltage curve of the PV panel.

Figure 11. Output membership function for ∆D [19].

2.2. Wind Power Simulation Model

Figure 12 shows the wind turbine generator in the Simulink model, which consists of
the wind turbine itself, back converter, and MPPT controller. A battery is also connected
to the load part in parallel in order to keep the voltage applied to the load constant and
prevent errors that may occur during the simulation. The technical specification of the wind
turbine generator used in this simulation is shown in Table 5. Figure 13 shows the MPPT
controller’s details, where the fuzzy controller determines the appropriate output value
∆D. The following equations represent inputs for the fuzzification in the wind turbine.

E(k) = P(k)− P(k − 1) (4)

CE(k) = V(k)− V(k − 1) (5)

D(k) = D(k − 1) + ∆D (6)

Table 5. Wind generator parameters [10].

Parameter Value

Rated power 400 W

Rated voltage 12 V

Start-up wind speed 2.5 m/s

Rated wind speed 10.5 m/s

Maximum wind speed 35 m/s

Rated rotation speed 800 rpm

Fan blade quantity 3

Rotor blades diameter 1.2 m
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Figure 12. Wind generator Simulink model.
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Figure 13. Simulink model of the fuzzy controller for the wind generator.

Table 5 represents the fuzzy rules that are used in the wind turbine MPPT system.
Figures 14–16 show membership functions for E(k), CE(k) and ∆D, respectively.

Table 6 represents the fuzzy rules.

Figure 14. Wind turbine FLC input membership for C.

Figure 15. Wind turbine FLC membership for CE.

Figure 16. Wind turbine FLC output membership function for ∆D.



Energies 2021, 14, 1960 13 of 23

Table 6. Fuzzy rules for the wind turbine.

E
CE

NB NS PS PB

NB NB NS PS PB
NS NS NS PS PS
PS NS ZE ZE PS
PB NS ZE ZE PS

3. Experimental Setup

Figure 17 shows the proposed HRES, which is installed at the campus in Kasuga City,
Fukuoka Prefecture, Japan [9]. The proposed system consists of three PV modules with
a total power of (480 W), a wind turbine (400 W), a lead-acid battery (30 Ah), an inverter,
and a MPPT controller, which operates based on the P&O method.

Figure 17. Experimental setup in this study: (1) wind turbine, (2) weather measurement station, (3) power datalogger, (4)
inverter, (5) PV DC converter and MPPT controller, (6) wind DC converter and MPPT controller, (7) MS-40C pyranometer,
(8) PV modules, (9) battery, (10) LM335 thermocouple, (11) temperature datalogger, (12) solar analyzer PROVA 200A.

The solar panel surface temperature was measured by using a LM335 temperature
sensor, which was installed on the surface of the panel. The incident solar radiation on the
PV panels was measured, using an MS-40S pyranometer. The solar analyzer (PROVA 200A)
was used to measure the short-circuit current and open voltage of the solar panel and extract
the current-voltage curves under the various solar irradiations and ambient temperatures.

4. Results and Discussions
4.1. Comparison between the FLC-Based and P&O-Based MPPT Systems

The simulation model was carried out, considering a sunny, cloudy, and rainy day in
each month (see Table 7). Figure 18 shows the comparison between the P&O-based and the
proposed FLC-based MPPTs in this research for a short period of 10 min simulation on this
sunny day. As shown in this figure, the FLC-based MPPT extracts higher power with lower
oscillation than the P&O controller. The better performance of the FLC is more evident at
the higher levels of solar irradiation. The simulation results reveal that the output power
based on the FLC-based MPPT is significantly higher than the P&O-based MPPT on cloudy
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days. This is because the P –V curve slope is extremely small due to the low solar radiation
(see Figure 19).

Table 7. Selected dates for testing the simulation model in this study.

Sunny Day Cloudy Day Rainy Day

1-Jan 13-Jan 22-Jan

4-Feb 7-Feb 12-Feb

20-Mar 22-Mar 28-Mar

14-Apr 15-Apr 19-Apr

1-May 25-May 26-May

8-Jun 4-Jun 25-Jun

16-Jul 17-Jul 6-Jul

29-Aug 28-Aug 7-Aug

14-Sep 20-Sep 12-Sep

20-Oct 8-Oct 22-Oct

5-Nov 19-Nov 18-Nov

12-Dec 29-Dec 22-Dec

Figure 18. Comparison between the FLC-based and perturbation and observation (P&O)-based
MPPT systems for PV (sunn day): (a) Weather conditions; (b) Output power.

The deviation from the P&O-based MPPT appears during the fast-changing envi-
ronmental conditions, such as rapid changes in solar irradiation or ambient temperature,
which is basically due to its lower tracking speed, especially when the variation of power
caused by the different intensity of irradiation is larger than the one produced by the per-
turbation. Compared with the FLC-based MPPT, the fixed step-size perturbation applied
to the P&O-based MPPT cannot satisfy both dynamic and steady-state response conditions,
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since big perturbations provide a rapid reach of MPP, but also cause large oscillations. On
the other hand, small changes remove these oscillations but give a slow performance to the
MPPT. Furthermore, partial shading can cause the MPP tracker to be oscillating around
one of the multiple local power peaks. Another drawback of the P&O-based MPPT is that
it cannot recognize the difference between local and global MPP. Therefore, the expected
output power is lower than the FLC-based MPPT.

Figure 19. Comparison between the FLC-based and P&O-based MPPT systems for PV (cloudy day):
(a) Weather conditions; (b) Output power.

Figure 20 shows the comparison between the FLC-based and P&O-based MPPTs for
the wind turbine on 1 April 2020. As shown in this figure, there are almost no differences
between fuzzy and P&O controller results for the wind power generator. Although the
proposed FLC offers excellent performance in controlling solar panels, it doesn’t signifi-
cantly improve the wind turbine’s maximum power, particularly at low wind speed. This
is because the wind control system includes mechanical (pitch control) and electrical power
sections, but only the electrical part was considered in the simulation model.

The simulation results for an entire period of one year are reported in Table 8. The
results revealed a potential of 2% extra power generation from the proposed HRES, using
the FLC-based MPPT system. According to the results, by implementing the FLC-based
MPPT system, about 26.2 kWh/y excess electricity can be extracted from each kW installed
capacity of solar panels in the Chikushi campus.

4.2. Techno-Economic Analysis of the Proposed HRES

HOMER Pro is used for the techno-economic analysis in this research. HOMER
software was developed by NREL (National Renewable Energy Laboratory). This software
enables the optimal design and sizing of hybrid renewable energy systems by performing
a techno-economic analysis of off-grid and grid-connected power systems [34]. HOMER
considers two economic indicators, net present cost (NPC) and levelized cost of energy
(LCOE). The total NPC of a system is the present value of all the costs the system incurs
over its lifetime, minus the present value of all the revenue it earns over its lifetime. Costs
include capital costs, replacement costs, O&M costs, fuel costs, emissions penalties, and
the costs of buying power from the grid. Revenues include salvage value and grid sales
revenue. HOMER calculates the total NPC by summing the total discounted cash flows
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in each year of the project lifetime [35]. The formula for calculating NPC is expressed
as follows:

NPC = I +
n

∑
i=1

(
Cy

)
[

1

(1 + d)i ] (7)

Figure 20. Comparison between the FLC-based and P&O-based MPPT systems for the wind turbine
(windy day); (a) Wind speed; (b) Output power.

Table 8. Surplus output power from the FLC-based MPPT compared to the P&O-based MPPT.

Month P&O Power
[kWh]

Fuzzy Power
[kWh]

Power Difference
[kWh] Saving [%]

January 33.41 34.16 0.76 2.27
February 38.55 39.37 0.82 2.13

March 52.92 54.47 1.55 2.94
April 66.05 67.92 1.87 2.83
May 62.33 63.73 1.40 2.24
June 66.27 67.54 1.27 1.92
July 26.20 26.57 0.37 1.42

August 54.01 55.02 1.01 1.86
September 52.68 53.91 1.24 2.35

October 59.61 60.69 1.07 1.80
November 49.67 50.59 0.92 1.84
December 15.79 16.09 0.29 1.86

Total 577.49 590.06 12.57 2.18

The LCOE is defined as the average cost per kWh of electrical energy produced by the
system, as follows:

LCOE =
Cann,tot

Eserved
(8)
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where:
I: Initial capital cost [JPyen]
n: Project span [year]
Cy: Yearly cost (O&M and replacement) [JPyen]
d: Discount rate [%]
Eserved: Total electrical served [kWh/year]
Cann,tot: Total annualized cost of the system [JPyen/year]

Figure 21 represents the proposed grid-tied system, including solar PV, wind turbines,
fuel cells, electrolyzers, and hydrogen tanks, as shown in the (FC: Fuel cell, WT: Wind
turbine). All renewable energy systems are connected to the DC bus, and the electrolyzer
uses only electricity supplied by solar and wind power to electrolyze water and produce
hydrogen. The AC bus is connected only to the grid, and the electricity provided by the
power company is used solely for power consumption on campus. Figure 22 shows the
average hourly power consumption, maximum and minimum power consumption for
each month at the Chikushi campus. When considered throughout the year, the average
total daily power consumption is estimated at 25,256 kWh/day, and the total annual power
consumption is about 9218.5 MWh/year.

Figure 21. HOMER simulation model of the proposed HRES.

Figure 22. Monthly average electricity consumption in Chikushi campus, Kyushu University, Japan.
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In this study, the wind turbine size is limited in the range of 0 to 10 kW. This is because
the campus site area where the HRES will be installed is restricted, and wind turbines
require more land than any other renewable energy system. The installed capacity of the
hydrogen system is considered as: 1 kW (Fuel cell): 10 kW (Electrolyzer): 1 kg (H2 tank).
This is based on the assumption that the electrolyzer operates for 9 h during the day to
produce hydrogen, and the fuel cell consumes the stored hydrogen for 7 h after sunset. The
electrolyzer’s power consumption is assumed about 46.4 [kWh] per 1 kg of hydrogen.

Table 9 shows the current estimated costs for each component and economic data.
The costs are divided into initial capital cost, operation and maintenanc (O&M) cost, and
replacement cost. Besides this, the purchase price of electricity was considered to be
22 JPYen/kWh [8].

Table 9. Costs items of the main components of the proposed HRES.

Component Lifetime
[years]

Initial capital
cost [JPYen]

Replacement
[JPYen]

O&M
[JPYen/year] Reference

PV [kW] 20 230,000 230,000 P&O: 11,500
Fuzzy: 10,924 [8]

WT [kW] 20 250,723 250,723 7740 [7]
Fuel cell [kW] 10 400,000 400,000 9000 [8]

Electrolyzer [kW] 10 170,000 170,000 3000 [8]
H2 tank [kg] 20 150,000 150,000 4000 [8]

Inverter [kW] 20 13,970 13,970 110 [7]

Parameter Values
Nominal discount rate [%] 0.3
Expected inflation rate [%] 0.98

Project lifetime [years] 20

It is noted that the economic benefit from surplus power generated by the FLC-based
MPPT is monetized as a reduction in O&M cost. As shown before, for each 1 kW of installed
capacity of the PV, about 26.2 kWh surplus electricity can be generated from the FLC-based
MPPT system.

4.2.1. Base Case Scenario

The simulations were performed for ten different fuel cell sizes from 10 kW to 100 kW
at 10 kW intervals. The capacity of each component, except the hydrogen system, is
determined by HOMER optimization. The simulation results show that the best COE for
both P&O and the fuzzy controller is obtained when the smallest fuel cell of 10 kW is used.
Tables 10 and 11 show the breakdown of HRES and cost analysis results for the FLC-based
and P&O-based MPPTs.

Table 10. Component capacity and electricity production of the proposed HRES.

P&O-Based MPPT FLC-Based MPPT

Component Size [kW]
Electricity
Production

[MWh/Year]
Size [kW]

Electricity
Production
[MWh/year]

PV 1675 2350 1782 2500
Wind turbine 10 14.5 10 14.5

Fuel cell 10 4.26 10 4.6
Electrolyzer 100 54.1 100 −58.3

H2 tank 20 — 20 —
Converter 1492 — 1542 —

Grid purchase — 7253 — 7144



Energies 2021, 14, 1960 19 of 23

Table 11. Cost analysis comparison of the FLC-based and P&O-based MPPTs.

Controller NPC [JPYen]
Cost Of

Electricity
[JPYen]

Operating
Cost

[JPYen/Year]

Total O&M
[JPYen]

Initial
Capital
[JPYen]

P&O 4.31 B 38.09 180 M 3.86 B 433 M
Fuzzy 4.29 B 37.74 178 M 3.81 B 458 M

Difference 21.4 M 0.342 2.17 M 46.7 M −25.3 M

According to the base case scenario, the FLC-based HRES enables the installation of
more PV systems than the P&O-based system. With the increase in PV system generation,
the energy supply to the electrolyzer also increases. This means that the fuel cell in the
FLC-based HRES generates more electricity than the P&O-based system. Furthermore, the
FLC-based HRES shows better cost benefits.

4.2.2. Future Cost Scenario

This scenario discusses the cost analysis of the HRES components based on their future
prices. Table 11 summarizes the initial capital costs in 2020 and expected costs in 2030 for
solar panels, wind turbines, fuel cells, and electrolyzers. Over the past few years, the
amount of renewable energy plants installed has increased dramatically due to the policies,
research and development, and funding of each major country. Among them, solar power
is considered to be one of the most competitive technologies. The total installed cost has
decreased by 74% between 2010 and 2018. For the case of wind power, improvements in
technology and manufacturing processes, as well as the rise of competitive supply chains,
are driving down the price of installation costs; average prices in 2018 ranged from 790 to
900USD/kW, down from 910 to 1050 USD/kW in 2017. In 2017, the Japanese government
established the Strategic Roadmap for Hydrogen and Fuel Cells, the world’s first national
hydrogen strategy. Specifically, it aims to achieve hydrogen costs comparable to gasoline
and LNG costs, along with a reduction in the cost of installing fuel cells and electrolysis
equipment [36]. Based on the cost projections in Table 12, the following three scenarios
were considered for the proposed FLC-based hybrid system.

Table 12. Summary of current and future initial capital costs in the future cost scenario.

Component 2020 [JPYen] 2030 [JPYen]

PV [kW] 230,000 91,740 [5]
WT [kW] 250,723 187,000 [5]

Fuel cell [kW] 400,000 300,000 [6]
Electrolyzer [kW] 170,000 50,000 [6]

• Scenario (1): future costs are only applied to solar panels;
• Scenario (2): future costs are only applied to fuel cells and electrolyzers;
• Scenario (3): future costs are applied to all components.

Table 13 represents the respective values of cost of electricity (COE) based on the
above scenarios, taking into account the various sizes of the cells from 10 kW to 100 kW.
The lowest COE can be achieved with a 10 kW fuel cell in all scenarios. The best results are
obtained in scenario (3).

Table 14 shows the component sizes of each RES for different classes of (A) through
(D). It can be seen that all the component sizes of class (C) are the same as the class (A),
and there is not much difference in the COE, even though the installation cost of the
hydrogen system is decreasing. This is because the hydrogen system is only powered
by the PV system. As long as PV system installations do not increase due to falling PV
panel installation costs, the amount of electricity generated by the fuel cell will not increase,
and the share of HRES in the total electricity will not change. In addition, class (D) has
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the most extensive size of the hydrogen system and the largest solar panels to provide its
electricity supply.

Table 13. Summary of cost of electricity (COE) for each model in the future cost scenario.

Fuel Cell Size

Scenario 10 kW 20 kW 30 kW 40 kW 50 kW 60 kW 70 kW 80 kW 90 kW 100 kW

Based on current cost [JPYen] 37.74 (A) 38.05 38.28 38.58 38.73 38.98 39.21 39.47 39.74 40.04
Scenario (1) [JPYen] 28.59 (B) 28.75 29.00 29.20 29.40 29.61 29.80 30.06 30.22 30.49
Scenario (2) [JPYen] 37.61 (C) 37.77 37.83 37.95 38.11 38.18 38.38 38.45 38.59 38.70
Scenario (3) [JPYen] 28.41 28.50 28.59 28.64 28.74 28.81 28.88 28.97 29.07 29.33 (D)

A: Base scenario with 10 kW fuel cell; B: scenario (1) with 10 kW fuel cell; C: scenario (2) with 10 kW fuel cell; D: scenario (3) with 100 kW
fuel cell.

Table 14. Size of each component of the HRES in the future cost scenario.

Category PV
[kW]

Wind
Turbine [kW]

Fuel Cell
[kW]

Electrolyzer
[kW]

H2 Tank
[kg]

Converter
[kW]

Class (A) 1782 10 10 100 20 1542
Class (B) 5008 10 10 100 20 2786
Class (C) 1782 10 10 100 20 1542
Class (D) 5148 10 100 1000 200 2785

Table 15 shows the electricity generation and COE for each component from class (A)
to class (D). Based on class (D), the amount of electricity generated by each component
increases in proportion to the installed capacities.

Table 15. Electricity generation from each component of the HRES in the future cost scenario.

Category PV
[MWh/Year]

Wind Turbine
[MWh/Year]

Fuel Cell
[MWh/Year]

Grid
[MWh/Year]

COE
[JPYen]

Class (A) 2500 14.5 4.6 7144 37.74
Class (B) 7026 14.5 14.3 5068 28.59
Class (C) 2500 14.5 4.6 7144 37.61
Class (D) 7223 14.5 114 4922 29.33

It can be observed that the electricity generation from the fuel cell in class (D) is
substantial. Based on these results, larger capacity components can be adopted, as the
installation and maintenance costs of renewable energy systems are expected to be reduced
in the future. This will lead to better COE, which will contribute to the realization of a
cleaner energy society.

5. Conclusions

This study proposed a grid-tied hybrid solar–wind system, which can be installed at
Kyushu University’s Chikushi Campus in Kasuga, Japan. The proposed HRES is equipped
with a FLC-based MPPT, which provides rapid power control with smaller oscillations
under variable weather conditions. The dynamic simulation of the proposed HRES system
was performed in MATLAB -Simulink. The research results indicated the FLC-based
MPPT’s better performance in optimal power controlling of the HRES. According to the
results, by implementing the FLC-based MPPT, about 26.2 kWh/y extra electricity can be
extracted from each KW installed capacity of solar panels in the Chikushi campus.

The techno-economic analysis of the proposed system was performed in HOMER
software, aiming to estimate the optimal configuration of the proposed HRES subject to
satisfying the required annual load in the Chikushi campus. According to the results, the
estimated value of COE for the HRES equipped with the FLC-based MPPT was lower. A
sensitivity analysis was also carried out to assess the feasibility of the proposed HRES, using
the future market price of renewable energy technologies in 2030. The results revealed that
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the coming decline in the solar system’s market cost, which is the largest energy source in
the HRES, is essential for improving the COE. This study proves that larger systems can be
installed if the costs of installing and maintaining renewable energy systems are reduced
as expected.
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Nomenclature

ACO Ant Colony Optimization
ANN Artificial Neural Networks
CS Cuckoo Search
DFOA Dragonfly Optimization Algorithm
FSCC Fractional Short Circuit Current
FLC Fuzzy Logic Control
GWO Grey Wolf Optimization
HHO Harris Hawk Optimization
HCS Hill Climbing Search
HRES Hybrid Renewable Energy System
INC Incremental Conductance
ILC Iterative Learning Controler
IGBT Insulated-Gate Bipolar Transistor
LCOE Levelized Cost of Electricity
MPPT Maximum Power Point Tracking
MPP Maximum Power Point
NB Negative Big
NSNPC Negative SmallNet Present Value
PSO Particle Swarm Optimization
P&O Perturbation and Observation
PWM Pulse width modulation
PS Positive Small
PBPID Positive BigProportional–Integral–Derivative
RBFN Radial Basis Function Network
RSMC Robust Sliding Mode Control
SMC Sliding Mode Controller
SIFL Speed-Control and Single Input Fuzzy Logic
TEA Techno-Economic Analysis
ZE Zero
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