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Abstract: This paper proposes a robust finite-time controller (FTC) for a permanent magnet syn-
chronous generator (PMSG)-based wind turbine generator (WTG). An adaptive observer is used
for the rotor angle, rotor speed, and turbine torque estimations of the PMSG, thus eliminating the
use of anemometers. The robustness of the proposed FTC regarding parameter uncertainty and the
external weak power grid is analyzed. The impacts of the power grid short-circuit ratio (SCR) at the
point of common coupling (PCC) on the conventional proportional-integral (PI) controller and the
proposed FTC are discussed. Case studies illustrate that the proposed observer-based FTC is able to
estimate the mechanical variables accurately and provides robust control for WTGs with parameter
uncertainty and weak power grids.

Keywords: wind turbine; PMSG; nonlinear control; robust control; adaptive observer; weak power grid

1. Introduction

The control and integration of wind energy into a power grid are challenging due to
geographical constraints and the intermittency of energy production. The maximum power
point tracking (MPPT) control plays a vital role in maximizing the wind energy yield from
wind turbines [1]. Wind-characteristic-based MPPT methods require online wind speed and
mechanical torque measurements using mechanical sensors, e.g., an anemometer installed
at a nacelle [2]. Sensorless controls of wind turbine generators (WTGs) can eliminate
expensive mechanical sensors and improve the reliability of the WTGs [3–5]. Sensorless
controls can also facilitate sensor fault detection and isolation when mechanical sensors are
present [6].

Kalman filters can be used for rotor position and speed observations of WTGs [4].
However, Kalman filters are based on linearized models of the nonlinear WTG system [7];
thus, they are not suitable for WTGs at low speeds with small back electromotive forces
(EMFs). Rotor position observation through high-frequency signal injection is also chal-
lenging at high speeds [8]. Artificial neural network (ANN)-based sensorless controls
are proposed in [9,10], which requires extensive offline data collection and training to
achieve nonlinear input–output mapping. In [11], the rotor position is estimated using a
phase-locked loop (PLL). Back EMF-based PLL observers have been studied for sensorless
control of permanent magnet synchronous motors (PMSMs) to estimate the position/speed
of the rotor [12,13]. A PLL combined with synchronous frequency-extract filters was pro-
posed in [12] to mitigate the estimated back EMF harmonic error in the sensorless control of
surface PMSMs. In [13], a new finite-position set–PLL (FPS-PLL) based on model predictive
control was investigated, where the rotor position was identified from the finite set of
rotor positions. The consequences demonstrated excellent performance in estimating the
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position/speed of the rotor in the FPS-PLL compared to the conventional PLL, as well as
a significant reduction in dynamic and steady-state fluctuations. Two computationally
efficient finite-position set–PLL were proposed in [14] to diminish the computational effort
of the FPS-PLL proposed in [13].

Sliding-mode observers for PMSM sensorless controls have been extensively sur-
veyed [15–20]. A wind speed estimation and sensorless control for a surface-mounted
permanent magnet synchronous generator (PMSG) using sliding mode control (SMC)
based on a linear matrix inequality (LMI) was proposed in [15], in which the rotor speed is
estimated according to the rate of change in the estimated rotor position. In [19] and [20],
the estimations of the rotor position and the stator flux linkage were investigated using a
quasi-sliding mode observer and a model reference adaptive system using an sliding mode
observer (SMO). However, the turbine mechanical torque was not estimated in [11,19,20].
Additionally, the maximum back EMF and the sampling frequency impose constraints on
the convergence of the quasi-sliding mode observer [19]. In [21,22], second-order sliding
mode (SOSM) control for a doubly fed induction-generator-based wind turbine has been
discussed. This control method improves the classical sliding mode (first-order) chattering
problem. Moreover, the main features of SOSM control are robustness with respect to
perturbations (grid fault) and chattering-free behavior. An adaptive Kalman-like observer
was proposed in [23], which can provide accurate and reliable estimations of system states
and parameters for a generic nonlinear system. It will be used in the paper for estimations
of the rotor speed and the turbine mechanical torque of the WTG system under a wide
range of operating conditions.

A linear controller for the WTG is the most widely used control method, e.g., proportional-
integral (PI) controllers [24–27], the fuzzy propotional-integral-derivative (PID) [28], and
the self-tuned adaptive PI controller [29]. PI controllers are very common in the industry
due to their simple structure and easy implementation in various applications. Such
controllers are designed for a single operating point. The operating point changes due to the
disturbances and variation in parameters. In this case, the controller will not have a proper
performance, and voltage and power oscillations will appear. In addition, such controllers
are very sensitive to parameter variations. Hence, an accurate mathematical system model
is required to determine the control parameters. However, accurate calculation of the
system model is not possible due to unknown machine and environment parameters, core
saturation, wind oscillations, temperature variations, and system disturbances [8,24,25].

A linear controller is fundamental to the stable and reliable operation of the WTG
system. Connecting the WTG system to a weak power grid represents challenges and
requires detailed stability analysis of the WTG and the power grid [30]. The inherent right
half-plane (RHP) zero and pole in the converter’s transfer function are major concerns for
the linear controller design of the PMSG-based WTG system when connected to a weak
grid [31,32]. Accordingly, root-locus analysis shows that a pole pair enters the RHP and
becomes unstable by decreasing the short-circuit ratio (SCR) of the grid [33]. The PLL
dynamic also plays a critical role in connecting WTGs to a weak grid [34]. In [35], the
power synchronization method was developed to connect an off-shore wind farm to a
weak power grid. A three-level hierarchical control scheme was used in [36] to support the
point of common coupling (PCC) voltage for connecting the WTG to a weak grid.

Linear controllers are designed under specific operating conditions and are influenced
by large external perturbations and parameter uncertainties. Therefore, several nonlinear
control techniques are proposed, including the intelligent fuzzy sliding-mode control [37],
radial basis function network-based neural network control [38], and adaptive fuzzy
control [39]. However, these artificial intelligence control methods require prior behavioral
knowledge about the WTG system and extensive training data. Although the nonlinear
controllers in [37–40] led to exponential convergence of the state trajectories, finite-time
controller (FTC) architectures [41] can push the control system error trajectories to zero in a
pre-defined time, thus resulting in fast convergence of system states, high control accuracy
in the steady state, and excellent robustness against perturbations and uncertainties.
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This paper proposes a robust FTC method for the PMSG-based WTG system. The
nonlinear controls of the machine-side converter (MSC) and the grid-side converter (GSC)
are based on the control Lyapunov function (CLF) and back-stepping control design
techniques. The main contributions of the paper are summarized as follows:

• A novel back-stepping finite-time controller is proposed for the PMSG-based wind
generation system, and its stability and finite-time convergence are proved mathemat-
ically using the Lyapunov stability theorem.

• The proposed multi-loop output-feedback nonlinear FTC improves the control ro-
bustness against parameter uncertainty by the proper tuning of its control gains. The
robustness of the FTC is verified using the perturbed WTG system with 20% parameter
variation and a weak power grid at the PCC.

• The proposed FTC leads to fast convergence of the system states and small steady-state
errors for normal and perturbed WTG systems with parameter uncertainties. There-
fore, the FTC achieves faster maximum power point tracking (MPPT) and extracts
more wind power compared to conventional linear and nonlinear controllers.

• An adaptive Kalman-like observer is proposed for the WTG system to estimate the
rotor position, rotor speed, and turbine mechanical torque. Thus, the proposed FTC
achieves mechanical sensorless control of the WTG and increases the reliability of the
WTG system.

• Using the reactive power control loop of the proposed controller, the grid’s voltage
stability in a weak grid with a low circuit ratio is investigated.

2. PMSG-Based Wind Turbine System Model

The PMSG-based WTG connected to the AC power grid at the PCC, i.e., En, is shown
in Figure 1. The PMSG is connected to the grid through a voltage source converter (VSC)
consisting of an MSC and a GSC. The AC power grid is modeled as a voltage source (Eg)
behind a series branch (rn, Ln). The mechanical power extracted from a wind turbine is
calculated as

Pm =
1
2

cpρAv3
w (1)

where cp = cp(λ), λ = Rωm/vw, R, ωm, ρ, vw and A = πR2 are the turbine power coeffi-
cient, tip speed ratio, turbine blade, radius, turbine shaft speed, air density, wind speed,
and rotor swept area, respectively.
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The state–space model of the PMSG-based WTG system in the qd rotor reference frame
is expressed as [40] 

dωr
dt = − 1

J
(

Fωr + KMiqs − Tm

)
diqs
dt = − 1

Ls

(
rsiqs + Ls pωrids − KMωr + vqs

)
dids
dt = − 1

Ls
(rsids − Ls pωrids + vds

)
dv2

dc
dt = − 1

C
(
Ednidn + Eqniqn − vdciR

)
didn
dt = − 1

L0

(
Edn − L0ωniqn − vdn

)
diqn
dt = − 1

L0

(
Eqn + L0ωnidn − vqn

)
(2)

where Tm is the turbine mechanical torque, KM = p
√

3/2ϕr is the flux generator constant,
φr is the flux generator constant, and ir is the output DC current of the MSC. The variables
and quantities of the WTG system used in the paper are listed in Table 1 [27].

Table 1. Parameter discription of the wind turbine generator (WTG) model.

Symbol Quantity Value

J Rotor inertia 1.06 × 107 Nm/rad/s2

F Viscous coefficient 1.417 Nm/rad/s
P Number of pole pairs 145

KM Flux generator constant 2.6354 × 103

rs PMSG stator resistance 3 mΩ
Ls PMSG stator inductance 1 mH
En Grid voltage 4.16 kV
L0 Output inductance 1 mH
ωn Grid voltage frequency 2π × 50 rad/s

The WTG system can be separated into two inter-connected subsystems according
to Equation (2) as the WT-PMSG-MSC and the GSC-PCC grid. Each subsystem consists
of two control loops, as depicted in Figure 1. The reference rotor speed ω∗r is determined
by the MPPT block based on the PMSG stator output active power Ps. The MSC’s d axis
current reference i∗ds is set to zero (i∗ds = 0) to attain the maximum torque per ampere [3].
The DC-link voltage reference v∗dc is set to be constant to stabilize converter operation. The
PCC reactive power reference Q∗ is be determined based on the PCC voltage regulation
or constant power factor according to IEEE Standard 1547. The observer block in Figure 1
estimates the rotor speed, mechanical torque, and flux linkage using stator voltages and
currents in the αβ stationary reference frame. The rotor position estimation θ̂ is calculated
based on the estimated flux linkage and is used for abc↔ dq transformation. These
nonlinear regulators and the observer blocks in Figure 1 will be introduced in Sections 3–6.

3. Linear Control Scheme for the WTG System

The control loops for the MSC and the GSC using the PI control scheme in a cascaded
structure is given in Figure 2. The outer control loops determine the dq axis current
reference of each VSC, and the inner control loops regulate the dq axis currents of the MSC
and the GSC to the references. The inner loops in Figure 2 are usually designed to be
approximately 2–5 times faster than the outer loop to track the references in a suitable time.
The PI controllers are tuned considering the stability and performance of the linearized
model of the system at the operating points and the desired loop bandwidth. Various
on-site PI controller tuning rules are proposed in the literature, e.g., the Cohen–Coon,
Ziegler–Nichols, Tyreus–Luyben, Ciancone–Marline, internal model control, and auto-tune
methods, with different objectives.
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Tuning the PI controller using linear control theory requires a linear plant model. For
stability considerations, the real parts of the poles of the plant at the operating point must
have negative values. Further, increasing the loop bandwidth enhances the performance
and provides a faster response. However, the loop bandwidth and response speed of the
plant with a low-order linear controller is limited by control stability considerations. An
appropriate gain and phase margin (i.e., typically 60

◦
) of the loop must be considered for

adequate stability margins and as a trade-off between the performance and robustness
of the plant. Since linear controllers are tuned based on specific operating points, the
performance of the linear controller can be affected by the power grid strength at the PCC,
e.g., a weak grid, and parameter uncertainty of the WTG.

Next, the analysis of the linearized model of the GSC at the PCC and the influence of a
weak grid on linear PI controllers of the GSC are discussed. In a weak grid, the three phase
voltages at the PCC are affected by the power flow generated by the WTG. Considering
this impact on the linearized model of the feed-forward power control loop (FFPCL) [31],
two main stability concerns can be identified, i.e., the existence of an RHP zero and an RHP
pole in rectifier and inverter modes of operation, respectively [29–31]. The RHP zero and
pole are presented briefly next.

Consider the transfer function between the PCC active (∆Pn) and VSC output voltage
(∆vn) which is part of the forward path of the FFPCL and is calculated as [31]

∆Pn ≈ 1
(Lo+Ln)s+Rn

[
(

Lnidns + Edn
)
∆vn+(

Loidns− Edn
)
∆Edg +

(
ωn(Lo + Ln)Edn

)
∆iqn]

(3)

where Ln, Rn, idn, Edn, and s are grid inductance and resistance, the current and voltage
of the PCC at the operating point, and the Laplace operator, respectively. As seen in
Equation (3), an RHP zero exists in the FFPCL in a rectifier mode of operation (i.e., idn < 0).
This RHP zero causes transient undershoot, limits the use of high control gain due to
instability, and restricts the closed-loop bandwidth.

Besides, the DC-link-linearized dynamic in the FFPCL is

∆vdc ≈
vdc

Csv2
dc − Pn

(−∆Pn + vdc∆iR) (4)

where vdc and Pn are the DC-link voltage and the PCC active power at the operating point
C and iR are the DC-link capacitance and the output DC current of the MSC shown in
Figure 1. Considering the denominator of Equation (4), an RHP exists in the inverter mode
of operation (Pn > 0), which limits the control gain due to instability [31].

Consequently, designing a linear PI controller based on the linearized model of the
FFPCL would be insufficient for large variations in the operating point, which is further
confirmed through root-locus analysis in [33]. Therefore, a nonlinear control law [42]
with global stability will be desirable since it is independent of the operating point and
compensates for the variation in operating conditions and grid strength.
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4. Finite-Time Control Design for the PMSG-Based Wind Turbine Generator

In this section, the finite-time stability [41] and back-stepping control design [42] for a
nonlinear dynamic system are reviewed first. Then, FTC laws for the MSC and the GSC are
designed based on the CLF and back-stepping design techniques.

4.1. FTC and Back-Stepping Control Design

Assume a continuous function f : D → Rn on D containing the origin (i.e., 0 ∈ D),
and a nonlinear system as

.
x = f(x), f(0) = 0, x ∈ Rn (5)

Suppose V(x, t) : D → R is a Lyapunov function. Then, the origin of Equation (5) is a
local finite-time stable equilibrium if

∂

∂t
V + ρVα ≤ 0 (6)

where ρ > 0 and 0 < α < 1 are real numbers.
Moreover, the origin is a globally finite-time stable equilibrium if D = Rn and V is

radially unbounded. The finite convergence time of the trajectories, i.e., T(x0), satisfies [34].

T(x0) ≤
V1−α(x0, 0)

ρ(1− α)
(7)

where x0 = x(t0) is the initial state.
The back-stepping control design technique is often used for a nonlinear system in the

form of the following: { .
χ = h(χ) + g(χ)ξ
.
ξ = ν(χ) + u(χ,ξ)

(8)

where χ = [χi] and ξ =
[
ξj
]

are system state vectors; u is the control vector; and h, g, and
ν are smooth vector functions.

The back-stepping design achieves the control of state χ through the control of state
ξ since there is no direct control input u available for χ, as shown in Equation (8). Thus,
by controlling ξ, the control input u indirectly controls the state variable χ in a back-
stepping fashion.

Proposition 1. Assume that the proposed virtual controller ξ = ξ∗FT(χ) is a finite-time stabilizing
control law for

.
χ in Equation (8) and satisfies Equation (6) with a Lyapunov function. Then, the

proposed control law (i.e., Equation (9)) stabilizes the origin of the system (i.e., Equation (8)) in
finite time:

uFT(χ, ξ∗FT) =
∂ξ∗FT
∂χ

(h + gξ)− ∂Va

∂χ
g− k(ξ − ξ∗FT)− ν− ktF α(ξ − ξ∗FT) (9)

where k and kt are positive real diagonal matrices, i.e., k = diag(ki) and kt = diag(kti ) , and F is
the finite-time fractional term proposed as F (z) = |sinh(z)|αsign(z),z ∈ Rn, 0 < α < 1, α ∈ R.

In the proposed controller, ξ∗FT is designed as

ξ∗FT(χ) = g−1(−h−Kχ−Ktsign(χ))

Proof. First, we show the finite-time stability of system
.
χ with the proposed controller

ξ∗FT(χ) and then prove the finite-time stability of the system (i.e., Equation (8)) with the
proposed back-stepping controller (i.e., Equation (9)).
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The finite-time Lyapunov stability of system
.
χ can be verified using the candidate

control Lyapunov function (CLF). By substituting ξ∗FT(χ) to the derivative of the CLF as
.

Va(χ) =
∂Va
∂χ

.
χ = χT .

χ, we have

.
Va(χ) = χT(h + gξ ) = χT(−Kχ−KtF α(χ) )

= −KχTχ−Ktχ
T |sinh(χ)|αsign(χ)

Considering that |z| ≤ sinh(|z|) ≤ e|z| − 1 for z ∈ R, and thus −|sinh(χ)|α ≤ −|χ|α,
one concludes

.
Va(χ) ≤ −KχTχ−Kt

∣∣∣χT
∣∣∣|χ|α ≤ −∑ kiχ

2
i −∑ kti|χi|α+1 .

Va ≤ −2kVa − 2βktV
β
a

where 0 < β = α+1
2 < 1 is the fractional power and k and kt are the minimum eigenvalues

of the gain matrices K and Kt, respectively. The inequality
.

Va(χ) ≤ −2βktV
β
a shows

the finite-time stability of system
.
χ with the proposed controller ξ∗FT(χ) with respect to

Equation (7).
Moreover, the finite-time stability of Equation (8) using the proposed controller

(Equation (9)) can be proved by using the CLF Vb = 1
2 (ξ− ξ∗FT)

T(ξ− ξ∗FT). The detailed
proof and derivation of the proposed control laws are given in Appendix A. �

The FTC-based regulators for the MSC and GSC of the WTG are proposed using the
back-stepping control design (i.e., Equation (9)). It is noticed that the dynamic equations of
ωr and v2

dc in the WTG model (i.e., Equation (2)) are not directly regulated by any control
inputs. Thus, the back-stepping technique is used to design the control law. The q axis
current of the MSC and the d axis current of the GSC are used to regulate ωr and v2

dc.
Comparing the state space model (i.e., Equation (2)) with Equation (8), we obtain

χ =
[
ωr, v2

dc
]T

ξ =
[
−KMiqs/J,−Ednidn/C

]T

u =
[
−vqs/Ls,−vdn/L0

] (10)

4.2. Rotor Speed and Stator Current FTC Design for the MSC

The reference rotor speed ω∗r is determined through the MPPT block in Figure 1. Based
on the back-stepping design in Equation (9) and the virtual controller ξ1 = −KMiqs/J in
Equation (10), the control inputs v∗qs and v∗ds are proposed as

ξ∗1 =
1
J
(Fωr − Tm) +

.
ω
∗
r − k1e1 − kt1sign(e1) (11)

v∗qs = −
(
rsiqs + Ls pωrids − KMωr

)
+

JLs

KM

( .
ξ
∗
1 − e1 − k2e2 − kt2F α(e2)

)
(12)

v∗ds = Ls

(
k3e3 −

rs

Ls
e3 + pωriqs + kt3F α(e3)

)
(13)

where e1 = ωr −ω∗r , e2 = ξ1− ξ∗1 , e3 = ids − i∗ds; kti and ki are real positive design constants
for i = 1, 2, 3; and F α(ei) = |sinh(ei)|αsign(ei). Moreover, with respect to Equation (11),
.
ξ
∗
1 is calculated in Appendix A.

The nonlinear control law (Equations (11)–(13)) realizes the ωr and ids regulators of the
MSC in Figure 1. The detailed derivation of Equations (11)–(13) is given in Appendix A.

4.3. DC-Link Voltage and Reactive Power FTC for the GSC

The DC-link voltage of the MSC needs to be regulated exactly to its constant reference
value (v∗dc) for stable operation of the WTG. The reactive power injected by the GSC is used
to control the PCC voltage. Therefore, the dq currents of the GSC are regulated to achieve
the DC voltage and the injected reactive power controls. Based on the back-stepping design



Energies 2021, 14, 1712 8 of 22

in Equation (9) and the virtual controller ξ2 = −Ednidn/C in Equation (10), the FTCs v∗dn
and v∗qn are designed as

ξ∗2 = −σ1 − k4e4 − kt4sign(e4) (14)

v∗dn =
CL0

Edn
(σ2 + e4 + k5e5 + kt5F α(e5)) (15)

v∗qn =
L0

Edn

(
ωnEqniqn +

.
Q
∗
n

)
+ ωnL0idn +

Eqn

Edn
v∗dn −

L0

Edn
(k6e6 + kt6F α(e6)) (16)

where e4 = v2
dc −

(
v∗dc
)2, e5 = ξ2 − ξ∗2 , and e6 = Qn −Q∗n. In Equations (14)–(16), kt and ki

are real positive control design parameters, si = sign(ei) for i = 4, 5, 6, and σ1 and σ2 are

σ1 = − 1
C

Eqniqn +
1
C

vdciR (17)

σ2 = k4
.
e4 +

.
σ1 +

1
CL0

E2
dn −

1
C

ωnEdniqn (18)

The nonlinear control law (Equations (14)–(16)) realizes the vdc and Q regulators of
the GSC in Figure 1. The detailed derivation of Equations (14)–(16) is not included in the
paper for space considerations. It follows a similar derivation procedure as for the MSC.
The detailed demonstration of the regulators in Figure 1 for the MSC and the GSC using
the proposed nonlinear FTC are depicted in Figure 3. The variables in this diagram are
defined in Equations (11)–(16).
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4.4. Global Stability Proof of the Proposed FTC for the PMSG

Finite-time stability of the WTG system (Equation (2)) with the proposed FTC is

proved using Lyapunov stability criteria. Given the Lyapunov function Vt = 1
2

6
∑

i=1
e2

i ,

we have
.

Vt =
6

∑
i=1

ei
.
ei (19)

where ei, i = 1, . . . , 6 are the errors of the states and have been defined previously. The error
dynamics, i.e.,

.
ei, can be calculated using system dynamics (Equation (2)). Substituting the

proposed FTC from Equations (11)–(16) into
.
ei in Equation (19), we conclude

.
Vt = −

6

∑
i=1

kie2
i −

6

∑
i=1

kt|ei|α+1 (20)

Therefore, the WTG system is Lyapunov-stable since
.

Vt in Equation (20) is negative
definite for positive errors.
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In addition, considering −∑6
i=1 kie2

i ≤ 0 in (20), we have

.
Vt ≤ −kt

6

∑
i=1
|ei|α+1 ≤ −2βkt

(
1
2

6

∑
i=1

e2
i

)β

(21)

This indicates
.

Vt ≤ −ρmVα
t with ρm = 2βkt and β = (α + 1)/2, which proves the

finite-time stability of Equation (2) with the proposed FTC law (Equations (11)–(16)) in
accordance with Equation (6).

If the coefficients kt of the sign functions are set to zero, the control law (Equations
(11)–(16)) becomes the conventional nonlinear exponential convergent controller (ECC)
and does not satisfy finite-time convergence in Equation (6) anymore. The comparison of
the conventional nonlinear ECC and the proposed FTC is performed in Section 7 for the
WTG system.

5. Robustness of and Chattering in the Proposed FTC

Uncertainties due to modeling errors and non-ideal operating conditions are inevitable
in practice. Therefore, a robust design of a control system against uncertainties such as
parameter variations is important for practical applications. Robustness enhancement of a
closed-loop system by the proposed FTC is investigated in this section.

5.1. Robustness against Parameter Uncertainty

To analyze the effect of perturbations on system stability, assume the parameter vector
θ in Equation (2) as

θ =
[

J, F, KM, Tm, rs, Ls, Eqn, Edn, C, L0
]T (22)

An uncertain parameter is formulated as

θj + ∆θj =
(
1 + ξθ j

)
θj, 0 ≤ ξθ j ≤ 1 (23)

where θj, ∆θj = ξθ jθj, and ξθ j are the nominal parameter, parameter variation, and the
uncertainty factor, respectively.

Correspondingly, the dynamics of the perturbed system (Equation (2)) can be sepa-
rated into a nominal part (FN =

[
fNi

]
, i = 1 . . . 6) and a perturbed part (Fδ =

[
fδi

]
, i =

1 . . . 6) as [35]
.
ei = fNi (t) + fδi (t) (24)

It is note that the nominal part is identical to Equation (2), while the perturbed part is
a time-variant function of the system states and nominal parameters, i.e., fδi = fδi (θ, x, t).

Suppose the WTG system model (Equation (2)) is perturbed by parameter uncertainties
in accordance with Equation (24), the perturbed part Fδ is norm-bounded [42] as

‖ Fδ ‖≤ a + b ‖ e‖ (25)

where a and b are known real positive constants.

Taking the time derivative of the Lyapunov function Vt =
1
2

6
∑

i=1
e2

i for the perturbed

system considering Equation (24), we have

∂Vt

∂t
=

6

∑
i=1

ei
.
ei =

6

∑
i=1

ei
(

fNi + fδi

)
(26)
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According to Equation (20), the time derivative of the Lyapunov function Vt for the
nominal system can be represented as

6

∑
i=1

ei fNi = −
6

∑
i=1

kie2
i −

6

∑
i=1

kt|ei|α+1 (27)

Substituting Equations (25) and (27) into Equation (26) gives

.
V ≤

6

∑
i=1

(
−kie2

i − kt|ei|α+1 + ei(a + b ‖ e ‖)
)

(28)

By choosing kt � a and ki � b, we obtain

.
V ≤

6

∑
i=1
−(ki − b)e2

i − kt|ei|α+1 + aei (29)

which gives
.

V ≤ 0 as long as ki ≥ b and aei − kt|ei|α+1 ≤ 0. The first inequality constraint
can be applied by choosing control gains ki large enough, ki ≥ b; the second inequality
constraint is always true for negative errors, ei ≤ 0. For positive errors, ei ≥ 0, the second
inequality constraint requires a ≤ kteα

i . Assume that it is chosen to become robust for a
desired range of error, i.e., |ei| ≥ c > 0, where c is a real positive constant. Consequently,
we must have a ≤ kteα

i when |ei|α ≥ c, which can be achieved by choosing kt large enough
so that it satisfies kt ≥ a/c.

According to Equation (6), Equation (29) indicates the robust stability of the closed-
loop system with the proposed FTC with ki ≥ b and kt ≥ a/c, for the error range |ei|α ≥ c,
in the presence of perturbations. In other words, using sufficiently large control gains ki
and kt, the closed-loop system (Equation (2)) with the proposed FTC is robust against the
bounded uncertainties. The robustness of the proposed FTC for the WTG system will be
verified in Section 7.

5.2. Continuous FTC with Chattering Elimination

The presence of the discontinuous sign function in the FTC (Equations (11)–(16)) leads
to a chattering problem and produces undesirable oscillatory control outputs. In this paper,
the sign function is approximated using a continuous inverse tangent function to eliminate
chattering as

sign(e) ≈ tanh(εe) (30)

where ε ∈ R is a design-specific real constant.
It is noted that increasing the value of ε leads to better approximation of the sign

function. However, a very large value of ε may increase the possibility of chattering
occurrence. At the same time, ε should be sufficiently large to ensure the robustness of
the FTC. When applying the approximation (Equation (30)) in the proposed FTC, the
steady-state error of the perturbed system will be bounded (i.e., ‖ e ‖≤ ε, ε > 0 ∈ R ) [42].
The boundary region D′ :‖ e ‖≤ ε is determined by the parameter ε. The closed-loop
trajectories of the perturbed system converge toward and enter the region D′ in a finite
time and will remain inside. An appropriate ε is selected through numerical simulations in
this paper.

6. State and Parameter Estimations Using an Adaptive Observer

To achieve sensorless control of the PMSG, an adaptive observer [23] is employed to
estimate mechanical variables. Since the rotor position is not available, the stationary (α, β)
reference frame is used for the PMSG model:{

.
x1 = A1x1 + B1 +

[
0 1/J

]TTm.
x2 = A2x2 + B2

(31)
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where the matrices are defined as
A1 =

[
− rs

Ls
p

φβr
Ls

3pφβr
2J − F

J

]
, B1 = −

[ uαs
Ls

3pφαr iβs
2J

]
, x1 =

[
iαs
ωr

]

A2 = −

 rs
Ls

pωr
Ls

0
0 0 pωr
0 −pωr 0

, B2 = −1
Ls

 uβs
0
0

, x2 =

 iβs
φαr
φβr

 (32)

In Equation (32), uαs, uβs, iαs, iβs, φαr, and φβr are stator voltages, stator currents, and
rotor fluxes, respectively, in the stationary reference frame. The adaptive observer and the
adaptive law are formulated as Equation (33) and Equation (34), respectively [21]:

.
x̂1 = A1(x̂2) + B1(x̂2) +

[
0 1/J

]T T̂m

+λx̂1

[
ΓΓT/µ + M−1

1

][
eαi 0

]T

.
x̂2 = A2(ω̂r)x̂2 + B2 + M−1

2
[

eβi 0 0
]T

(33)



.
T̂m = γ1λeαi/µ
.
µ = −η1µ + γ2

1
.
Γ = A1Γ +

[
−λγ1

(
M−1

1

)
1,1

1/J
]T

.
M1 = −η0M1 −AT

1 (x̂2)M1 −M1A1(x̂2) + δIT
2 I2.

M2 = −η2M2 −AT
2 (ω̂r)M2 −M2A2(ω̂r) + δIT

3 I3

(34)

where η0, η1, η2, δ, and λ are real positive constants; µ(t) is a time-variable scalar; M1 and
M2 are time-variant matrices;

(
M−1

1

)
1,1

is the (1,1) element of matrix M−1
1 ; eαi = iαs − îαs;

eβi = iβs − îβs; Γ =
[
γ1 γ2

]T ; I2 = [1, 0]; and I3 = [1, 0, 0].
In the dynamic subsystem

.
x1 of Equation (31), it is desired to estimate the unknown

variable Tm and the state vector x1 simultaneously. Therefore, an adaptive Kalman-like
observer is used to estimate x1 and x2 by

.
x̂1 and

.
x̂2. The stability of the observer can be

proved using the Lyapunov function [23]:

Vobs = eT
o1M1eo1 + eT

o2M2eo2 + µe2
o3 (35)

with eo1 = x1 − x̂1 − Γeo3,eo2 = x2 − x̂2, and eo3 = Tm − T̂m.
It is assumed that under normal operation of the PMSG wind energy conversion (WEC)

system, the data from both wind and torque sensors are used in the proposed controllers
rather than the data from the observer. However, the data from the system/parameter
observer can be used during sensor failure for a limited period of time, which can improve
the reliability of the system. The use of observed data can also be effective if there is a
malfunction in the wind and/or torque sensors, such as when the sensor output is out of
range. However, although the stability of the observer system is proved by the Lyapunov
stability criteria, the delay caused by the observer system has a negative impact on the
stability and performance of the system [43], which requires a dedicated investigation.

Applying the chattering elimination in Equation (30) and the adaptive observer in
Equation (33), the final output-feedback form of the proposed FTC can be derived from
Equations (11)–(16). As an example, the control output v∗ds of the proposed FTC is pre-
sented as

v∗ds = Ls

[
k3e3 −

rs

Ls
e3 + pω̂riqs +

2
π

kt3F α(e3) + kt|sinh(e3)|αtanh(εe3)

]
(36)

The other control outputs of the FTC in Equations (11)–(16) are not presented due to
space considerations.
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7. Case Study

A 5MW PMSG-based WTG is simulated using Simulink/SimPowerSystems to verify
the proposed FTC and observer algorithms. The WTG parameters are listed in Table 1. Two
nonlinear controllers, i.e., the ECC and the FTC, are implemented for the WTG. The ECC is
derived by setting kt = 0 in the proposed FTC, as described in Section 4. The conventional
PI controller is also implemented for the WTG system for benchmark comparison of the
control performance to the ECC and FTC. The digital signal processor (DSP) system toolbox
is used for the matrix operations of the presented adaptive observer. The initial values
of the matrices in Equation (33) are selected as the unity matrix. The parameters of the
MSC and GSC of the WTG, the proposed FTC, the adaptive observer, and the PI controller
are given in Tables 2 and 3. Control gains are selected considering the current limits and
capacity of the MSC and GSC.

Table 2. Parameters of the WTG used in the case study.

Quantity Value

Turbine-rated torque 3.226 × 106 Nm
Rated wind speed 11.8 m/s
PMSG-rated speed 1.55 rad/s
PMSG-rated power 5 MVA

Table 3. Parameters of the controllers and the observers.

Quantity Value

Control gains ki; i = 1 . . . 6 2.7, 9.3 × 103 330, 4, 3.1 × 103, 2.1 × 103

Finite− time gain kt 1
Sign approximation gain ε 20

PI controller proportional gains kP_i; i = 1 . . . 7 5 × 104, 1.5, 1.5, 5, 1.1, 1.36, 0.01

PI controller integral gains kI_i; i = 1 . . . 7 2.5 × 105, 1.2 × 103, 1 × 103, 6 × 102, 8 × 102,
1.2 × 103, 3

Observer adaptive gains η0, η1, η2, δ 1.5 × 104, 2.3 × 104, 1.5 × 104, 1 × 10−6

A variant wind profile, illustrated in Figure 4a, is selected for the evaluation of the
proposed FTC. The dynamic of the wind profile consists of average value, ramps, gusts,
and noise. The mechanical torque of the wind turbine is extracted by the MPPT and rotor
speed control and is identical for the FTC and the ECC. The mechanical torque of the wind
turbine is shown in Figure 4b.

For the MPPT, the extremum-seeking technique is used since it is independent of the
wind turbine’s characteristics. Each harvestable power diagram for a specific wind speed
has a peak value, i.e., (ωr, Pmax). Optimum rotor speed reference tracking leads to the
MPPT of the WTG. In this paper, a fouth-order polynomial of the stator active power Ps in
pu value is used to represent the turbine’s MPPT reference rotor speed as [40,44]

ω∗r (Ps) = −2.0768P4
s + 5.6965P3

s − 5.9254P2
s + 3.6040Ps + 0.5516 (37)

7.1. Rotor Speed Reference Tracking

Figure 5 shows the comparison of the rotor-speed-tracking performance between the
proposed FTC and the ECC. The reference rotor speed for the maximum power extraction is
determined by the MPPT algorithm. As shown in Figure 5, the FTC provides faster tracking
to the reference rotor speed than the ECC does. The average values of the extracted real
power using the FTC and the ECC are listed in Table 4. Two scenarios are compared for
different controllers; measurement-based values are calculated using direct rotor speed and
WT torque measurements, while observer-based values specify the impact of the adaptive
observer transient response. As shown in Table 4, the extracted wind power using the FTC
is higher than that using the ECC by 1% since the FTC tracks the optimum rotor speed faster
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than the ECC does. The relative impact of the transient caused by the adaptive observer on
the sensorless MPPT is less than 0.01% compared to the measurement-based MPPT.
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Figure 4. Input and output of the wind turbine: (a) wind speed profile and (b) mechanical output torque of the wind turbine.
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Figure 5. Rotor speed tracking by the ECC and the FTC.

Table 4. Mean available and injected active power (MW).

Controller FTC ECC PI Controller

Maximum available 2.091
Measurement based 1.854 1.835 1.817

Observer based 1.846 1.824 1.806

To compare the controller outputs of the proposed FTC, the ECC, and the PI controller,
an index called control effort (CE) is defined using the mean value of the WTG’s control
outputs as

CE =

(
1
τ

∫ τ

0
v2

ds + v2
qs + v2

dn + v2
qn

) 1
2

(38)

where τ is the duration of control action.
The average CE for the FTC, the ECC, and the PI controller is 5951, 5948, and 5952,

respectively (Figure 5 and Table 4). The proposed FTC extracts more power compared to
the ECC and the PI controller though using an identical CE, which relatively differs only
by 0.05%.

Figure 6 shows the unextracted wind powers by the FTC and the ECC when the
adaptive observer is used. As shown in Figure 6, the FTC presents a smaller unextracted
wind power compared to the ECC and improves the MPPT algorithm by accurate and fast
tracking of the reference rotor speed.
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Figure 6. The unextracted wind power due to the transients in reference tracking of the FTC and
the ECC.

The GSC of the WTG regulates a constant DC-link voltage under the condition of
varying wind power output, as depicted in Figure 7. The reactive power reference of the
GSC regulates a unity power factor at the PCC. As shown in Figure 7, the DC-link voltage
is effectively regulated by the FTC and the ECC under fluctuating wind power. Figure 8
illustrates the control outputs of the proposed FTC for the case study. It is observed in
Figure 8 that the control signals are in the practical range without chattering and saturation.
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Figure 8. Reference control outputs of the MSC and the GSC by the FTC.

7.2. Robustness of the Proposed Nonlinear Controls against Uncertainties

The robustness of the closed-loop WTG system using the proposed FTC is investigated
under the perturbed condition in which the magnitudes of the WTG parameters increase
by 20% from the nominal values. The performance of the proposed FTC is compared to the
ECC and the PI controller under nominal and perturbed conditions (Figure 9).

CE values are calculated for the FTC, the ECC, and the PI controller under nominal
and perturbed conditions. Figure 10 illustrates that the control effort of the proposed
FTC is analogous to the ECC and the PI controller. The proposed FTC provides lower
overshoot compared to the PI controller and the ECC, although it uses a similar average CE.
Therefore, the FTC is robust against uncertainty and improves the transient response under
the perturbed condition as well as the nominal condition. In addition, the Bode diagram
of the PI controller’s outer control loops for rotor speed and DC-link voltage in Figure 11
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illustrates appropriate tuning of the PI controller with high and sufficient stability margins
and robustness.
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Figure 9. Comparison of the proposed FTC to the ECC and the PI controller: rotor speed reference-
tracking performance.
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Figure 10. Average control efforts of the FTC, the ECC, and the PI controller for nominal and
perturbed systems.
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Figure 11. Bode diagram of the closed-loop WTG system with the proposed PI controller.

As discussed in Section 4, the robustness of the proposal FTC is influenced by the
control gains ki and kt. Three scenarios are created to analyze the impact of control gains.
First, the response of the nominal WTG is evaluated for the FTC with nominal control
gains given in Table 3. The simulated rotor speed response is denoted as FTC0 in Figure 12.
Second, the same control gains ki and kt in Table 3 are used by the FTC and the ECC for
the perturbed system. The resultant responses are denoted as FTC1 and ECC1 in Figure 12.
Third, the control gains ki and kt for the FTC and the ECC are multiplied by a factor of
1.5 and denoted by FTC2 and ECC2. As depicted in Figure 12, the settling time and the
steady-state error of the rotor speed are reduced by increasing the control gains ki and the
finite-time gain kt under the perturbed condition. It is also shown in Figure 12 that the
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steady-state error and the settling time of the response with the proposed FTC are lower
than the ECC’s. The relative tracking error by the proposed FTC is 0.12% for the perturbed
system and is zero for the nominal system.
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Figure 12. Responses of FTCs and ECCs under nominal and perturbed conditions.

In Figure 13, the impact of increasing the control gains ki and kt on the settling time
and the steady-state error of the closed-loop WTG’s response is illustrated for the perturbed
system. For the label, FTC ki inc., used in Figure 13, the FTC’s gain ki increases from 1 to
1.5 and 2 pu, while kt is kept constant at 1 pu. Other labels in Figure 13 follow the similar
notation as FTC ki inc. It is observed in Figure 13 that the FTC presents a shorter settling
time and a smaller steady-state error compared to the ECC for various control gains kt
and ki.
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Figure 13. Effects of an increase in ki and kt on responses of the perturbed WTG with the FTC and
ECC: (a) settling time and (b) relative steady-state error.

7.3. Implemmention of the Adaptive Observer

The implementation of the adaptive observer proposed in Section 5 is investigated
for the FTC in this section. The estimation of the mechanical variables ωr and Tm by the
adaptive observer are shown in Figure 14 for the step change in wind speed. The results
illustrate that the proposed observer accurately tracks the reference rotor speed and the
mechanical torque in the steady state. As depicted in Figure 14b, the mechanical torque
Tm estimation has been designed to have a slower transient response in order to suppress
any measurement noise presented in Tm. The proposed adaptive observer generates an
accurate estimation of Tm in the steady state, which is essential for the controller stability.
It is noted that the estimation error may lead to a minor loss of MPPT during the transient
response of the observation.
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Figure 14. Mechanical output from the adaptive observer: (a) rotor speed ωr and (b) mechanical torque Tm.

7.4. Performance of the GSC FTC for a Weak Grid

The robustness of the proposed FTC, ECC, and PI controller was analyzed in Section 5.
In this subsection, the impact of the different grid strength and injected reactive power on
the variations in the PCC’s voltage is investigated. A step change is applied to the wind
speed, which is identical to Figure 9. The performance and resiliency of the proposed
FTC are compared to the PI controller for the GSC of the WTG connecting to a weak grid
in Figures 15a and 15b, respectively. Commonly, a grid with an SCR lower than 20 is
considered a weak grid. Furthermore, the impact of the PCC reactive power control (or
GSC q axis current control) is depicted in Figure 15 for a grid with SCRs 5 and 19.
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Figure 15. Impact of the grid strength on the PCC voltage magnitude with different controllers: (a) proposed FTC and (b)
conventional PI controller.

When a step change in the active power of the MSC occurs, the power has to be
injected into the grid through the GSC in order to regulate a constant DC-link voltage.
Moreover, enabling the reactive power control at the PCC compensates the steady-state
PCC voltage variation caused by the grid strength. The DC-link voltage and PCC reactive
power are regulated using the GSC d and q axis currents, respectively.

The proposed PI controller is also effective for the weak power grid.
As demonstrated in Figure 15, the steady-state variation and the transient overshoot

in the PCC’s voltage magnitude are lower with the proposed FTC (Figure 15a) compared
to the conventional PI controller (Figure 15b) since the FTC provides an advanced transient
in the GSC dq axis currents and eliminates overshoot.

Similar to the uncompensated case, the proposed FTC (Figure 15a) further improves
the transient in the PCC’s voltage magnitude compared to the conventional PI controller
(Figure 15b) when the PCC reactive power control is enabled (i.e., Q∗n 6= 0), as well as with
unity power factor (i.e., Q∗n = 0).

7.5. Discussion

The proposed FTC is developed based on the existing ECC [40] with minor modifi-
cations, i.e., adding a finite-time term to each dynamic of the control errors. It is a critical



Energies 2021, 14, 1712 18 of 22

variation, as the system can move from an FTC to an ECC and vice versa easily, yet take
the advantages of finite-time convergence. The performance of the proposed FTC is com-
pared to the ECC proposed in [40] and the conventional PI control method. Although the
performance of the proposed nonlinear FTC is comparable to nonlinear high-order sliding
mode control, the proposed FTC has the advantage that it can be easily implemented by
slightly modifying the conventional ECC, i.e., by adding finite-time terms with a fractional
power. Since the proposed FTC is developed by adding simple terms to the conventional
ECC, its implementation in practice should have the same level of difficulties.

8. Conclusions

This paper proposed a finite-time nonlinear controller for the PMSG-based WTG
system. The nonlinear controls of the machine-side converter and the grid-side converter
are based on the control Lyapunov function and back-stepping control design techniques.
Rotor speed and current are regulated through the machine-side converter for MPPT,
whereas the voltage of the DC link is controlled using the grid-side converter’s current
regulators. The robustness of the proposed controller was studied for bounded uncer-
tainties. The proposed multi-loop output-feedback nonlinear FTC improves the control
robustness against a bounded uncertainty, such as parameter variations, only by the proper
tuning of its control gains, as the most effective part in the proposed scheme responsi-
ble for robustness against parameter uncertainties. Minimum required control gains to
provide robustness against bounded uncertainties are calculated based on the Lyapunov
stability theorem. A 5MW WTG is used in the case study to verify the effectiveness of the
proposed nonlinear finite-time control techniques. The performance of the proposed FTC
is compared with the ECC and the PI controller for the WTG under nominal and perturbed
conditions. Simulation studies verify that the proposed FTC achieves fast and accurate
MPPT and improves the controller robustness for parameter uncertainties and for a weak
power grid compared to the conventional ECC and PI controllers. It also enhances stability
of the system. The robustness of the proposed FTC is verified using aperturbed WTG
system with 20% parameter variation and a weak power grid at the PCC. Moreover, the
outer reactive power control loop is used to control the AC voltage in a weak grid at the
PCC with a low circuit ratio. In a weak grid, the proposed FTC improves the steady-state
variation and the transient overshoot in the PCC’s voltage compared to the conventional
PI controller. As future research work, the authors aim to address the impacts of the delay
caused by the observer on the performance and stability of the PMSG WEC system with
different control methods, using the Lyapunov–Krasovskii linear matrix inequality (LMI)
method for time delay systems.
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Appendix A. Design and Stability Proof of the Proposed FTC

The complete control design approach for the WTG-MSC system, i.e., FTC in Equa-
tions (11)–(13), is presented here. The FTC for the GSC is derived using a similar approach



Energies 2021, 14, 1712 19 of 22

for the MSC as follows. Therefore, the FTC design approach for the GSC is not presented
for briefness.

1. Designing ξ*
1: Assuming a Lyapunov function V1 = 1

2 e2
1, the time derivative of V1

can be calculated as

.
V1 = e1

.
e1 = e1

(
ξ1 −

1
J
(Fωr − Tm)−

.
ω
∗
r

)
(A1)

By choosing the virtual control law ξ1 = ξ∗1 defined as Equation (11) and substi-
tuting into Equation (A1), we get

.
V1 = −k1e2

1 − kt1|e1|, which is further simplified as
Equation (A2), considering that k1e2

1 ≥ 0.

.
V1 ≤ −kt1|e1| ≤ −

√
2kt1

(
1
2

e2
1

) 1
2
≤ −2

1
2 kt1V

1
2

1 (A2)

Based on Equations (6) and (A2),
.

ωr is finite-time-stable with the control law ξ∗1 .
To calculate the dynamics of

.
e1 under the proposed control law, we define e2 = ξ1− ξ∗1

and substitute it into
.
e1 as

.
e1 = −1

J
(Fωr − Tm) + (ξ∗1 + e2)−

.
ω
∗
r (A3)

Substituting Equation (11) into Equation (A3) with further simplification gives

.
e1 = −k1e1 − kt1sign(e1) + e2 (A4)

2. Designing v*
qs: By supposing a Lyapunov function V2 = 1

2

2
∑

i=1
e2

i , the time derivative

of V2 is calculated as
.

V2 = e1
.
e1 + e2

.
e2 (A5)

Substituting
.
e1 from Equation (A3) and

.
e2 =

.
ξ1 −

.
ξ
∗
1 into Equation (A5) yields

.
V2 = e1(−k1e1 − kt2F α(e2) + e2) + e2

( .
ξ1 −

.
ξ
∗
1

)
(A6)

where
.
ξ1 and

.
ξ
∗
1 are calculated as follows:

.
ξ1 = −KM

J
diqs

dt
=

KM
JLs

(
rsiqs + LsPωrids − KMωr + vqs

)
(A7)

.
ξ
∗
1 = 1

J

(
F

.
ωr −

.
Tm

)
+

..
ω
∗
r + k1

.
e1

= 1
J

[
F
(
− 1

J
(

Fωr + KMiqs − Tm
))
−

.
Tm

]
+ k1(k1e1 + kt1sign(e1)− e2)

(A8)

where
.

ωr and
.
e1 are calculated in Equations (2) and (A4), respectively.

Substituting
.
ξ1 from Equation (A7) and

.
ξ
∗
1 from Equation (A8) into Equation (A6), we

design the control law v∗qs as Equation (12). Substituting the proposed FTC law v∗qs from

Equation (12) into
.

V2 Equation (A5) yields

.
V2 = e1(−k1e1 − kt1sign(e1) + e2)+e2(−e1 − k1e2 − kt2F α(e2)) (A9)

which is further simplified as Equation (A10), considering that |z| ≤ sinh(|z|) for z ∈ R,
and thus −|sinh(z)|α ≤ −|z|α.

.
V2 ≤ −k1e2

1 − kt1|e1| − k2e2
2 − kt2|e2|α+1 (A10)
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According to the triangular inequality and (A10), we obtain:

.
V2 ≤ −2k

(
1
2

2

∑
i=1

e2
i

)
− 2βkt2

(
1
2

2

∑
i=1

e2
i

)β

≤ −2kV2 − 2βktV
β
2 (A11)

.
V2 ≤ −2βktV

β
2 (A12)

where 0 < β = α+1
2 < 1 is the fractional power and k = min{k1, k2} and kt = min{kt1, kt2}

are the control gains.
Based on Equations (6) and (A12), the subsystem

[ .
e1,

.
e2
]T is finite-time-stable with

the proposed FTC law v∗qs in Equation (15). The dynamic of
.
e2 with the proposed FTC law

in Equation (15) is calculated by substituting
.
ξ1 in Equation (11) and v∗qs in Equation (12)

into
.
e2 as

.
e2 =

.
ξ1 −

.
ξ
∗
1 = e1 − k1e2 − kt2F α(e2) (A13)

3. Designing v*
ds: Defining a Lyapunov function V3 = 1

2 e2
3 and taking its time deriva-

tive considering i∗ds = 0 yields

.
V3 = e3

.
e3 = e3(−

1
Ls

(rsids − LsPωrids + vds)

)
(A14)

According to Equation (A14), we define the FTC law v∗ds as Equation (13). By substi-
tuting v∗ds in Equation (13) into Equation (A14) and canceling similar terms, we have

.
V3 ≤ −k3e2

3 − kt3|e3|α+1 ≤ −kt3|e3|α+1 (A15)

According to triangular inequality and Equation (A15), we conclude

.
V3 ≤ −2βkt3

(
1
2

e2
3

)β

≤ −2βkt3Vβ
3 (A16)

Based on Equations (6) and (A16), dids
dt is finite-time-stable with the proposed FTC law

v∗ds in Equation (13) into
.
e3 and some simple calculations as

.
e3 = −k3e3 − kt3F α(e3) (A17)

The dynamic of the closed-loop WTG system (Equation (2)) with the proposed FTC
(Equations (11)–(16)) is represented as .

e1.
e2.
e3

 = −

 k1 −1 0
1 k2 0
0 0 k3

 e1
e2
e3

− diag

 kt1
kt2
kt3

 sign(e1)
F α(e2)
F α(e3)

 (A18)

 .
e4.
e5.
e6

 = −

 k4 −1 0
1 k5 0
0 0 k6

 e4
e5
e6

− diag

 kt4
kt5
kt6

 sign(e4)
F α(e5)
F α(e6)

 (A19)
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