
energies

Article

Development and Validation of a Machine Learned
Turbulence Model †

Shanti Bhushan 1,2,*, Greg W. Burgreen 2 , Wesley Brewer 3 and Ian D. Dettwiller 4

����������
�������

Citation: Bhushan, S.; Burgreen,

G.W.; Brewer, W.; Dettwiller, I.D.

Development and Validation of a

Machine Learned Turbulence Model .

Energies 2021, 14, 1465. https://

doi.org/10.3390/en14051465

Academic Editor: Ricardo Vinuesa

Received: 28 January 2021

Accepted: 25 February 2021

Published: 8 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, Mississippi State University, Starkville, MS 39762, USA
2 Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39762, USA;

greg.burgreen@msstate.edu
3 DoD High Performance Computing Modernization Program PET/GDIT, Vicksburg, MS 39180, USA;

wesley.brewer@gdit.com
4 Engineer Research and Development Center (ERDC), Vicksburg, MS 39180, USA;

ian.d.dettwiller@usace.army.mil
* Correspondence: bhushan@me.msstate.edu
† DOD DISTRIBUTION STATEMENT A. Approved for Public Release: Distribution Unlimited.

Abstract: A stand-alone machine learned turbulence model is developed and applied for the solution
of steady and unsteady boundary layer equations, and issues and constraints associated with the
model are investigated. The results demonstrate that an accurately trained machine learned model
can provide grid convergent, smooth solutions, work in extrapolation mode, and converge to a
correct solution from ill-posed flow conditions. The accuracy of the machine learned response surface
depends on the choice of flow variables, and training approach to minimize the overlap in the
datasets. For the former, grouping flow variables into a problem relevant parameter for input features
is desirable. For the latter, incorporation of physics-based constraints during training is helpful. Data
clustering is also identified to be a useful tool as it avoids skewness of the model towards a dominant
flow feature.

Keywords: turbulence modeling; machine learning; DNS

1. Introduction

Engineering applications encounter complex flow regimes involving turbulent and
transition (from laminar to turbulent) flows, which encompass a wide range of length and
time scales that increase with the Reynolds number (Re). Direct Numerical Simulations
(DNS) require grid resolutions small enough to resolve the entire range of turbulent scales
and are beyond the current computational capability. Availability of high-fidelity DNS
and experimental datasets is fueling the emergence of machine learning tools to improve
accuracy, convergence and speed-up of turbulent flow predictions [1,2]. Machine learning
tools depend on neural networks to identify the correlation between input and output
features, and have been used in different ways for turbulent flow predictions, such as direct
field estimation, estimation of turbulence modeling uncertainty, or advance turbulence
modeling.

In the direct field estimation approach, the entire flow field is predicted using a
ML approach, i.e., the flow field is the desired output feature. For example, Milano and
Koumoutsakos [3] estimated mean flow profile in the turbulent buffer-layer region using
Burger’s equation and channel flow DNS results as training datasets. Hocevar et al. [4]
predicted the scalar concentration spectra in an airfoil wake using experimental datasets
as training datasets. Jin et al. [5] estimated unsteady velocity distribution in the near
wake (within four diameters) of a 2D circular cylinder using laminar solutions as training
datasets and surface pressure distribution as input feature. Obiols-Sales et al. [6] developed
Computational Fluid Dynamics (CFD) Network CFDNet—a physical simulation and deep

Energies 2021, 14, 1465. https://doi.org/10.3390/en14051465 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3953-6307
https://doi.org/10.3390/en14051465
https://doi.org/10.3390/en14051465
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14051465
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/5/1465?type=check_update&version=2

Energies 2021, 14, 1465 2 of 34

learning coupled framework to speed-up the convergence of CFD simulations. For this
purpose, a convolution neural network was trained to predict the primary variables of the
flow. The neural network was used as intermediate step in the flow prediction, i.e., CFD
simulations are solved as a warmup preprocessing step, then the neural network is used
to infer the steady state solution, and following that CFD simulations are performed to
correct the solution to satisfy the desired convergence constraints. The method was applied
for range of canonical flows such as channel flow, flow over ellipse, airfoil, cylinder, where
the results were encouraging.

For the turbulence model uncertainty assessment, the desired output feature is the
error in a CFD solution due to turbulence modeling. For example, Edeling et al. [7] used
velocity data from several boundary layer flow experiments with variable pressure gradi-
ents to evaluate the k-ε model coefficient ranges. Then, the variation in model coefficients
were used to estimate the uncertainty in Reynolds averaged Navier Stokes (RANS) so-
lution. Ling and Tempelton [8] compared several flow features predicted by k-ε RANS
with DNS/LES results for canonical flows (e.g., duct flow, flow over a wavy wall, square
cylinder etc.) and estimated errors in RANS predictions due to νT < 0, νT isotropy, and
stress non-linearity.

Simulations on coarser grids require a model for the turbulent stresses (τ). The stress
terms account for the effect of unresolved (or subgrid) turbulent flow on the mean (or
resolved) flow for RANS (or LES) computations. The primary question for turbulence
modeling is how turbulent stresses are correlated with flow parameters or variables? A
review of the literature as summarized in Appendix A Tables A1 and A2 shows that
machine learning has been used to either augment physics-based models to improve their
predictive capability [9–22] or develop standalone turbulence models [23–30]. The details
of the input and output features and test and validation cases used in the studies are listed
in the Tables, and the salient points of the studies are discussed below.

Parish and Duraisamy [9] analyzed DNS of plane channel flow to estimate the response
surface of TKE production multiplier (β) as a function of four turbulent flow variables. The
model was used to argument k-ω model. In a follow-on study [10] experimental data for
wind turbine airfoils was used to adjust the Spalart–Allmaras (SA) RANS model νT pro-
duction as a function of five turbulent flow parameters. The β function was reconstructed
using an artificial neural network to minimize the difference between the experimental
data and SA model results. The models were used for aposteriori tests, where it showed
significant improvement over the standard RANS models and was found to be robust even
for unseen geometries and flow conditions. He et al. [11] developed a similar approach,
wherein adjoint equations were derived for SA model solution error due to νT production.
The SA model predictions were compared with the experimental data at selected locations
during runtime. Then, a solution of β was obtained using the adjoint equation to minimize
discrepancy between the predictions and experimental data. The approach was applied
for several canonical test cases and encouraging results were reported. Yang and Xiao [12]
extended the work of Duraisamy et al. [9,10] to train a correction term for the transition
model time-scale. Their model was trained using DNS datasets for flow over an airfoil at
different angle of attack using both random forest and artificial neural network and using
six different flow variables as input features. The trained correction term was implemented
in a 4-Equation transition model, and applied for aposteriori tests involving unseen flow
conditions (both interpolation and extrapolation mode) and geometry. The study reported
good agreement for the transition location, validating the efficacy of such models.

Ling et al. [13] used six different DNS/LES canonical flow results to obtain coefficients
of a non-linear stress formulation consisting of ten (10) terms involving non-linear combi-
nations of the of rate-of-strain (S) and rotation tensors (Ω). The model coefficients were
trained using a deep neural network as a function of five invariants of S and Ω tensors. The
trained model coefficient map was applied for both apriori and aposteriori tests, including
unseen geometry. The study reported that the ML model performs better than both the

Energies 2021, 14, 1465 3 of 34

linear and non-linear physics-based models and performed reasonably well for unseen
geometries and flow conditions.

Xiao and coworkers [14,15] trained a response surface of the errors in k-ε RANS
turbulent stress predictions as a function of ten flow features using random forest regression.
The model was validated for apriori tests for two sets of cases, one where the test flow and
training flow were similar, and second for unseen geometry and flow conditions. It was
reported that the model performed better for the former case. Wu et al. [15] investigated
metrics to quantify the similarity between the training flows and the test flow that can be
used to provide guidelines for selecting suitable training flows to improve the prediction
of such models. Wang et al. [16] extended the above approach for compressible flows. A
model was trained using DNS datasets with 47 flow features obtained using combination
of S, Ω, ∇k, and ∇T, inspired by Ling et al. [13]. The model was validated for apriori tests
for flat-plate boundary layer simulations. The study identified that the machine learned
model predictions depend significantly on the closeness to the training dataset.

Wu et al. [17] developed a model to address the ill-conditioned solutions predicted by
machine learned model during aposteriori tests (i.e., small errors in the modeled Reynolds
stresses results in large errors in velocity predictions). For this purpose, a model was
trained to account for the errors in k-ε RANS model stress predictions (both linear and non-
linear terms) using seven turbulent flow features. The model was applied as an aposteriori
test for flows involving slightly different geometry than the training case. Yin et al. [18]
investigated the role of the feature selection and grid topology on the unsmoothness of the
solution and large prediction errors reported in the above [17] study. They trained a model
using 47 input features, inspired by Ling et al. [13]. The model was applied for apriori and
aposteriori tests, wherein for the latter machine learned turbulent stresses were frozen. The
study concluded that unsmoothness of the solution was primarily due to grid topology
issues which results in discontinuities in the input features.

Yang et al. [19] used neural networks to train a wall-model for LES. The model was
trained using three sets of input features: (1) wall parallel velocity (u||) and d; (2) u||, d
and grid aspect ratio; and (3) u||, d, grid aspect ratio and ∇p. The model was coupled
with a Lagrangian dynamic Smagorinsky model and applied for channel flow over a wide
range of flow conditions Reτ = 103 to 1010. The study reported that inclusion of additional
flow features such as grid aspect ratio and pressure gradient does not show significant
improvement in the predictions.

Weatheritt and Sandberg [20] used symbolic regression to derive an analytic formu-
lation for turbulent stress anisotropy. The model was trained using hybrid RANS/LES
solutions and a regression map for the model coefficients were obtained as a function of
rate-of-strain and rotation tensor magnitudes. The anisotropy formulation was used along
with the k-ωmodel, and the model showed very encouraging results for both apriori and
aposteriori tests including unseen geometries. Jian et al. [21] used a deep neural network to
train a regression map of the model coefficients for an algebraic RANS model. The model
was trained using a single parameter |S|k/ε as the input feature. The model was validated
for both apriori and aposteriori tests, including extrapolation mode, i.e., Reτ larger than
those in the training dataset. The study reported that the ML model performed better than
the non-linear physics-based models due to its capability to better capture the large stress-
strain misalignment and strong stress anisotropy in the near-wall region. Xie et al. [22]
used neural networks to train model coefficients of a mixed subgrid stress/thermal flux
model. The model trained compressible isotropic turbulence flow using six flow features,
and it was reported that the machine learned model performs better than the physics-based
models.

Comparatively limited efforts have been made to develop standalone machine learned
turbulence models. Schmelzer et al. [23] used a symbolic regression approach to infer the
model coefficients of an algebraic RANS model. The model was trained using DNS datasets
using invariants of S and Ω tensors. The model was applied for unseen flow conditions,
where the machine learned model performed better than the k-ω RANS. Fang et al. [24]

Energies 2021, 14, 1465 4 of 34

developed a model for turbulent shear stress τuv using DNS of channel flow. The model
used a deep neural network trained using mean flow gradients and Reτ as key input
parameters, and non-slip boundary condition and spatial non-locality were enforced during
training. The model was applied for aposteriori tests involving unseen flow conditions, and
it was reported that the model worked better than the model proposed by Ling et al. [16]
due to the use of Reτ and boundary condition enforcement. Zhu et al. [25] developed a
regression map of RANS turbulent eddy viscosity using a radial basis function network
using SA RANS solutions for flow over NACA 0012 and RAE2822 airfoils at different
angles of attack using eight input features based on flow, gradient and wall distance. The
flow domain was separated into near-wall, wake, and far-field regions, and a different
model was trained in each region. The study reported that using wall-distance as weights
helped during training, but training using log-transformation of dataset did not help. The
model was applied for aposteriori tests for the training geometry but for unseen angles of
attack (flow condition), and good predictions were reported for the lift/drag coefficients,
and skin friction distributions.

King et al. [26] developed a subgrid stress model using DNS of isotropic and sheared
turbulence using velocity, pressure, S and grid parameters as input features. The model
was applied for apriori tests for the isotropic and sheared turbulence test cases on coarse
grid, where it performed better than the dynamic LES model. Gamahara and Hattori [27]
used a feed-forward neural network to train a regression map of LES turbulent stresses.
For this purpose, DNS results for plane channel flow for Reτ = 180 to 800 were filtered on
up to four times (in each direction) coarser grids, and the filtered flow field was used as
input features. The study used four different sets of input features involving S, Ω, wall-
distance, and velocity gradients, and models were validated for apriori tests for unseen
flow conditions. The study reported that the best model was predicted when u and d
were used as input features. Further, it was reported that the machine learned models are
more accurate than the similarity models, because of their ability to learn the non-linear
functional relation between the resolved flow field and the subgrid stresses better than
those prescribed in the physics-based model. Zhou et al. [28] used a similar approach to
develop LES subgrid-scale model. The model was trained for isotropic decaying turbulence
using gradients of filtered velocity and filter width (∆). Yuan et al. [29] also developed
an LES model using deconvolution neural network with isotropic decaying turbulence
datasets for training. The model was trained using filtered velocity as the input parameter
and validated for both apriori and aposteriori tests. Maulik et al. [30] used an artificial
neural network to train a regression map of subgrid term for 2D turbulence using primary
variables and its gradients as input features. The model was validated for both apriori and
aposteriori tests. The ML model provided good predictions; however, it was reported that
some measure of aposteriori error must be considered during optimal model selection for
greater accuracy.

Some recent studies [31–33] have investigated the development of machine learning
models for turbulent flow predictions by incorporating physics-based constrained during
the training. These models provide an important direction to the applicability of the
machine learning approach, but thus far they have used only for direct field estimation.

Overall, a review of the literature shows that

(1) Machine learning has been primarily used for RANS model augmentation, where
either turbulence production is adjusted, or nonlinear stress components are added to
linear eddy viscosity term. Limited effort has been made to develop a stand-alone
model, except for some recent effort focusing on modeling of subgrid stresses for LES.

(2) Studies have used wide range input flow features for machine learned model training.
There is a consensus that combining flow features into physically relevant flow feature
is desirable, as this helps incorporate physics in machine-learning. Use of a large
numbers of input features have been found to be helpful to some extent as it allows
output features to be uniquely identified in the different flow regimes. However,
they introduce additional sources of inaccuracy. For example, unsmooth solutions

Energies 2021, 14, 1465 5 of 34

have been reported due to inaccurate calculation in the input features involving
higher-order formulations of the derivative terms.

(3) Machine learned models have been applied for both apriori and aposteriori tests
for both unseen geometry and flow conditions, including Re extrapolation mode.
The model in general perform well for unseen flow conditions, but issues have been
reported for unseen geometries. In general, the machine learned models are most
accurate when the test flow has similar complexity to the training flow.

(4) Studies have reported issues during training due to overlap in the output features in
different flow regimes. It has been tacked by using more input features, as discussed
above, and by segregating the flow domain into regions with similar flow characteris-
tics, such as near-wall, wake and far-field regions, and train separate models in each
region.

In summary, there are open issues such as, “What is the best way to use machine
learning for turbulence model development?” Should machine learning be used to augment
an existing model or to develop a stand-alone model. The model augmentation approach
builds on a baseline physics-based model; thus, it has some inherent robustness, especially
when the model is used in extrapolation mode or for unseen geometry. However, this
approach undercuts the advantage of machine learning. If it is expected that neural
networks can accurately learn the errors in a RANS model and provide a universal model
for the errors, then there is no reason to believe that same approach cannot provide a model
for Reynolds stresses. Second, none of the studies in the literature have validated the
machine learned model in a similar fashion as the physics-based model, i.e., how does it
perform when started from ill-posed flow conditions, i.e., when simulation is started from
an arbitrary initial condition, or does it provide grid convergence, or can independently
query output in contiguous regions result in kinks in the solution. Apart from the above
questions, there are additional issues regarding the best practices for optimizing machine
learning approach itself [31].

The objective of this paper is to investigate the predictive capability of a stand-alone
machine learned turbulence model and shed light on some of the above issues and con-
straints. To achieve these objectives, a DNS/LES database is curated for incompressible
boundary layer solution available in the literature (i.e., channel flow and flat-plate bound-
ary layer solution at zero pressure gradient), and a DNS database has been generated
for oscillating channel flow. The datasets are used to train a ML response surface for the
turbulent stress. The model is validated for apriori and aposteriori tests, and predictions
are compared with DNS and RANS model results. The preliminary results for the channel
flow case have been presented in ASME conference paper [32], and those of oscillating
channel flow case has been presented in SC20 conference paper [33]. The results from the
above publications have been further refined and are presented herein.

The novel aspects of this study include: development of a stand-alone RANS model,
which has not received same level of attention as the RANS model augmentation; the effect
of physics-based constraints during the training of a model is investigated, which has not
been done before; the machine learned model is applied for an unsteady flow, thus far
none of the studies have applied and tested machine learned model for unsteady flows;
and the ability of the machine learned model to adapt to ill-posed initial flow conditions,
as expected in a typical CFD simulation, and their ability to provide grid independent
solution as expected for a RANS model are investigated.

The following section provides an overview of the DNS/LES datasets curated or
procured in this research. Section 2 provides an overview of the machine learning approach.
Sections 3 and 4 focuses on development and validation of the machine learned model for
boundary layer flows and oscillating channel flow case, respectively. Finally, some key
conclusions and future work are discussed in Section 5.

Energies 2021, 14, 1465 6 of 34

2. Machine Learning Approach

The basic framework of the deep learning neural network is described in Figure 1,
inspired from LeCun et al. [34]. The network consists of various layers, including the first
input layer comprising of input features, the last output layer comprising of the required
output features, and multiple hidden layers comprising of features units obtained using
linear combination of feature units from the previous layer. Each layer, excluding the input
layer, has input features (z) and output features (y). Let’s say for the pth layer with m
feature units, the input and output features are z1 to zm and y1 to ym, respectively. The
input feature units for the pth layer is obtained from the linear combination of the n output
feature units in the layer above or (p − 1)th layer, as below:

z1
(p)

..

..
. . .

zm
(p)

 =

 w11 · · · w1n
...

. . .
...

wm1 · · · wmn


︸ ︷︷ ︸

wij
(p)


y1

(p−1)

..

..
. . .

yn
(p−1)

 (1)

where superscript (p) is used to represent the pth layer, i varies from 1 to m and j varies
from 1 to n, and wij

(p) are the unknown weights that need to be estimated. Thus, there are
m neurons that connect the (p − 1)th and pth layer. Note that for the first hidden layer z
vector are the input features, and for the last output layer y vector are the output features.
Also note that some of the features in the hidden layers can be dropped depending on the
threshold of weights permitted. Usually in deep learning applications, the input features in
the input layer are scaled to vary in-between 0 and 1, and similarly the weights are positive
and normalized such that ∑ wij

(p) = 1. For each hidden and output layers, the output
features are obtained from the input features on that layer as

yi
(p) = f

(
zi
(p)
)

(2)

where f (..) is a pre-defined non-linear analytic activation function. The most common
functions are

f (z) =



max(0, z) : ReLU
z f or z ≥ 0,

(ez − 1) f or z < 0 : ELU
ez−e−z

ez+e−z : Hyperbolic tangent
1

1+e−z : Logistic

(3)

Rectilinear Linear Units (ReLU) function provides a linear dependency on the input
features, exponential Linear Units (ELU) are same as ReLU for non-negative inputs, but
use exponential modulation for negative inputs, hyperbolic tangent and logistic functions
modulate both the positive and negative inputs. As pointed out by Lee et al. [35], ReLU
is the most commonly used function for training deep neural networks because they do
not suffer from vanishing gradients and they are fast to train. However, they ignore the
negative values and hence lose information, which is referred to as “dying ReLU”. ELU
on the other hand can capture information for the negative inputs, so they used ELU for
training their physics-informed neural network.

Energies 2021, 14, 1465 7 of 34

Energies 2021, 14, x FOR PEER REVIEW 7 of 35

For the above defined analytic cost function, the derivatives of the errors in the out-
put layer with respect to the output feature is డாడ௬೔ = 2(𝑦௜ − 𝑇௜) (5)

and the derivative of the errors with respect to the input features is డாడ௭೔ = డாడ௬೔ డ௬೔డ௭೔ = 𝑓′(𝑧௜) డாడ௬೔ (6)

where, 𝑓′ is a known analytic function from Equation (3). Since the input features of a
layer are linearly related to the output features of the previous layer as shown in Equation
(1), the derivative of the errors with respect to the weights are computed as డாడ௪೔ೕ(೛) = డாడ௭೔(೛) డ௭೔(೛)డ௪೔ೕ(೛) = 𝑦௝(௣ିଵ) డாడ௭೔(೛) (7)

Lastly, the weights in each layer are adjusted as 𝑤௜௝(௣)ห௜௧ାଵ = 𝑤௜௝(௣)ห௜௧ − 𝛼 డாడ௪೔ೕ(೛) (8)

where α is learning rate, and subscript it represents the iteration level. Commonly availa-
ble ML softwares provide optimizers which dictate the learning rate. For example, adap-
tive moment estimation (ADAM) optimizer [36] available in Keras application program-
ming interface (API) requires a user specified initial learning rate, but the rate is adap-
tively adjusted during training. Note that in deep neural networks “iterations” refer to
running a subset of the data (batch) forward and backwards through the network,
whereas “epoch” refers to running all the training data forward and backward through
the network. Thus, epochs are not same as iterations, unless the entire dataset is the batch
size. Further note that the terms on RHS is known from Equations (5) and (6) for the out-
put layer. For the hidden layers a backpropagation approach is used, where the derivative
information is computed based on information from the layer ahead starting from the
output layer, Equation (5), as below: డாడ௬ೕ(೛షభ) = ∑ 𝑤௜௝(௣) డாడ௭೔(೛) (9)

and then Equations (6) and (7) are used to obtain డாడ௪೔ೕ(೛షభ).

Figure 1. Block diagram summarizing machine learning approach inspired from LeCun et al. [34]. The above example
shows a neural network with one input, two hidden and output layers. Each of the circles represent a feature in a layer,
let’s say i features in the input layer, k features in the hidden layer and m features in the output layer. The variable “x” are
the input parameters, and “z” and “y” are the inputs and outputs, respectively, of both hidden and output layers. The
features on the extreme right are the true values (T) used for training the network. The forward arrows represent the
calculation of the features on the next layer based on linear combination of features on previous layer using the (positive)

Figure 1. Block diagram summarizing machine learning approach inspired from LeCun et al. [34]. The above example
shows a neural network with one input, two hidden and output layers. Each of the circles represent a feature in a layer, let’s
say i features in the input layer, k features in the hidden layer and m features in the output layer. The variable “x” are the
input parameters, and “z” and “y” are the inputs and outputs, respectively, of both hidden and output layers. The features
on the extreme right are the true values (T) used for training the network. The forward arrows represent the calculation of
the features on the next layer based on linear combination of features on previous layer using the (positive) weight matrix
(wij). Broken arrows show backpropagation of the network prediction error to readjust the weights. The network prediction
error (E) is computed using a predefined cost function comparing the network output with the true values. The derivatives
of the errors are computed to adjust the weight matrix, where α is learning rate.

The unknown weight matrix in each layer is estimated using backpropagation ap-
proach, as described below. The network is first initialized with constant zero weight for
each layer and the error in the network prediction are obtained by comparing them with
training dataset or true values (T) using a user specified analytic cost function, such as
L2 norm

E = ∑
i=1,m

(yi − Ti)
2 (4)

For the above defined analytic cost function, the derivatives of the errors in the output
layer with respect to the output feature is

∂E
∂yi

= 2(yi − Ti) (5)

and the derivative of the errors with respect to the input features is

∂E
∂zi

=
∂E
∂yi

∂yi
∂zi

= f ′(zi)
∂E
∂yi

(6)

where, f ′ is a known analytic function from Equation (3). Since the input features of a layer
are linearly related to the output features of the previous layer as shown in Equation (1),
the derivative of the errors with respect to the weights are computed as

∂E
∂wij

(p)
=

∂E
∂zi

(p)
∂zi

(p)

∂wij
(p)

= yj
(p−1) ∂E

∂zi
(p)

(7)

Lastly, the weights in each layer are adjusted as

wij
(p)
∣∣∣
it+1

= wij
(p)
∣∣∣
it
− α

∂E
∂wij

(p)
(8)

Energies 2021, 14, 1465 8 of 34

where α is learning rate, and subscript it represents the iteration level. Commonly available
ML softwares provide optimizers which dictate the learning rate. For example, adaptive
moment estimation (ADAM) optimizer [36] available in Keras application programming
interface (API) requires a user specified initial learning rate, but the rate is adaptively
adjusted during training. Note that in deep neural networks “iterations” refer to running a
subset of the data (batch) forward and backwards through the network, whereas “epoch”
refers to running all the training data forward and backward through the network. Thus,
epochs are not same as iterations, unless the entire dataset is the batch size. Further note
that the terms on RHS is known from Equations (5) and (6) for the output layer. For
the hidden layers a backpropagation approach is used, where the derivative information
is computed based on information from the layer ahead starting from the output layer,
Equation (5), as below:

∂E
∂yj

(p−1)
= ∑ wij

(p) ∂E
∂zi

(p)
(9)

and then Equations (6) and (7) are used to obtain ∂E
∂wij

(p−1) .

In the physics-informed machine learning (PIML) approach [37] the cost function
is modified to include the residual in the governing equations (R); thus, Equation (4) is
modified to

E = ∑
i=1,m

(yi − Ti)
2+ ∑

i=1,m
(Ri)

2 (10)

Note that Equation (5) remains changed.

3. Test Cases and Database for Model Training

Two different text cases have been considered in this study, steady and unsteady
channel flow. For the former, the mean flow solution describes the inner layer of a flat-plate
boundary layer (with zero pressure gradient) at a fixed location on the plate. This case
is a fundament test case for turbulence model development and several DNS studies are
available for a range of flow conditions. The flow pattern for this case reduces to a one-
dimensional (1D) problem. For the second test case, the inner boundary layer undergoes
unsteadiness due to prescribed pressure gradient pulse. The mean flow pattern for this
case reduces to an unsteady 1D problem, which adds another level of complexity to the
first test case.

3.1. Plane Channel Flow
3.1.1. Governing Equation

This test case focuses on the simulation of the inner layer of the turbulent boundary
layer under zero-pressure gradient at a fixed location on a flat-plate. The governing
equations for such flow condition can be derived from the incompressible Navier–Stokes
equations under the assumption that the flow is 2D and steady, and streamwise gradients
are negligible compared to those along the wall normal direction (refer to Appendix B for
derivation) as below:

∂u
∂t

= F(τw) + ν
∂2u
∂y2 +

∂

∂y
(τuv) (11)

where y is the coordinate direction normal to the wall and u is the ensembled averaged
streamwise velocity. Note that the correlation between streamwise and wall-normal turbu-
lent velocity fluctuations (τuv = u′v′, which are the shear stresses) is the only unknown
quantity that needs to be modeled. Also note that although the above equations are valid
for flows with zero pressure gradient, the above equation includes a body force term (F),
which can be misconstrued as pressure-gradient term. This term is added because the
simulations are performed for flow between two flat-plates; thus, a body force is required
to balance the momentum loss due to wall friction and achieve a steady state. The body
force term F(τw) is a function of wall shear stress τw expected at the simulated flat-plate

Energies 2021, 14, 1465 9 of 34

location. The wall shear stress can be expressed in terms of friction velocity uτ , and is a
fixed input parameter:

τw = u2
τ (12)

and
F(τw) = u2

τ/H (13)

where H is the half channel height. Note that the simulated flow conditions in a channel
flow case can be changed simply by changing the wall friction value (or the applied
body force term). Further note that a time-derivative term in the governing equation is
a pseudo time derivative, and used as a residual term and provides a measure of the
solution convergence. A steady state solution is achieved as the time derivative term
approaches zero.

Commonly used linear URANS models express the turbulent shear stress as [38]

τuv = νT
∂u
∂y

(14)

where, νT is an unknown turbulent eddy viscosity. The one-equation URANS model
requires solution of an additional transport equation for turbulent kinetic energy (k)

∂k
∂t

= νT

(
∂u
∂y

)2

︸ ︷︷ ︸
Production

− 0.1643k3/2

`︸ ︷︷ ︸
Dissipation

+
∂

∂y

{
(ν + νT)

∂k
∂y

}
︸ ︷︷ ︸

Diffusion

(15)

and turbulent eddy viscosity is obtained as

νT =
√

0.3`
√

k (16)

The turbulent length scale ` is prescribed as

` = κd
(

1− e−y+/26
)

(17)

where von-Karman constant κ = 0.41 and d is distance from the wall. Refer to Warsi [38]
for details for the modeling. Similar to the streamwise velocity equation (Equation (11)),
the time derivative can be perceived as a residual term for steady simulations, and a
steady state is achieved as term approaches zero. The time derivate term provides the
time-accurate solution for URANS simulations.

3.1.2. DNS/LES Database

A DNS/LES database is curated to train a ML response surface for τuv. As summarized
in Table A3, the database includes, 21 channel flow DNS cases with Reynolds numbers
ranging from Reτ = 109 to 5200 [39–45]; 18 flat-plate boundary layer with zero-pressure
gradient DNS cases with Reynolds numbers ranging from Reθ = 670 to 6500 [46–48]; and
14 flat-plate boundary layer with zero-pressure gradient LES cases with Reθ = 670 to
11,000 [49,50]. The database contained around 20,000 data points of which 3.4% were in
the sub-layer, 5.7% in buffer layer and 90.9% in the log-layer or the outer layer. Note that
all the datasets are for flat-plate boundary layer with zero-pressure gradient, where the
channel flow cases represent only the inner-layer.

3.1.3. ML Model Training and Refinement Using Apriori Tests

ML model is developed using the cost function in Equation (4), which is referred to
as data-driven machine learned (DDML) model, and cost function including the residual
in the governing equations, i.e., Equation (10), which is referred to as physics-informed
machine learned (PIML) model. For the PIML model training, the residual of the governing

Energies 2021, 14, 1465 10 of 34

equation is obtained using the integral form of the governing equation (Equation (11)) at
steady state as below:

Ri = ν
∂ui
∂y

+ τuvi − u2
τ/Hd (18)

where subscript ‘i’ denotes the solution at the epoch level.
The DDML model is trained used a multilayer perceptron (MLP) neural network

consisting of two dense hidden layers, each with 512 neurons with ReLU activations, and
a linear activation on the output layer. ADAM optimizer is used during training with a
mean absolute error loss function, generating 276,000 trainable parameters. To mitigate
over-fitting during training, each layer has a 20% dropout [51]. The PIML model is trained
using an eight-layer deep neural network with each hidden layer having 20 neurons and a
hyperbolic tangent activation function. The model is optimized using an L-BFGS quasi-
Newton full-batch gradient-based optimization method and iterated for 2400 epochs. For
the model training, the dataset is not separated into training and test sets; but rather 70%
of the dataset is chosen randomly. Thus, it is possible that there could be an overlap in
the datasets used for training and apriori tests. A parametric study was also performed
by choosing 80% and 100% of datasets, which did not show much effect on the model
predictions in apriori tests. Further note that the number of layers and neurons used
for training DDML and PIML are different. For DDML training, a parametric study
was performed using more layers and different number of neurons. The tests revealed
that increasing the number of layers increases the training time, but does not necessarily
improve the training accuracy. Increasing the number of neurons in lieu of layers was found
to be computationally efficient and helped in reducing the training error. The numbers
of layers and neurons used in the study are found to provide optimal model in terms
of computational cost and accuracy. The optimal width and depth of neural network
architecture also depends on the amount of data available for training the networks [52].
A shallow depth network is partially due to comparable small training dataset. For the
PIML training a similar test was not performed and the training set-up was same as that
used by [37]. Overall, although the numbers of layers and neurons differed between the
PIML and DDML model training, but the neural network architecture for both provided
the needed accuracy.

The machine learned turbulence model seeks to obtain a response surface of the
shear stress τuv, which is the output feature. The input features are the flow parameters.
Referring to Figure 1, if a training batch uses N number of data points and each data point
has M flow parameters, then the total number of input features xi : i = N ×M, and total
number of output features ym : m = N. The batch size was 128 for this case. Note that
even though the M flow parameters at each data point are related; however, during the
training they are considered independent of each other. The PIML model may leverage
the correlation between the input features at a datapoint, as the feature set is expected to
satisfy the governing equations.

Considering all the possible flow variables; the response surface of the shear stress τuv
is expected to have following functional form:

τuv = f
(

u, Uc, d, ν, uτ ,
∂u
∂y

)
(19)

Instead of providing the flow features independently, they are grouped or non-
dimensionalized into physically relevant parameter. The velocity derivative is a key
term, which captures the rate-of-strain in the flow. It is commonly accepted that turbulent
stresses can be modeled by extending Stokes’ law of friction (for viscous stresses), except
that the linear assumption is debatable [38]. Thus, the velocity derivative normalized by
the centerline velocity Uc and channel height H is used as an input parameter. Figure 2
provides an overview of the correlation of τuv with respect to key input features ∂u

∂y . As

Energies 2021, 14, 1465 11 of 34

evident, the dataset shows quite an overlap especially for 5 ≤ ∂u
∂y ≤ 30. Thus, it is clear that

this parameter alone is not sufficient to train a reliable regression map.

Energies 2021, 14, x FOR PEER REVIEW 11 of 35

Figure 2. Correlation of shear stress (𝜏௨௩) with mean velocity gradient for channel and flat-plate
boundary later DNS/LES dataset. The dataset shows significant overlap for du/dy between 5 and 20
(within the box region).

The flow viscosity ν is one of the fundamental bulk fluid property and dictates one
of the key non-dimensional parameters for the boundary layer flow, which is the Reyn-
olds number (Re). Re is usually defined based on global properties, such as channel height
H and centerline velocity 𝑈௖, Re = 𝑈௖H/ν. This bulk flow parameter has little significance
to the local stresses; thus, is not a suitable input parameter for machine learning. Rather,
Reynolds number based on wall distance 𝑅𝑒ௗ = ௎೎ௗఔ , or based on local velocity and wall
distance 𝑅𝑒௟ = ௨ௗఔ seem to be better choice, as they also incorporate local parameters.
Note that for channel flow datasets, both the global parameters 𝜈 and 𝑢ఛ are related via
near-wall velocity gradient, and do not provide any additional information about the
flow. Thus, when training a model just using the channel flow datasets 𝑢ఛ is not required.
However, when the datasets include both flat-plate boundary layer and channel flow da-
tasets, then 𝑢ఛ provides additional identifying information (as discussed below).

A preliminary apriori analysis is performed using just the channel flow DNS datasets
to evaluate which Re formulation (𝑅𝑒ௗ or 𝑅𝑒௟) is better, and also to investigated how in-
clusion of higher-order terms of rate-of-strain affects the model. For this purpose, the
DDML model was trained using the following four sets of input parameters:

𝜏௨௩ =
⎩⎪⎪
⎨⎪
⎪⎧ 𝑓 ቄ𝑅𝑒ௗ = ௎೎ௗఔ , డ௨డ௬ቅ 𝑓 ቄ𝑅𝑒௟ = ௨ௗఔ , డ௨డ௬ቅ 𝑓 ൜𝑅𝑒௟ = ௨ௗఔ , డ௨డ௬ , ቀడ௨డ௬ቁଶൠ 𝑓 ቄ𝑅𝑒௟ = ௨ௗఔ , డ௨డ௬ቅ , ቀడ௨డ௬ቁଶ weighted

 (20)

As shown in Figure 3a, the stresses obtained using input feature set ቀ𝑅𝑒ௗ, డ௨డ௬ቁ is

around 8% under predictive whereas those using obtained using ቀ𝑅𝑒௟, డ௨డ௬ቁ compare very
well and is only 2% over predictive. An accurate prediction by the latter is not surprising,
as local Reynolds number 𝑅𝑒௟ = 𝑢ା𝑦ା is a physical quantity that separates the flow re-
gime, i.e., 𝑅𝑒௟ < 25 is sub-layer; 25 ≤ 𝑅𝑒௟ < 418 is buffer-layer; and 𝑅𝑒௟ ≥ 418 is log-
layer. The advantage of 𝑅𝑒௟ over 𝑅𝑒ௗ is also evident in Figure 3b,c, where the former

shows a better collapse in dataset in the buffer layer. Further, including ቀడ௨డ௬ቁଶ
as an input

feature deteriorates the model performance and the stresses are overpredicted by 9%.

However, using ቀడ௨డ௬ቁଶ
 as a weighting parameter improves the results and the L2 norm

Figure 2. Correlation of shear stress (τuv) with mean velocity gradient for channel and flat-plate
boundary later DNS/LES dataset. The dataset shows significant overlap for du/dy between 5 and 20
(within the box region).

The flow viscosity ν is one of the fundamental bulk fluid property and dictates one of
the key non-dimensional parameters for the boundary layer flow, which is the Reynolds
number (Re). Re is usually defined based on global properties, such as channel height H
and centerline velocity Uc, Re = UcH/ν. This bulk flow parameter has little significance
to the local stresses; thus, is not a suitable input parameter for machine learning. Rather,
Reynolds number based on wall distance Red = Ucd

ν , or based on local velocity and wall
distance Rel =

ud
ν seem to be better choice, as they also incorporate local parameters. Note

that for channel flow datasets, both the global parameters ν and uτ are related via near-wall
velocity gradient, and do not provide any additional information about the flow. Thus,
when training a model just using the channel flow datasets uτ is not required. However,
when the datasets include both flat-plate boundary layer and channel flow datasets, then
uτ provides additional identifying information (as discussed below).

A preliminary apriori analysis is performed using just the channel flow DNS datasets
to evaluate which Re formulation (Red or Rel) is better, and also to investigated how
inclusion of higher-order terms of rate-of-strain affects the model. For this purpose, the
DDML model was trained using the following four sets of input parameters:

τuv =



f
{

Red = Ucd
ν , ∂u

∂y

}
f
{

Rel =
ud
ν , ∂u

∂y

}
f
{

Rel =
ud
ν , ∂u

∂y ,
(

∂u
∂y

)2
}

f
{

Rel =
ud
ν , ∂u

∂y

}
,
(

∂u
∂y

)2
weighted

(20)

As shown in Figure 3a, the stresses obtained using input feature set
(

Red, ∂u
∂y

)
is

around 8% under predictive whereas those using obtained using
(

Rel , ∂u
∂y

)
compare very

well and is only 2% over predictive. An accurate prediction by the latter is not surprising,
as local Reynolds number Rel = u+y+ is a physical quantity that separates the flow regime,
i.e., Rel < 25 is sub-layer; 25 ≤ Rel < 418 is buffer-layer; and Rel ≥ 418 is log-layer.
The advantage of Rel over Red is also evident in Figure 3b,c, where the former shows a

better collapse in dataset in the buffer layer. Further, including
(

∂u
∂y

)2
as an input feature

Energies 2021, 14, 1465 12 of 34

deteriorates the model performance and the stresses are overpredicted by 9%. However,

using
(

∂u
∂y

)2
as a weighting parameter improves the results and the L2 norm error for this

case is estimated to be 2.9 × 10−4, slightly better than the L2 norm error of 5.2 × 10−4

obtained using the feature set
(

Rel , ∂u
∂y

)
.

Energies 2021, 14, x FOR PEER REVIEW 12 of 35

error for this case is estimated to be 2.9 × 10−4, slightly better than the L2 norm error of 5.2
× 10−4 obtained using the feature set ቀ𝑅𝑒௟, డ௨డ௬ቁ.

(a)

(b) (c)

Figure 3. (a) Apriori predictions using data-driven machine learned (DDML) using different sets of input parameters in
Equation (20) for channel flow datasets. Variation of shear stress (𝜏௨௩) for channel flow dataset with respect to (b) 𝑅𝑒ௗ
and (c) 𝑅𝑒௟. The latter shows better collapse in the DNS dataset in the buffer-layer region (within the box region).

When the entire channel and flat-plate database is considered, we need an additional
parameter to demarcate between the inner and outer boundary layer. The inner and outer
layer demarcation can be achieved by using a combination of 𝑦ା = ௗ௨ഓఔ and డ௨డ௬, where

large 𝑦ା and డ௨డ௬ ⟶ 0 corresponds to the start of the outer layer. Thus, a model was
trained using the following set of input parameters: 𝜏௨௩ = 𝑓 ቄ𝑅𝑒௟, 𝑦ା, డ௨డ௬ቅ (21)

In addition, different weighting functions, ML-1 through ML-4 as shown below, were
used during training of the DDML response surface as the data show significant overlap
(as pointed out in Figure 2) at the intersection of the inner and outer layers:
ML-1: No weighting
ML-2: Weighted using curvature of the profiles
ML-3: 𝜏௨௩ levels were expanded to separate out the curves
ML-4: Not-weighted for 𝜏௨௩ ≤ 10ିଷ but weighted for 𝜏௨௩ > 10ିଷ

Note that ቀడ௨డ௬ቁଶ weighting was also considered. But, similar to the earlier test this
weighting did not show significant improvement over ML-1. This is expected as neural
networks should be able to learn the dependency on higher-order forms of the input pa-
rameters all by itself. Thus, such weighting is not considered further.

Figure 3. (a) Apriori predictions using data-driven machine learned (DDML) using different sets of input parameters in
Equation (20) for channel flow datasets. Variation of shear stress (τuv) for channel flow dataset with respect to (b) Red and
(c) Rel . The latter shows better collapse in the DNS dataset in the buffer-layer region (within the box region).

When the entire channel and flat-plate database is considered, we need an additional
parameter to demarcate between the inner and outer boundary layer. The inner and outer
layer demarcation can be achieved by using a combination of y+ = duτ

ν and ∂u
∂y , where

large y+ and ∂u
∂y → 0 corresponds to the start of the outer layer. Thus, a model was trained

using the following set of input parameters:

τuv = f
{

Rel , y+,
∂u
∂y

}
(21)

In addition, different weighting functions, ML-1 through ML-4 as shown below, were
used during training of the DDML response surface as the data show significant overlap
(as pointed out in Figure 2) at the intersection of the inner and outer layers:

ML-1: No weighting
ML-2: Weighted using curvature of the profiles
ML-3: τuv levels were expanded to separate out the curves
ML-4: Not-weighted for τuv ≤ 10−3 but weighted for τuv > 10−3

Energies 2021, 14, 1465 13 of 34

Note that
(

∂u
∂y

)2
weighting was also considered. But, similar to the earlier test this

weighting did not show significant improvement over ML-1. This is expected as neural
networks should be able to learn the dependency on higher-order forms of the input
parameters all by itself. Thus, such weighting is not considered further.

An apriori analysis for a range of channel flow conditions in Figure 4 shows that the
DDML response surface obtained without any weighting (ML-1) is consistently under
predictive. Those obtained using profile curvature as a weighting function (ML-2) results
in a waviness in the profile and is not recommended. DDML using τuv weighting improves
the results, and ML-4 provides somewhat better results than ML-3. The model shows
some limitations for the prediction of peak stress for Reτ = 1000, which needs to be further
investigated. The PIML model shows the best predictions among all the models for the
entire range of Reτ , and compares very well with DNS, including those for Reτ = 1000. In
addition, PIML removes the trial-and-error approach to train the model.

Energies 2021, 14, x FOR PEER REVIEW 13 of 35

An apriori analysis for a range of channel flow conditions in Figure 4 shows that the
DDML response surface obtained without any weighting (ML-1) is consistently under
predictive. Those obtained using profile curvature as a weighting function (ML-2) results
in a waviness in the profile and is not recommended. DDML using 𝜏௨௩ weighting im-
proves the results, and ML-4 provides somewhat better results than ML-3. The model
shows some limitations for the prediction of peak stress for Reτ = 1000, which needs to be
further investigated. The PIML model shows the best predictions among all the models
for the entire range of Reτ, and compares very well with DNS, including those for Reτ =
1000. In addition, PIML removes the trial-and-error approach to train the model.

(a) (b)

(c) (d)

Figure 4. Apriori DDML and physics-informed machine learning (PIML) stress predictions trained using channel and flat-
plate datasets for channel flows at Reτ = (a) 395, (b) 590, (c) 1000, and (d) 2000 using different weighting functions and
PIML are compared with DNS results.

3.2. Oscillating Plane Channel Flow
Oscillating channel flow is a canonical test case used in the literature to understand

turbulence flow physics and validate the predictive capability of LES models. Scotti and
Piomelli [53] performed DNS and LES of oscillating channel flow to study the effect of
pressure gradients on the modulation of the viscous sublayer, turbulent stresses and the
topology of the coherent structures. In this test case, an unsteady pressure pulse (body
force term) is applied along the streamwise direction, which introduces periodic unstead-
iness in the flow.

3.2.1. Governing Equation
The governing equation for the mean flow for this case can be obtained similar to the

inner boundary layer equations as discussed in Appendix B as below: డ௨డ௧ = 𝐹(𝑡) + 𝜈 డమ௨డ௬మ + డఛೠೡడ௬ (22)

0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

0 100 200 300 400

τ u
v

y+

Reτ = 395

DNS ML-1
ML-2 ML-3
ML-4 PIML 0.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

0 100 200 300 400 500 600

τ u
v

y+

Reτ = 590

DNS ML-1
ML-2 ML-3
ML-4 PIML

0

0.0005

0.001

0.0015

0.002

0 200 400 600 800 1000

τ u
v

y+

Reτ = 1000

DNS ML-1

ML-2 ML-3

ML-4 PIML
0

0.0004

0.0008

0.0012

0.0016

0 500 1000 1500 2000

τ u
v

y+

Reτ = 2000

DNS ML-1

ML-2 ML-3

ML-4 PIML

Figure 4. Apriori DDML and physics-informed machine learning (PIML) stress predictions trained using channel and
flat-plate datasets for channel flows at Reτ = (a) 395, (b) 590, (c) 1000, and (d) 2000 using different weighting functions and
PIML are compared with DNS results.

3.2. Oscillating Plane Channel Flow

Oscillating channel flow is a canonical test case used in the literature to understand
turbulence flow physics and validate the predictive capability of LES models. Scotti and
Piomelli [53] performed DNS and LES of oscillating channel flow to study the effect of
pressure gradients on the modulation of the viscous sublayer, turbulent stresses and the
topology of the coherent structures. In this test case, an unsteady pressure pulse (body force
term) is applied along the streamwise direction, which introduces periodic unsteadiness in
the flow.

Energies 2021, 14, 1465 14 of 34

3.2.1. Governing Equation

The governing equation for the mean flow for this case can be obtained similar to the
inner boundary layer equations as discussed in Appendix B as below:

∂u
∂t

= F(t) + ν
∂2u
∂y2 +

∂τuv

∂y
(22)

where
F(t) =

dP0

dx
[1 + α0 cos(ωt)] (23)

is the prescribed pressure pulse. The above equation is derived under the assumption that
mean flow is 2D in nature and wall-normal gradient is more dominant than the streamwise
gradients. Both of these assumptions are valid for this case. Because DNS is performed
using periodic domain, the mean flow variation along the streamwise direction is assumed
negligible, and the velocity changes occur in time. Thus, this test case represents how
boundary layer flow, at a fixed location on a flat plate, varies in time as the free-stream
pressure gradient in varied. Further, note that the dP0

dx term corresponds to the F(τw)
forcing required to obtain steady state solution for flow between two flat-plates, which
is the baseline flow. The term dP0

dx α0 cos(ωt) accounts for the variation of the free-stream
pressure gradients. Similar to the steady inner-boundary layer case, the closure of the
above equation requires modeling of shear stress τuv. The physics-based one-equation
URANS model described in Section 3.1.1 is valid for this case as well.

3.2.2. DNS Database

The DNS for this case is performed using an in-house parallel pseudo-spectral solver,
which discretizes the incompressible Navier–Stokes equations using Fast Fourier Transform
(FFT) along the homogenous streamwise and spanwise directions and Chebyshev polyno-
mials in the wall-normal direction. The solver is parallelized using a hybrid OpenMP/MPI
approach, scales up to 16K processors on up to 1 billion grid points, and has been exten-
sively validated for LES and DNS studies [54,55].

DNS were performed for three different (high, medium, and low) streamwise pres-
sure pulses, as used in [53]. The simulations were performed using as domain size of
3π × 2 × π along the streamwise, wall normal and spanwise directions, respectively, on a
grid consisting of 192 × 129 × 192 points. The domain size is consistent with those used
in [52], but the grids are finer. The details of the simulation set-up are provided in Table A4.
The simulations were performed using periodic boundary condition along streamwise and
spanwise directions, and no-slip wall at y = ±1.

The DNS results were validated in a previous study [56] for the prediction of the alter-
nating (AC) and mean (DC) components of the mean flow against results presented in [53].
The AC components were obtained by decomposing normalized-planar-averaged velocity
profile at every one-eight cycle using Fast Fourier Transform at each wall normal location.
The DNS results were found to be in good agreement with the available benchmark results.
The low frequency pulse resulted in re-laminarization and transition behavior, which is
a challenging case for RANS predictions. The high frequency case was primarily driven
by the pressure gradient, and turbulence levels were small. The medium frequency case
provides a compromise between the two extremes and is used in this study.

The variation of the wall shear stress and streamwise and wall-normal velocities
for the medium frequency case is shown in Figure 5. The positive pressure gradient
generates adverse flow conditions and decelerates the flow (and decreases wall shear
stress magnitude) and the negative pressure gradient generates favorable flow conditions
which accelerates the flow (and increases wall shear stress). The peak wall shear (and
velocity) is observed around 3/4th cycle (t = 0.75). The wall normal velocity shows that the
ejection events are subdued during the first part of the oscillation cycle (descending leg),
i.e., at t = 0.25 the ejection events are limited within the quarter channel and diminished

Energies 2021, 14, 1465 15 of 34

at the mid-cycle (t = 0.5). The ejection events are enhanced during the ascending leg of
the pressure pulse. The ejection events are very prominent for t = 0. Thus, shear stress is
expected to be generated during the last part of the oscillation cycle.

Energies 2021, 14, x FOR PEER REVIEW 15 of 35

(a)

Time Streamwise Velocity Wall-normal velocity

t = 0

t = 0.25

t = 0.5

t = 0.75

(b)

Figure 5. (a) Pressure pulse, ௗ௉బௗ௫ 𝛼 cos(𝜔𝑡) (broken black line), and variation of wall shear stress (solid red line: top wall,
solid black line: bottom wall) over five pressure oscillation cycles, and (b) instantaneous streamwise and wall-normal
velocity profiles at quarter cycle obtained from DNS for the medium frequency case. As marked in subfigure (a), t = 0 and

Figure 5. (a) Pressure pulse, dP0
dx α cos(ωt) (broken black line), and variation of wall shear stress (solid red line: top wall,

solid black line: bottom wall) over five pressure oscillation cycles, and (b) instantaneous streamwise and wall-normal
velocity profiles at quarter cycle obtained from DNS for the medium frequency case. As marked in subfigure (a), t = 0 and
0.5 corresponds to the peak and trough of the pressure gradient pulse, respectively. Results are shown for the medium
frequency case.

Energies 2021, 14, 1465 16 of 34

3.2.3. ML Model Training Using Apriori Tests

For training of the ML turbulence model, the 3D DNS dataset was processed to
obtain an unsteady 1D dataset. Due to the use of a periodic boundary condition along
the streamwise direction, the simulation domain is expected to move in time [57], and as
demonstrated in Figure 6a. Further, the results at any time step represents multiple (every
grid point in the streamwise-spanwise plane or 192× 192) realizations of the turbulent flow
field expected at that oscillation phase. The solutions were averaged over these realizations
to obtain mean 1D flow along the wall normal (y) direction. The 1D solutions every 100th
time step or 1/400th pressure oscillation cycle were used to generate a 2D y-time map of the
mean flow as shown in Figure 6b. Solutions were collected over three pressure oscillation
cycles resulting in 129 × 1201 (or around 155,000) data points.

Energies 2021, 14, x FOR PEER REVIEW 16 of 35

0.5 corresponds to the peak and trough of the pressure gradient pulse, respectively. Results are shown for the medium
frequency case.

3.2.3. ML Model Training Using Apriori Tests
For training of the ML turbulence model, the 3D DNS dataset was processed to obtain

an unsteady 1D dataset. Due to the use of a periodic boundary condition along the stream-
wise direction, the simulation domain is expected to move in time [57], and as demon-
strated in Figure 6a. Further, the results at any time step represents multiple (every grid
point in the streamwise-spanwise plane or 192 × 192) realizations of the turbulent flow
field expected at that oscillation phase. The solutions were averaged over these realiza-
tions to obtain mean 1D flow along the wall normal (y) direction. The 1D solutions every
100th time step or 1/400th pressure oscillation cycle were used to generate a 2D y-time map
of the mean flow as shown in Figure 6b. Solutions were collected over three pressure os-
cillation cycles resulting in 129 × 1201 (or around 155,000) data points.

(a)

(b)

Figure 6. (a) Schematic diagram demonstrating the post-processing of the 3D DNS data to obtain 1D unsteady mean flow.
(b) Variation of the mean velocity over three oscillation period.

For this case, k is also added as an unknown turbulence quantity, and the machine
learned model seeks to obtain regression map with two outputs (𝜏௨௩, 𝑘). Based on the ex-
perience of the boundary layer case, the input flow parameters for this case are identified
to be the time varying and steady mean flow quantities as below:

Figure 6. (a) Schematic diagram demonstrating the post-processing of the 3D DNS data to obtain 1D unsteady mean flow.
(b) Variation of the mean velocity over three oscillation period.

For this case, k is also added as an unknown turbulence quantity, and the machine
learned model seeks to obtain regression map with two outputs (τuv, k). Based on the

Energies 2021, 14, 1465 17 of 34

experience of the boundary layer case, the input flow parameters for this case are identified
to be the time varying and steady mean flow quantities as below:

(τuv, k)︸ ︷︷ ︸
Output

= f
(

Rel =
ud
ν

; F(t); y+(t) =
duτ(t)

ν
; y+0 =

duτ0

ν
;

∂U
∂y

)
︸ ︷︷ ︸

Inputs

(24)

uτ(t) =

√
|τw(t)|

ρ
(25)

where uτ(t) is the local friction velocity and uτ0 is the baseline wall friction corresponding
to dP0

dx .
Only the DDML model is trained for this case, as temporal derivatives could not be

computed during training. The model was trained using a three-layer-deep neural network
with 512 neurons in each hidden layer with ReLU activation functions. The final layer was
a linear fully connected layer. The model was trained for 200 epochs using an ADAM
optimizer with a batch size of 128 and a learning rate of 0.01. During the training, the L2
norm error dropped by an order of magnitude in the first 25 epochs, and the error drop
stalled thereafter.

The oscillating channel flow involves a wide range of turbulence regimes unlike the
boundary layer case which only has sub-, buffer- and log-layer regimes. As shown in
Figure 7 in this case, the turbulence is most prominent toward the end of the pressure-
oscillation cycle, and varies significantly along the wall-normal direction. Thus, training a
ML model using the entire dataset may be skewed toward the more prominent features.
For example, for the boundary layer case the models perform much better in log-layer than
in the buffer-layer, as 91% of the datasets were in log-layer region. The Birch clustering
algorithm sklearn was used to cluster the datapoints into unique flow regimes. The clusters
were automatically determined using a non-dimensional threshold of 0.3, which resulted
in 412 clusters with (min, max, mean, std) of points to be (1, 10,700, 376, 937), as shown in
Figure 7. Note that the clustering preserves the periodicity of data.

Energies 2021, 14, x FOR PEER REVIEW 17 of 35

(𝜏௨௩, 𝑘)ᇣᇧᇤᇧᇥை௨௧௣௨௧ = 𝑓 ቀ𝑅𝑒௟ = ௨ௗఔ ; 𝐹(𝑡); 𝑦ା(𝑡) = ௗ௨ഓ(௧)ఔ ; 𝑦଴ା = ௗ௨ഓబఔ ; డ௎డ௬ቁᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥூ௡௣௨௧௦ (24)

𝑢ఛ(𝑡) = ට|ఛೢ(௧)|ఘ (25)

where 𝑢ఛ(𝑡) is the local friction velocity and 𝑢ఛ଴ is the baseline wall friction correspond-
ing to ௗ௉బௗ௫ .

Only the DDML model is trained for this case, as temporal derivatives could not be
computed during training. The model was trained using a three-layer-deep neural net-
work with 512 neurons in each hidden layer with ReLU activation functions. The final
layer was a linear fully connected layer. The model was trained for 200 epochs using an
ADAM optimizer with a batch size of 128 and a learning rate of 0.01. During the training,
the L2 norm error dropped by an order of magnitude in the first 25 epochs, and the error
drop stalled thereafter.

The oscillating channel flow involves a wide range of turbulence regimes unlike the
boundary layer case which only has sub-, buffer- and log-layer regimes. As shown in Fig-
ure 7 in this case, the turbulence is most prominent toward the end of the pressure-oscil-
lation cycle, and varies significantly along the wall-normal direction. Thus, training a ML
model using the entire dataset may be skewed toward the more prominent features. For
example, for the boundary layer case the models perform much better in log-layer than in
the buffer-layer, as 91% of the datasets were in log-layer region. The Birch clustering algo-
rithm sklearn was used to cluster the datapoints into unique flow regimes. The clusters
were automatically determined using a non-dimensional threshold of 0.3, which resulted
in 412 clusters with (min, max, mean, std) of points to be (1, 10,700, 376, 937), as shown in
Figure 7. Note that the clustering preserves the periodicity of data.

Figure 7. Clustering of the shear stress (𝜏௨௩) DNS data using sklearn. The different colored regions represent unique tur-
bulence feature.

Several ML models were trained by randomly sampling various percentage of points
within each cluster from 0.25% to 100% of the total dataset. As shown in Figure 8b–d,
training using just one datapoint per cluster (0.25% of total) results in errors of 35%. The
error level reduced to 28% when four points are used per cluster (or 1% of total). The error
levels were around 12% when 10% of the datasets (either 10 points or 10% of each cluster)
was used. A similar error levels were obtained when model was trained using all the data-
points. In addition, training using 10% of the data points required around eight times

Figure 7. Clustering of the shear stress (τuv) DNS data using sklearn. The different colored regions represent unique
turbulence feature.

Several ML models were trained by randomly sampling various percentage of points
within each cluster from 0.25% to 100% of the total dataset. As shown in Figure 8b–d,
training using just one datapoint per cluster (0.25% of total) results in errors of 35%. The
error level reduced to 28% when four points are used per cluster (or 1% of total). The error

Energies 2021, 14, 1465 18 of 34

levels were around 12% when 10% of the datasets (either 10 points or 10% of each cluster)
was used. A similar error levels were obtained when model was trained using all the
datapoints. In addition, training using 10% of the data points required around eight times
smaller computational cost compared to those using all of the datapoints. This indicates
that an intelligently sampled dataset can generate reliable machine learned models at a
lower computational cost.

Energies 2021, 14, x FOR PEER REVIEW 18 of 35

smaller computational cost compared to those using all of the datapoints. This indicates
that an intelligently sampled dataset can generate reliable machine learned models at a
lower computational cost.

(a)

(b) (c)

(d) (e)

Figure 8. (a) 𝜏௨௩ magnitude predicted by DNS. 𝜏௨௩ regression map (top) and error in the ML model (bottom) trained
using (b) 0.25%, (c) 1%, (d) 10% and (e) 100% of datapoints.

4. Aposteriori Tests of the ML Model
For aposteriori tests, the machine learned turbulent shear stress (and TKE) regression

map obtained in the pre-processing step above was coupled with the parallel pseudo-
spectral solver used for DNS of oscillating channel flow (discussed in Section 3.2.2). Figure
9 provides a schematic diagram demonstrating the coupling of machine learned turbu-
lence model with the CFD solver. As shown, the stress (or TKE) regression map is queried
every time step using the flow predictions at that iteration level, and the stresses are used
to advance the solution to the next time step. Both the test cases considered in this study
are 1D in nature, i.e., mean streamwise velocity varies only along the wall-normal direc-
tion; thus, the simulations were performed using only two points in the streamwise and
spanwise direction.

Figure 8. (a) τuv magnitude predicted by DNS. τuv regression map (top) and error in the ML model (bottom) trained using
(b) 0.25%, (c) 1%, (d) 10% and (e) 100% of datapoints.

4. Aposteriori Tests of the ML Model

For aposteriori tests, the machine learned turbulent shear stress (and TKE) regression
map obtained in the pre-processing step above was coupled with the parallel pseudo-
spectral solver used for DNS of oscillating channel flow (discussed in Section 3.2.2). Figure 9
provides a schematic diagram demonstrating the coupling of machine learned turbulence
model with the CFD solver. As shown, the stress (or TKE) regression map is queried
every time step using the flow predictions at that iteration level, and the stresses are
used to advance the solution to the next time step. Both the test cases considered in this
study are 1D in nature, i.e., mean streamwise velocity varies only along the wall-normal
direction; thus, the simulations were performed using only two points in the streamwise
and spanwise direction.

Energies 2021, 14, 1465 19 of 34
Energies 2021, 14, x FOR PEER REVIEW 19 of 35

Figure 9. Schematic diagram demonstrating coupling between machine learning turbulence model with a CFD solver.

4.1. Steady Plane Channel Flow
The ML trained turbulent shear stress response surface (generated in previous sec-

tion) was used in the solution of the boundary layer equation (Equation (11)). The equa-
tions were solved using a domain y = [–1,1] with no-slip boundary condition (u = 0) at y =
± 1. The simulations were performed using 49 (coarse), 65 (medium), and 97 (fine) grid
points. Two sets of simulations were performed for this case. For the first set, the simula-
tions were started from a converged channel flow RANS solution obtained using one-
equation model, and the second set of simulations were started from an ill-conditioned
velocity field. The DDML and PIML model simulations were performed using input fea-
ture set ቀ𝑅𝑒௟, 𝑦ା, డ௨డ௬ቁ (as shown in Equation (21)). Further for the DDML simulations ML-
3 and ML-4 weighting which provided the best predictions for apriori tests were consid-
ered.

Figure 10a shows solution convergence on all the three grids obtained using DDML
when solution is started from RANS solution. The convergence time history shows a kink
in residual early-on in the simulation, but eventually solution shows steady convergence.
The convergence is faster for the fine grid and slowest for the coarse grid. On the coarse
grid the residual converges to around 2 × 10−6. Whereas for both medium and fine grid
simulations, the residual keep dropping even below 1.2 × 10−6 after 30 thousand (K)
pseudo timestep iterations. The PIML results in Figure 10b shows a similar convergence.

(a) (b)

Figure 10. (a) Convergence of DDML (input feature set ቀ𝑅𝑒௟, 𝑦ା, డ௨డ௬ቁ and ML-3 weighting) turbulence model simulation
on coarse, medium, and fine grids for simulations started from converged one-equation RANS results. (b) Convergence
of PIML turbulence model simulation on coarse grid for simulation started from ill-conditioned initial condition 𝑢 =𝑈௖(1 − 𝑑଼). The abscissa title “iterations” refers to pseudo timestep level during the solution of the governing equations.

Figure 9. Schematic diagram demonstrating coupling between machine learning turbulence model
with a CFD solver.

4.1. Steady Plane Channel Flow

The ML trained turbulent shear stress response surface (generated in previous section)
was used in the solution of the boundary layer equation (Equation (11)). The equations
were solved using a domain y = [−1,1] with no-slip boundary condition (u = 0) at y = ±1.
The simulations were performed using 49 (coarse), 65 (medium), and 97 (fine) grid points.
Two sets of simulations were performed for this case. For the first set, the simulations were
started from a converged channel flow RANS solution obtained using one-equation model,
and the second set of simulations were started from an ill-conditioned velocity field. The
DDML and PIML model simulations were performed using input feature set

(
Rel , y+, ∂u

∂y

)
(as shown in Equation (21)). Further for the DDML simulations ML-3 and ML-4 weighting
which provided the best predictions for apriori tests were considered.

Figure 10a shows solution convergence on all the three grids obtained using DDML
when solution is started from RANS solution. The convergence time history shows a kink
in residual early-on in the simulation, but eventually solution shows steady convergence.
The convergence is faster for the fine grid and slowest for the coarse grid. On the coarse
grid the residual converges to around 2 × 10−6. Whereas for both medium and fine grid
simulations, the residual keep dropping even below 1.2 × 10−6 after 30 thousand (K)
pseudo timestep iterations. The PIML results in Figure 10b shows a similar convergence.

Energies 2021, 14, x FOR PEER REVIEW 19 of 35

Figure 9. Schematic diagram demonstrating coupling between machine learning turbulence model with a CFD solver.

4.1. Steady Plane Channel Flow
The ML trained turbulent shear stress response surface (generated in previous sec-

tion) was used in the solution of the boundary layer equation (Equation (11)). The equa-
tions were solved using a domain y = [–1,1] with no-slip boundary condition (u = 0) at y =
± 1. The simulations were performed using 49 (coarse), 65 (medium), and 97 (fine) grid
points. Two sets of simulations were performed for this case. For the first set, the simula-
tions were started from a converged channel flow RANS solution obtained using one-
equation model, and the second set of simulations were started from an ill-conditioned
velocity field. The DDML and PIML model simulations were performed using input fea-
ture set ቀ𝑅𝑒௟, 𝑦ା, డ௨డ௬ቁ (as shown in Equation (21)). Further for the DDML simulations ML-
3 and ML-4 weighting which provided the best predictions for apriori tests were consid-
ered.

Figure 10a shows solution convergence on all the three grids obtained using DDML
when solution is started from RANS solution. The convergence time history shows a kink
in residual early-on in the simulation, but eventually solution shows steady convergence.
The convergence is faster for the fine grid and slowest for the coarse grid. On the coarse
grid the residual converges to around 2 × 10−6. Whereas for both medium and fine grid
simulations, the residual keep dropping even below 1.2 × 10−6 after 30 thousand (K)
pseudo timestep iterations. The PIML results in Figure 10b shows a similar convergence.

(a) (b)

Figure 10. (a) Convergence of DDML (input feature set ቀ𝑅𝑒௟, 𝑦ା, డ௨డ௬ቁ and ML-3 weighting) turbulence model simulation
on coarse, medium, and fine grids for simulations started from converged one-equation RANS results. (b) Convergence
of PIML turbulence model simulation on coarse grid for simulation started from ill-conditioned initial condition 𝑢 =𝑈௖(1 − 𝑑଼). The abscissa title “iterations” refers to pseudo timestep level during the solution of the governing equations.

Figure 10. (a) Convergence of DDML (input feature set
(

Rel , y+, ∂u
∂y

)
and ML-3 weighting) turbulence model simulation on

coarse, medium, and fine grids for simulations started from converged one-equation RANS results. (b) Convergence of PIML
turbulence model simulation on coarse grid for simulation started from ill-conditioned initial condition u = Uc

(
1− d8).

The abscissa title “iterations” refers to pseudo timestep level during the solution of the governing equations.

Energies 2021, 14, 1465 20 of 34

Figure 11 compares the results obtained using DDML and PIML (after 30K pseudo
timesteps) with DNS and RANS results. Among the DDML models, the model obtained
using ML-4 weighting performed better than those obtained using ML-3. This is in contrast
to the apriori tests, where ML-3 performed better than ML-4. Note that the one-equation
model underpredicts the velocity at the center compared to the DNS, and both the DDML
and PIML models resolve the issue. The DDML model predictions improve with grid
refinement, whereas the largest improvement is obtained in between coarse and medium
grids. However, the results show oscillation near the peak, which is clearly evident in the
turbulent and shear stress predictions and more prominent for the fine grid predictions.
The oscillations suggest that the “query output” jumps between the database curves. For
the boundary layer equations, one of the physical constraints is the shear stress must
satisfy C1 continuity, i.e., both stress and its derivative are continuous in space (i.e., along y
direction). Node/point-based queries are definitely not satisfying this constraint, which is
probably the cause of the oscillations.

Energies 2021, 14, x FOR PEER REVIEW 20 of 35

Figure 11 compares the results obtained using DDML and PIML (after 30K pseudo
timesteps) with DNS and RANS results. Among the DDML models, the model obtained
using ML-4 weighting performed better than those obtained using ML-3. This is in con-
trast to the apriori tests, where ML-3 performed better than ML-4. Note that the one-equa-
tion model underpredicts the velocity at the center compared to the DNS, and both the
DDML and PIML models resolve the issue. The DDML model predictions improve with
grid refinement, whereas the largest improvement is obtained in between coarse and me-
dium grids. However, the results show oscillation near the peak, which is clearly evident
in the turbulent and shear stress predictions and more prominent for the fine grid predic-
tions. The oscillations suggest that the “query output” jumps between the database
curves. For the boundary layer equations, one of the physical constraints is the shear stress
must satisfy C1 continuity, i.e., both stress and its derivative are continuous in space (i.e.,
along y direction). Node/point-based queries are definitely not satisfying this constraint,
which is probably the cause of the oscillations.

DDML PIML

Figure 11. Predictions of mean velocity (top row), turbulent (middle row) and viscous (bottom row) shear stresses for Reτ
= 590 obtained using DDML (left column) and PIML (right column) using input feature set ቀ𝑅𝑒௟, 𝑦ା, డ௎డ௬ቁ. The DDML used

0

5

10

15

20

25

0.5 5 50 500

u+

y+

DNS
1-Eq. Model
Coarse
Coarse (Avg.)
Medium (Avg)
Fine
Fine (Avg)

0

5

10

15

20

25

0.5 5 50 500

u+

y+

DNS
Coarse
Coarse (Avg)
Fine
Fine (Avg)

0

0.2

0.4

0.6

0.8

1

0 100 200 300

τ u
v+

y+

DNS
1-Eq. Model
Coarse
Coarse (Avg.)
Medium (Avg)
Fine
Fine (Avg)

0

0.2

0.4

0.6

0.8

1

0 100 200 300

τ u
v+

y+

DNS
Coarse
Coarse (Avg)
Fine
Fine (Avg)

0

0.2

0.4

0.6

0.8

1

0 50 100

Vi
sc

ou
s

Sh
ea

r S
tre

ss

y+

DNS
1-Eq. Model
Coarse
Coarse (Avg.)
Medium (Avg)
Fine
Fine (Avg)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Vi
sc

ou
s

Sh
ea

r S
tre

ss

y+

DNS

Coarse

Coarse (Avg)

Fine

Fine (Avg)

Figure 11. Predictions of mean velocity (top row), turbulent (middle row) and viscous (bottom row) shear stresses for

Reτ = 590 obtained using DDML (left column) and PIML (right column) using input feature set
(

Rel , y+, ∂U
∂y

)
. The DDML

used ML-3 weighting. Simulations were started from an initial velocity profile obtained from one-equation RANS model.
Results are compared with DNS and one-equation RANS (1-Equation Model) results.

Energies 2021, 14, 1465 21 of 34

To resolve the stress oscillation issue in the DDML model predictions, solution smooth-
ness was enforced by implementing region-based query, i.e., use averaged τuv output for
the input parameter sets at the node and its two neighboring nodes, i.e.,

τuv|j = 1
8

[
2τuv

(
Rel,j, ∂u

∂y

∣∣∣
j
, y+j

)
+τuv

(
Rel,j−1, ∂u

∂y

∣∣∣
j
, y+j

)
+τuv

(
Rel,j+1, ∂u

∂y

∣∣∣
j
, y+j

)
+τuv

(
Rel,j, ∂u

∂y

∣∣∣
j−1

, y+j

)
+

τuv

(
Rel,j, ∂u

∂y

∣∣∣
j+1

, y+j

)
+τuv

(
Rel,j−1, ∂u

∂y

∣∣∣
j−1

, y+j

)
+τuv

(
Rel,j+1; ∂u

∂y

∣∣∣
j+1

; y+j

)] (26)

As shown in Figure 11, the above averaging approach helps get rid of oscillations, and
the results improve with grid refinement consistent with grid convergence.

The PIML model predictions show only marginal improvement with grid refinement,
and the results do not show oscillations similar to the DDML model. Further, when
averaging was applied it significantly deteriorated the performance of the model. In
general, the PIML model performs better than the DDML especially in the lower log-layer
region, i.e., y+ ~ 30 to 40.

In the next test set, the simulations were started from ill-conditioned initial condition
profile:

u = Uc

(
1− d8

)
(27)

This profile is much steeper than that of the turbulent boundary layer, as shown in
Figure 12 (It = 0 plot), and the associated set of input features are not expected to be present
in the DNS/LES database. Thus, the model operates in extrapolation mode. As shown in
Figure 12a, the DDML model predictions converge to the correct sub-layer and log-layer
profiles, but shows significant differences in the buffer- and lower log-layer (20 ≤ y+ < 80).
A good prediction of the sub- and log-layer is very encouraging, and suggests that the
extrapolation issue can be addressed by incorporating physics constraints during query
process, such that the query recognizes that the inputs are out of bound of the database and
provides a better educated guess of the output. As shown in Figure 12b, the PIML model
converges slowly (as shown in the convergence plot in Figure 10b) to the DNS profile. This
suggest that a well-trained machine learned model can converge to the correct solution.

Energies 2021, 14, x FOR PEER REVIEW 21 of 35

ML-3 weighting. Simulations were started from an initial velocity profile obtained from one-equation RANS model. Re-
sults are compared with DNS and one-equation RANS (1-Equation Model) results.

To resolve the stress oscillation issue in the DDML model predictions, solution
smoothness was enforced by implementing region-based query, i.e., use averaged 𝜏௨௩ output for the input parameter sets at the node and its two neighboring nodes, i.e., 𝜏௨௩|௝ = ଵ଼ ቈ2𝜏௨௩ ቆ𝑅𝑒௟,௝, డ௨డ௬ቚ௝ , 𝑦௝ାቇ + 𝜏௨௩ ቆ𝑅𝑒௟,௝ିଵ, డ௨డ௬ቚ௝ , 𝑦௝ାቇ + 𝜏௨௩ ቆ𝑅𝑒௟,௝ାଵ, డ௨డ௬ቚ௝ , 𝑦௝ାቇ + 𝜏௨௩ ቆ𝑅𝑒௟,௝, డ௨డ௬ቚ௝ିଵ , 𝑦௝ାቇ +𝜏௨௩ ቆ𝑅𝑒௟,௝, డ௨డ௬ቚ௝ାଵ , 𝑦௝ାቇ + 𝜏௨௩ ቆ𝑅𝑒௟,௝ିଵ, డ௨డ௬ቚ௝ିଵ , 𝑦௝ାቇ + 𝜏௨௩ ቆ𝑅𝑒௟,௝ାଵ; డ௨డ௬ቚ௝ାଵ ; 𝑦௝ାቇ቉

(26)

As shown in Figure 11, the above averaging approach helps get rid of oscillations,
and the results improve with grid refinement consistent with grid convergence.

The PIML model predictions show only marginal improvement with grid refine-
ment, and the results do not show oscillations similar to the DDML model. Further, when
averaging was applied it significantly deteriorated the performance of the model. In gen-
eral, the PIML model performs better than the DDML especially in the lower log-layer
region, i.e., y+ ~ 30 to 40.

In the next test set, the simulations were started from ill-conditioned initial condition
profile: 𝑢 = 𝑈௖(1 − 𝑑଼) (27)

This profile is much steeper than that of the turbulent boundary layer, as shown in
Figure 12 (It = 0 plot), and the associated set of input features are not expected to be present
in the DNS/LES database. Thus, the model operates in extrapolation mode. As shown in
Figure 12a, the DDML model predictions converge to the correct sub-layer and log-layer
profiles, but shows significant differences in the buffer- and lower log-layer (20 ≤ y+ < 80).
A good prediction of the sub- and log-layer is very encouraging, and suggests that the
extrapolation issue can be addressed by incorporating physics constraints during query
process, such that the query recognizes that the inputs are out of bound of the database
and provides a better educated guess of the output. As shown in Figure 12b, the PIML
model converges slowly (as shown in the convergence plot in Figure 10b) to the DNS pro-
file. This suggest that a well-trained machine learned model can converge to the correct
solution.

(a)

0

5

10

15

20

25

0.5 5 50 500

u+

y+

DNS

It = 0

It = 30K

It = 70K

It = 100K

0

0.2

0.4

0.6

0.8

1

0 150 300 450 600

τ u
v+

y+

DNS

It = 30K

It = 70K

It = 100K

Figure 12. Cont.

Energies 2021, 14, 1465 22 of 34Energies 2021, 14, x FOR PEER REVIEW 22 of 35

(b)

Figure 12. Predictions of mean velocity (left panel) and turbulent shear stress (right column) for Reτ = 590 obtained using
(a) DDML and (b) PIML turbulence models. The simulations were started from ill-posed initial flow condition.

4.2. Oscillating Plane Channel Flow
Three sets of simulations were performed for this case using 65 grid points in the

wall-normal direction. The simulations were performed using the DDML model trained
using input feature set shown in Equation (24), and using 10% of the datasets (i.e., either
10 points or 10% of each cluster). For set #1, the DDML model was used in apriori mode,
i.e., simulations were performed using one-equation URANS model, and the local flow
predictions were used to query the regression map. For set #2, the DDML model was used
in aposteriori mode, where the simulations were started from fully converged channel
flow velocity profile corresponding to Reτ = 350 obtained using RANS. For set #3, both
URANS and DDML simulations were started from an ill-posed initial flow condition i.e., 𝑢௧ୀ଴ = 𝑈௖(1 − 𝑑଼).

The DDML model predictions from set #1 and #2 are compared with DNS and
URANS predictions in Figure 13. The URANS model performs quite well for the mean
flow, but predicts significantly diffused shear stress and the peak values are 9% under
predicted. The largest error is obtained for the turbulent kinetic energy for which the peak
values are underpredicted by 60%. The DDML model predictions (in apriori mode) show
significantly better shear stress predictions than the URANS model. The predictions have
errors on the order of 3–5% for the mean velocity and shear-stress, and peak TKE are
overpredicted by 15%. Since the DDML model uses the velocities and derivatives pre-
dicted by the URANS model, the improved prediction by the former can be attributed to
its ability to learn the non-linear correlation between the turbulent stresses and rate-of-
strain. The DDML model also works very well in the aposteriori mode, and both the mean
velocity, shear stress and k compare within 8% of the DNS. Note that the simulations used
a (wall-normal) grid and time step size two times smaller and 10 times larger, respectively,
compared to those of DNS, thus the predictions are considered reasonably accurate.

As shown in Figure 14, for the simulations started from ill-posed initial flow condi-
tions, the URANS solutions show large differences with the DNS during the early part of
the simulations, but the solution slowly recovers, and the solutions for the second and
third cycles are very similar to those for the earlier case. This is because the flow is pri-
marily driven by the pressure gradient, and the flow adapts to the pressure variations.
The DDML model adjusts to ill-posed initial flow condition much faster than the URANS
model, and results compare very well with the DNS, and the predictions errors are similar
to those of set #2.

0

5

10

15

20

25

0.5 5 50 500

u+

y+

DNS
It = 0
It = 50K
It = 100K
It = 200K
It = 300K
It = 350K

0

0.2

0.4

0.6

0.8

1

0 150 300 450 600

τ u
v+

y+

DNS

It = 50K

It = 100K

It = 200K

It = 300K

It = 350K

Figure 12. Predictions of mean velocity (left panel) and turbulent shear stress (right column) for Reτ = 590 obtained using
(a) DDML and (b) PIML turbulence models. The simulations were started from ill-posed initial flow condition.

4.2. Oscillating Plane Channel Flow

Three sets of simulations were performed for this case using 65 grid points in the
wall-normal direction. The simulations were performed using the DDML model trained
using input feature set shown in Equation (24), and using 10% of the datasets (i.e., either
10 points or 10% of each cluster). For set #1, the DDML model was used in apriori mode,
i.e., simulations were performed using one-equation URANS model, and the local flow
predictions were used to query the regression map. For set #2, the DDML model was used
in aposteriori mode, where the simulations were started from fully converged channel
flow velocity profile corresponding to Reτ = 350 obtained using RANS. For set #3, both
URANS and DDML simulations were started from an ill-posed initial flow condition i.e.,
ut=0 = Uc

(
1− d8).

The DDML model predictions from set #1 and #2 are compared with DNS and URANS
predictions in Figure 13. The URANS model performs quite well for the mean flow, but
predicts significantly diffused shear stress and the peak values are 9% under predicted.
The largest error is obtained for the turbulent kinetic energy for which the peak values are
underpredicted by 60%. The DDML model predictions (in apriori mode) show significantly
better shear stress predictions than the URANS model. The predictions have errors on the
order of 3–5% for the mean velocity and shear-stress, and peak TKE are overpredicted by
15%. Since the DDML model uses the velocities and derivatives predicted by the URANS
model, the improved prediction by the former can be attributed to its ability to learn the
non-linear correlation between the turbulent stresses and rate-of-strain. The DDML model
also works very well in the aposteriori mode, and both the mean velocity, shear stress and
k compare within 8% of the DNS. Note that the simulations used a (wall-normal) grid and
time step size two times smaller and 10 times larger, respectively, compared to those of
DNS, thus the predictions are considered reasonably accurate.

As shown in Figure 14, for the simulations started from ill-posed initial flow conditions,
the URANS solutions show large differences with the DNS during the early part of the
simulations, but the solution slowly recovers, and the solutions for the second and third
cycles are very similar to those for the earlier case. This is because the flow is primarily
driven by the pressure gradient, and the flow adapts to the pressure variations. The DDML
model adjusts to ill-posed initial flow condition much faster than the URANS model, and
results compare very well with the DNS, and the predictions errors are similar to those of
set #2.

Energies 2021, 14, 1465 23 of 34
Energies 2021, 14, x FOR PEER REVIEW 23 of 35

Models/
Variables

DNS One-equation URANS Model DDML Model (Apriori) DDML (Aposteriori)

U

𝜏௨௩

k

Figure 13. Predictions of mean velocity (top row), turbulent shear stress (middle row) and turbulent kinetic energy (bottom row) for oscillating channel flow case
over three pressure oscillation cycles. Results obtained using DNS (leftmost column), one-equation URANS (second column), apriori DDML predictions (third
column), and aposteriori DDML (rightmost column). The URANS and DDML simulations were started from channel flow velocity profile corresponding to Reτ =
350.

Figure 13. Predictions of mean velocity (top row), turbulent shear stress (middle row) and turbulent kinetic energy (bottom row) for oscillating channel flow case over three pressure
oscillation cycles. Results obtained using DNS (leftmost column), one-equation URANS (second column), apriori DDML predictions (third column), and aposteriori DDML (rightmost
column). The URANS and DDML simulations were started from channel flow velocity profile corresponding to Reτ = 350.

Energies 2021, 14, 1465 24 of 34
Energies 2021, 14, x FOR PEER REVIEW 24 of 35

Models/
Variables DNS One Equation URANS Model ML Model

U

𝜏௨௩

k

Figure 14. Predictions of mean velocity (top row), turbulent shear stress (middle row), and turbulent kinetic energy (bottom row) for oscillating channel flow case
over three pressure oscillation cycles. Results obtained using DNS (leftmost column), one-equation RANS (middle column), and aposteriori DDML (rightmost
column). The URANS and DDML simulations are started from an ill-posed initial flow condition.

Figure 14. Predictions of mean velocity (top row), turbulent shear stress (middle row), and turbulent kinetic energy (bottom row) for oscillating channel flow case over three pressure
oscillation cycles. Results obtained using DNS (leftmost column), one-equation RANS (middle column), and aposteriori DDML (rightmost column). The URANS and DDML simulations
are started from an ill-posed initial flow condition.

Energies 2021, 14, 1465 25 of 34

5. Conclusions and Future Work

This study investigates the ability of neural networks to train a stand-alone turbulence
model and the effects of input parameter selection and training approach on the accuracy
of the machine learned regression map. To achieve these objectives, a DNS/LES database
is curated and/or developed for steady and unsteady boundary layer flows, for which
the mean flow simplifies to a 1D steady and unsteady problem, respectively, and closure
of the governing equations require modeling of turbulent shear stress. The database was
used to train data driven and physics-informed machine learned turbulence model. For
the latter, the residual in the governing equation solution was incorporated in the cost
function during the model training. The model was validated for apriori and aposteriori
tests, including ill-posed flow condition.

Overall, the results demonstrate that machine learning can help develop a stand-alone
turbulence model. Moreover, an accurately trained model can provide grid convergent,
smooth solutions, which works well in extrapolation mode, and converge to a correct
solution from ill-posed flow conditions. The accuracy of the machine learned response
surface depends on

1. The choice of input parameters. Feature engineering was used to find the optimal
input features for the neural network training. It was identified that grouping flow
variables into a problem relevant parameter improves the accuracy of the model. For
example, a model trained using Re based on local flow velocity and wall distance
is more accurate compared to the model trained using Re based on global flow.
Furthermore, higher order functions of an input variable, such as square of the rate-
of-strain along with rate-of-strain, does not help in improving the accuracy of the
map. However, they may be used as weighting function to reduce the overlap in the
datasets; and

2. How the database is weighted to minimize the overlap between the datasets. This
requires a trial-and-error method to come up with an appropriate weighting function.
A better way to improve the accuracy of the regression surface is to include physical
constraints to the loss function during training, which is referred to as the PIML
approach. However, it is not straightforward to incorporate physical constrains
during the training due to issues in calculation of the derivates, such as temporal
derivatives, for unsteady problem. Data clustering is also identified to be a useful
tool to improve accuracy of the machine learned model and reduce computational
cost, as it avoids skewness of the model towards a dominant flow feature.

Herein, machine learning was applied for cases which are very similar to the training
datasets, which limits the applicability of the model, as well as does not sufficiently
challenge the robustness of the machine learning approach. The ongoing work is focusing
on generation of a larger database encompassing steady and unsteady boundary layer
flows, including separated flow regimes. A model trained using such a database will help
in development of a more generic turbulence model for boundary layer flows. It is expected
that data clustering will be very helpful for training such as model due to the presence of
wide range of turbulence characteristics. On a final note, the machine learned models were
found to be extremely computationally expensive compared to the physics-based model
(the former was around two order of magnitude more expensive). This was because of the
added cost associated with ML query every iteration for every grid point. This research
primarily focused on the accuracy of the model and efforts were not made to improve the
efficiency of the ML model query. However, practical application of ML model would
require investigation of approaches to improve the computational efficiency of run-time
ML query.

Author Contributions: Conceptualization, S.B.; methodology, S.B., G.W.B., W.B. and I.D.D.; software,
S.B., G.W.B. and W.B.; validation, S.B. and G.W.B.; formal analysis, S.B.; investigation, S.B. and G.W.B.;
resources, I.D.D.; data curation, S.B.; writing—original draft preparation, S.B.; writing—review
and editing, G.W.B., W.B. and I.D.D.; visualization, S.B. and G.W.B.; supervision, I.D.D.; project

Energies 2021, 14, 1465 26 of 34

administration, I.D.D.; funding acquisition, S.B., G.W.B. and W.B. All authors have read and agreed
to the published version of the manuscript.

Funding: Effort at Mississippi State University was sponsored by the Engineering Research &
Development Center under Cooperative Agreement number W912HZ-17-2-0014. The views and
conclusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the Engineering
Research & Development Center or the US Government. This material is also based upon work
supported by, or in part by, the Department of Defense (DoD) High Performance Computing Modern-
ization Program (HPCMP) under User Productivity Enhancement, Technology Transfer, and Training
(PET) contract #47QFSA18K0111, TO# ID04180146.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Symbols
Q Second invariant of rate-of-strain tensor
u Local flow velocity vector
u′ Turbulent velocity fluctuation vector
Uc Free-stream (global) velocity (or centerline channel velocity)
H Half channel height
uτ Friction velocity
p Pressure
k Turbulent kinetic energy
ε Dissipation
ν Kinematic molecular viscosity
νT Turbulent eddy viscosity
d Distance from the wall
ω Specific dissipation, ε/k
y+ Wall distance normalized by friction velocity, duτ/ν

τw Wall shear stress
∇ Gradient operator
S Rate-of-strain tensor
Ω Rotation tensor
|S| Magnitude of rate-of-strain tensor,

√
2S : S

|Ω| Magnitude of rotation tensor,
√

2Ω : Ω

P Production of turbulent kinetic energy
Re Reynolds number based on global flow variables, such as Uc and geometry length
Ret Turbulent Re based on distance from the wall,

√
kd/ν

Red Re based on distance from wall, dUc/ν
Rel Reynolds number based on the local velocity and distance from the wall, ud/ν

τ Shear stress tensor
τuv Turbulent shear stress component in x-y plane, u′v′

ML Machine Learning
· Dot product
: Double dot product
Terminology
Database Curated DNS/LES datasets for ML training
Response surface Output from ML training
Input features Input flow variables for ML
Output features Flow variable for which the response surface is generated
Query inputs Input variables to query the response surface
Query output Output variables obtained from the query of the response surface
Unseen case (flow) Geometry (or flow condition) not used during ML training
Apriori test ML model is applied as a post-processing step
Aposteriori test ML model is coupled with CFD solver and its prediction is used during runtime

Appendix A

Energies 2021, 14, 1465 27 of 34

Table A1. Literature review of machine learning approach for turbulence model augmentation.

Reference Response Surface Turbulence Model Input Features Training Flows Validation Case Comments

Parish and
Duraisamy [9]

TKE production multiplier:
β(ηi) (Neural network)

k-ω RANS:
νT

(
∂u
∂y

)2
β(y)− α ∗ kω + ∂

∂y

[
(ν + σkνT)

∂k
∂y

] 4 features: ηi =
|S|k

ε ,
√

kd
ν , P , y+

DNS: Plane channel flow, Reτ
= 180, 550, 950, 4200

Plane channel flow,
Reτ = 2000

• Inversion process as an optimization
problem to minimize the difference
between the experimental data and
RANS results.

• Correction term was applied for
aposteriori tests.

• Robust for unseen geometries and
flow conditions

Singh et al. [10]
Turbulence production
multiplier: β(ηi). (Neural
network)

Spalart-Allmaras RANS:
Dν̃
Dt = β(x)P(ν̃, U)︸ ︷︷ ︸

Production
−D(ν̃, U)︸ ︷︷ ︸

Destruction

+ T(ν̃, U)︸ ︷︷ ︸
Transport

5 features: ηi =
|Ω|, χ =

νT
ν , |S||Ω| ,

τ
τw

, P
ε

Experiment: lift coefficient
(CL) and surface pressure
(CP) for wind turbine airfoils
S805, S809, S814, Re = 106, 2
× 106, 3 × 106

CL and CP for S809,
α = 14◦ , Re = 2 × 106

He et al. [11]
Adjoint equations for solution
error.
β distribution to minimize
error.

Velocities Experiment: At several
cross-sections in the flow.

Cylinder flow, Re = 2 × 104;
Round jet, Re = 6000; Hump

flow, Re = 9.4 × 105, Wall
mounted cube, Re = 105

• Data assimilation approach.
• Model worked well for wide range

of applications.

Yang and Xiao
[12]

Correction term for the
Transition time-scale correction,
β; (Random forest, Neural
Network)

Transition model timescale for first mode:
τnt1= βτnt1

d, streamline curvature, d2 |Ω|
|U| ,

Q, ∇p
DNS: NLF(1)-0416 airfoil, α
= 0◦ and 4◦

NLF(1)-0416 airfoil, α = 2◦
and 6◦ ; NACA 0012, α = 3◦

• Extended work of Duraisamy et al.
for transition flow

• The model was applied for
aposteriori test both in interpolation,
extrapolation and for unseen case.

Ling et al. [13]
Coefficients of non-linear stress
terms: gn(λ1, λ2, λ3, λ4, λ5)
(Deep Neural Network)

σ = ∑10
n=1 gnT(n) ; T(n) =

S;S·Ω−Ω·S;(S·S)∗ ;(Ω·Ω)∗ ; Ω·S·S−
S·S·Ω;(Ω·Ω·S− S·Ω·Ω)∗ ;Ω·S·Ω·Ω−

Ω·Ω·S·Ω;S·Ω·S·S− S·S·Ω·S;
(S·S·Ω·Ω)∗ ;

Ω·S·S·Ω·Ω−Ω·Ω·S·S·Ω
*Anisotropic component

Invariants of S and Ω:
λ1 = S : S; λ2 = Ω : Ω;

λ3 = (S·S) : S;
λ4 = (Ω·Ω) : S;

λ5 = (Ω·Ω) : (S·S)

DNS/LES: Duct flow, Re =
3500; Channel flow, Reτ =
590; normal (Re = 5000) and
inclined (Re = 3000) jet in
crossflow; Square cylinder,
Re = 2000;
converging-diverging
channel, Reτ = 600

Duct flow Re = 2000
Wavy channel, Re = 6850

• Model applied for both apriori and
aposteriori tests.

• Machine learned model performed
better than linear and non-linear
physics based model, and performed
well for unseen geometry and flow
conditions.

Wang et al. [14]

Stress prediction error:
fn = ∆τ(qn); ∆τ = τRANS −
τDNS/LES

(Random forest regression)

k-ε RANS model:
τRANS + ∆τ(qn)

10 features qn : Q, k,
√

kd/ν,
(u.∇)p, (u.∇)k, k/ε, ∇p·∇p,
uu : u, streamline curvature

etc.

DNS: Duct flow, Re = 2200,
2600 and 2900 Duct flow, Re = 3500

• Apriori estimate of the Reynolds
stress

• Model works well when trained
using same geometry but different
flow conditions.

• Identify a quantitative measure for
apriori estimation of prediction
confidence in data-driven turbulence
modeling

DNS: Periodic hill, Re = 1400,
5600

Periodic hill, Re = 10,595DNS: Wavy channel Re = 360
LES: Curved backward
facing step, Re = 13,200

Wu et al. [15]

DNS: Periodic hill, Re = 1400,
2800, 5600; Curved backward
facing step, Re = 13,200;
Converging-diverging
channel, Re = 11,300;
Backward facing step, Re =
4900; Wavy channel, Re = 360

Periodic hill, Re = 10,595

Wang et al. [16] k-ω RANS model:
τRANS + ∆τ(qn)

47 features q(n) based on
combination of S, Ω, ∇k and

∇T

DNS: Flat-plate boundary
layer for Ma = 2.5, 6 and 7.8,
Reτ ~ 400

Flat-plate boundary layer,
Ma = 8

• Extended model for compressible
flow.

• Model performed well when trained
using datasets with close wall
thermal characteristics

Energies 2021, 14, 1465 28 of 34

Table A1. Cont.

Reference Response Surface Turbulence Model Input Features Training Flows Validation Case Comments

Wu et al. [17]

Eddy viscosity for linear stress:
vT; Non-linear anisotropic
stress: b⊥
(Random forest regression)

σ = vTS + b⊥ S,Ω, ∇k,∇p,
√

kd
ν , k, k/ε

DNS and RANS: Duct flow,
Re = 2200
LES and RANS: Periodic
hill—Re = 5600

Duct flow, Re = 3500, 1.25 ×
105

(Shallower) Periodic hill, Re
= 5600

• Focus on addressing ill-conditioning
issue reported in above studies

• Aposteriori test for different flow
conditions, and slightly different
geometry

Yin et al. [18]
Stress prediction error:
fn = ∆τ(qn); ∆τ = τRANS −
τDNS(Neural Network)

k-ω RANS model:
τRANS + ∆τ(qn)

47 features q(n) based on
combination of S, Ω, ∇p and

∇k

DNS: Periodic hill with
different steepness, L = 3.858
α +5.142, α = 0.8, 1.2, Re =
5600

Periodic hill, α = 0.5, 1, 1.5
(Re = 5600)

• Investigated cause of ML prediction
unsmoothness and error

• Effect of input features and grid
topology were investigated

• Validation for apriori and
aposterirori (frozen stresses) tests.

• Grid significantly effects the flow
features and accuracy

Yang et al. [19] τw = f (ηi)
(Fastforward Neural Network)

Wall-modeling for Lagrangian dynamic
Smagorinsky (LES) model

ηi: wall parallel velocity
(u||), d, grid aspect ratio and

∇p

DNS: Channel flow Reτ =
1000

Channel flow Re = 1000 to
1010

• Inducing grid aspect ratio and
pressure gradient did not improve
results.

Weatheritt and
Sandberg [20]

Analytic function of anisotropic
stress coefficients: βi; (Symbolic
regression)

σ = −2νTS+2ka; νT k-ω model
a = β1(I1, I2)S +2 (I1, I2){S·Ω−Ω·S}+3

(I1, I2)(S·S)∗
I1 = S : S

I2 = Ω : Ω

Hybrid RANS/LES: Duct
flows (Re = 104, Ar = 3.3),
and diffuser flow (Re = 104,
Ar = 1)

Duct (Re = 104, Ar = 3.3 to 1),
and diffuser (Re = 5000, 104,

Ar = 1.7)

• Model tested for both apriori and
aposteriori tests

• Framework is a viable methodology
for RANS

Jian et al. [21]
Model coefficients: Cµ , bmn ,
Cmn, dmn
(Deep neural network)

RANS: σ = 2Cµ
k2
ε S + bmn

k3

ε2 (S·S)
∗

+cmn
k3

ε2 {S·Ω−Ω·S}+ dmn
k3

ε2 (Ω·Ω)∗
|S|k

ε

DNS: Plane channel flow, Reτ
= 1000, 1990, 2020, 4100

Plane channel flow, Reτ =
650, 1000, 5200

• Validated for both apriori and
aposteriori tests and in extrapolation
mode.

• ML model better captures the
stress-strain misalignment in the
near-wall region.

Xie et al. [22]
Model coefficients C1 and C2
for mixed SGS model (Neural
networks)

LES, subgrid stresses and heat flux
τ = C1∆2|S|S + C2∆2

(
∇u·∇uT

) Vorticity magnitude, velocity
divergence,

∣∣ ∇u·∇uT
∣∣, |S|,

∇T

DNS: Compressible isotropic
turbulence,
Reλ = 260, Ma = 0.4, 0.6, 0.8,
1.02

Compressible isotropic
turbulence, coarser grids

• The ML model performed better
than physics-based models for
aposteriori tests

Energies 2021, 14, 1465 29 of 34

Table A2. Literature review of machine learning approach for stand-alone turbulence model.

Reference Response Surface Turbulence Model Input Features Training Flows Validation Case Comments

Schmelzer et al.
[23]

Analytic formulation of
anisotropic stress;
(Symbolic regression)

RANS: σ = f (S, S·Ω−Ω·S,
(S·S)∗ , S : S, Ω : Ω)

S, Ω, k,τ

DNS: Periodic hill, Re = 1.1 × 104;
Converging-diverging channel, 1.26
× 104; Curved backward-facing step
1.37 × 104

Periodic hill, Re = 3.7 × 104 • Infer algebraic stress model using
symbolic regression

Fang et al. [24] Shear stress: τuv
(Deep neural network) RANS, τuv

du/dy, Reτ , near-wall
van-Driest damping, spatial

non-locality

DNS: Channel flow, Reτ = 550, 1000,
2000, 5200 Channel flow (unseen data)

• Combination of Reynolds number
injection and boundary condition
enforcement improves results

Zhu et al. [25]
Turbulent eddy viscosity: νT;
(Radial basis function neural
network)

RANS: τ = νT S
U, ρ, d, d2 |Ω|, velocity

direction, vorticity, Entropy,
strain-rate

SA RANS: NACA0012 α = 0, 10, 15,
Ma = 0.15, Re = 3 × 106; RAE2822 α
= 2.8, Ma = 0.73 and 0.75, Re =
6.2–6.5 × 106

Airfoil flow different α

• Different maps for near-wall, wake and
far-field regions

• Weight based on wall distance, worked
• Training using log transformation, did

not work.

King et al. [26] Stress tensor τ LES, subgrid stresses τ U, p, filter width, resolved
rate-of-strain

DNS: Isotropic and sheared
turbulence

Isotropic and sheared
turbulence on coarse grids

• Applied for apriori tests
• Performed better than dynamic model

Gambara and
Hattori [27] Stress tensor τ

(Feedforward neural network) LES, subgrid stresses τ
Different sets: S, d; S, Ω, d;

∇u, d; ∇u
DNS: Channel flow, Reτ = 180, 400,
600 and 800

Channel flows for unseen
flow conditions.

• Model validated for apriori tests
• ∇u, d input parameter was most accurate.
• Model was more accurate than similarity

model

Zhou et al. [28] ∇u, ∆ (filter width) DNS: Isotropic decaying turbulence,
Reλ = 129 and 302

Isotropic decaying
turbulence, Reλ = 205 • Validated for apriori and aposteriori tests

Yuan et al. [29]
Stress tensor τ
(Deconvolutional neural
network)

LES, subgrid stresses τ Filtered velocity DNS: Isotropic decaying turbulence,
Reλ = 252

Isotropic decaying
turbulence, Reλ = 252

• Validated for apriori and aposteriori tests
• ML model performed better than

physics-based models.

Maulik et al.
[30]

Subgrid term π
(Artificial neural network) LES, Subgrid term π

Vorticity, streamfunction,
rate-of-strain, vorticity

gradient

DNS: Decaying 2D turbulence,
Re = 3.2 × 104, 6.4 × 104 Decaying 2D turbulence

• Prediction error must be considered
during optimal model selection for
greater accuracy

Energies 2021, 14, 1465 30 of 34

Table A3. Channel and flat-plate boundary layer database curated for ML model training.

Case Reference
Flow Conditions

#Points
Distribution of Data Points

Reτ Rec
Sublayer,

y+ < 6
Buffer Layer,
6 ≤ y+ ≤ 40

Log-Layer,
y+ > 40

Channel Flow (DNS)

1

Iwamoto et al. [39]

109.4 1918 65 13 22 29

2 191.8 3345.5 65 6 19 39

3 150.18 2681.082 73 13 21 38

4 297.9 5788.15 193 24 40 128

5 395.76 7988.02 257 28 45 183

6 642.54 13843.3 193 16 27 149

7 Alamo and Jimenez [40] 186.34 3406.97 49 7 13 28

8
Moser et al. [41]

180.56 3298.5 96 17 25 53

9 392.24 7896.97 129 14 23 91

10 587.19 12,485.42 129 11 19 98

11 Lee and Moser [42] 541.232 11,365.96 192 8 41 142

12
Alamo and Jimenez [40]

546.74 11,476.1 129 12 19 97

13 933.96 20,962.51 193 13 22 157

14 Abe et al. [43] 1016.36 23,433.9 224 15 30 179

15
Lee and Moser [42]

997.4 22,534.1 256 20 28 207

16 1990.64 48,563.2 384 21 30 332

17 Hoyas and Jimenez [44] 2004.3 48,683.87 317 8 17 291

18
Bernardini et al. [45]

994.7 22,292.1 192 13 22 157

19 2017.4 48621.8 384 19 30 335

20 4072.6 105,702.4 512 18 28 466

21 Lee and Moser [42] 5180.73 137,679.2 768 13 32 722

Flat-plate (DNS)

Schlatter and Orlu [46]

Reθ Reτ #Points Sublayer,
y+ < 6

Buffer layer,
6 ≤ y+ ≤ 40

Log-layer,
y+ > 40

22 670 252.2550

513

13 19 481

23 1000 359.3794 13 20 480

24 1410 492.2115 13 20 480

25 2000 671.1240

513

13 21 479

26 3030 974.1849 14 21 478

27 3270 1043.4272 14 21 478

28 3630 1145.1699 14 21 478

29 3970 1244.7742 14 22 477

30 4060 1271.5350 14 22 478

31
Jimenesz et al. [47]

1100 445.4685

345

10 19 316

32 1551 577.7820 10 20 315

33 1968 690.4122 10 21 314

34

Sillero et al. [48]

4000 1306.9373

535

10 19 506

35 4060 1271.5350 14 22 499

36 4500 1437.0660 10 19 506

37 5000 1571.1952 14 19 502

38 6000 1847.6544 10 19 502

39 6500 1989.4720 10 19 502

Energies 2021, 14, 1465 31 of 34

Table A3. Cont.

Case Reference
Flow Conditions

#Points
Distribution of Data Points

Reτ Rec
Sublayer,

y+ < 6
Buffer Layer,
6 ≤ y+ ≤ 40

Log-Layer,
y+ > 40

Flat-plate (LES)

Reθ Reτ #Points Sublayer,
y+ ≤ 6

Buffer layer,
7 ≤ y+ ≤ 40

Log-layer,
y+ >40

40

Schlatter et al. [49]

670 257.1964

385

10 14 361

41 1000 359.5164 9 14 362

42 1410 491.7486 10 15 360

43 2150 721.5341 10 14 361

44 2560 839.5576 10 16 359

45 3660 1162.2723 11 16 358

46 4100 1286.7014 11 16 358

47

Eitel-Amor et al. [50]

5000 1367.3586

512

10 15 487

48 6000 1561.062 10 15 487

49 7000 1750.5198 10 16 486

50 8000 1937.3113 10 16 486

51 9000 2118.0861 10 16 486

52 10000 2299.2119 10 16 486

53 11000 2478.9901 10 18 486

Total 19,919 670 (3.4%) 1134 (5.7%) 18,115 (90.9%)

Table A4. Flow parameters for oscillating channel flow DNS. The non-dimensional quantities are highlighted in yellow.

Flow Parameters High Frequency Med. Frequency Low Frequency
Baseline flow Reτ,0 350

Baseline flow Rec,0 7250

Baseline flow centerline velocity Uc 1

Half channel height H 1

Kinematic viscosity ν 1.38 × 10−4

Domain size 3π × 2 × π
Grid 192 × 129 × 192

Baseline flow ∂P0/∂x u2
τ,0 = 0.002331

Density ρ 1
Baseline flow uτ,0 0.048276
α 200 50 8

α dP0/dx 0.4662 0.11655 0.01865

Non-dimensional pulse frequency
ω+ = ω/u2

τ,0
0.04 0.01 0.0016

Pulse frequency ω 0.67565 0.16891 0.02703

Boundary layer thickness ls =
√

2ν/ω 0.2021 0.4042 1.0106

ls+ =
√

2u2
τ,0/νω =

√
2/ω+ 7.071 14.142 35.355

Res = Uo
√

2/ων 100 200 500

Res/ls+ = Uo/uτ 10
√

2

Uo/Uc 0.03296

Time step size (∆t) 0.0002325 0.00093 0.000969

Timesteps per period (2π/ω∆t) 40000 40,000 240,000

Pressure pulse dP
dx = dP0

dx [1 + α cos(ωt)]

Energies 2021, 14, 1465 32 of 34

Appendix B. Simplification of Navier-Stokes Equation

The mass conservation equation for incompressible Navier-Stokes equation for three-
dimensional flows in Cartesian coordinate is:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

(A1)

where, u, v and w are the mean velocities along streamwise (x), wall-normal (y) and
spanwise (z) directions, respectively. For 2D flows, the velocity and the gradients along
the spanwise direction are assumed to be negligible, i.e., w = 0 and ∂()

∂z = 0. In addition,
assuming that the flow gradients along the streamwise direction are negligible compared
to those along the wall-normal direction. The mass conservation equation simplifies to:

∂v
∂y

= 0 (A2)

For wall-bounded flows the above equation results in a solution:

v = 0 (A3)

For above 2D flows, the only momentum equation which is of interest is those along
the streamwise direction, i.e.,

∂u
∂t + u ∂u

∂x + v ∂u
∂y + w ∂u

∂z = − 1
ρ

∂p
∂x + ν

(
∂2u
∂x2 +

∂2u
∂y2 + ∂2u

∂z2

)
+
(

∂τuu
∂x + ∂τuv

∂y + ∂τuw
∂z

)
(A4)

Using the assumptions for 2D flows, only the time derivative term survives on the
right-hand side. Among the second derivative terms, ∂2u

∂y2 is more dominant compared to ∂2u
∂x2

based on the gradient assumption, thus later is neglected. τuu, τuv and τuw are the unknow
turbulent stresses due to correlation between streamwise turbulent fluctuations, streamwise
and wall-normal fluctuations, and streamwise and spanwise fluctuations, respectively. The
term involving τuw can be dropped because of the 2D assumptions. The term involving
τuu can be also dropped assuming that both τuu and τuv have similar magnitude, and
gradients along the streamwise direction are negligible compared to those along the wall-
normal direction. Lastly, p is the pressure in the flow, and only the streamwise pressure
gradient appears in the equation. For flat-plate boundary layer flows, the streamwise
pressure gradients inside the boundary layer is driven by the pressure gradients outside
the boundary layer. Thus, for inner boundary layer flows the pressure gradients can be
specified as a forcing term (F(t)) to account for the free-stream pressure-gradients. Thus,
the unsteady simplified boundary layer equation is:

∂u
∂t

= F(t) + ν
∂2u
∂y2 +

∂τuv

∂y
(A5)

References
1. Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508.

[CrossRef]
2. Duraisamy, K.; Iaccarino, G.; Xiao, H. Turbulence Modeling in the Age of Data. Annu. Rev. Fluid Mech. 2019, 51, 357–377.

[CrossRef]
3. Milano, M.; Koumoutsakos, P. Neural network modeling for near wall turbulent flow. J. Comput. Phys. 2002, 182, 1–26. [CrossRef]
4. Hocevar, M.; Sirok, B.; Grabec, I. A turbulent wake estimation using radial basis function neural networks. Flow Turbul. Combust.

2005, 74, 291–308. [CrossRef]
5. Jin, X.W.; Cheng, P.; Chen, W.L.; Li, H. Prediction model of velocity field around circular cylinder over various Reynolds numbers

by fusion convolutional neural networks based on pressure on the cylinder. Phys. Fluids 2018, 30, 047105. [CrossRef]
6. Obiols-Sales, O.; Vishnu, A.; Chandramowlishwaran, A. CFDNet: A Deep Learning-Based Accelerator for Fluid Simulations. In

Proceedings of the 34th ACM International Conference on Supercomputing, Barcelona, Spain, 29 June–2 July 2020.

http://doi.org/10.1146/annurev-fluid-010719-060214
http://doi.org/10.1146/annurev-fluid-010518-040547
http://doi.org/10.1006/jcph.2002.7146
http://doi.org/10.1007/s10494-005-5728-4
http://doi.org/10.1063/1.5024595

Energies 2021, 14, 1465 33 of 34

7. Edeling, W.N.; Cinnella, P.; Dwight, R.P.; Bijl, H. Bayesian estimates of parameter variability in the k-ε turbulence model. J.
Comput. Phys. 2014, 258, 73–94. [CrossRef]

8. Ling, J.; Templeton, J. Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier
Stokes uncertainty. Phys. Fluids 2015, 27, 085103. [CrossRef]

9. Parish, E.J.; Duraisamy, K. A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput.
Phys. 2016, 305, 758–774. [CrossRef]

10. Singh, A.P.; Medida, S.; Duraisamy, K. Machine-learning-augmented predictive modeling of turbulent separated flows over
airfoils. AIAA J. 2017, 55, 2215–2227. [CrossRef]

11. He, C.X.; Liu, Y.; Gan, L. A data assimilation model for turbulent flows using continuous adjoint formulation. Phys. Fluids 2018,
30, 105108. [CrossRef]

12. Yang, M.; Xiao, Z. Improving the k-ω-γ-Ar transition model by the field inversion and machine learning framework. Phys. Fluids
2020, 32, 064101.

13. Ling, J.; Kurzawski, A.; Templeton, J. Reynolds averaged turbulence modelling using deep neural networks with embedded
invariance. J. Fluid Mech. 2016, 807, 155–166. [CrossRef]

14. Wang, J.X.; Wu, J.L.; Xiao, H. Physics informed machine learning approach for reconstructing Reynolds stress modeling
discrepancies based on DNS data. Phys. Rev. Fluids 2017, 2, 034603. [CrossRef]

15. Wu, J.L.; Wang, J.X.; Xiao, H.; Ling, L. A priori assessment of prediction confidence for data-driven turbulence modeling. Flow,
Turbul. Combust. 2017, 99, 25–46. [CrossRef]

16. Wang, J.X.; Huang, J.; Duan, L.; Xiao, H. Prediction of Reynolds stresses in high-Mach-number turbulent boundary layers using
physics-informed machine learning. Theor. Comput. Fluid Dyn. 2019, 33, 1–19. [CrossRef]

17. Wu, J.L.; Xiao, H.; Paterson, E. Physics-Informed Machine Learning Approach for Augmenting Turbulence Models: A Compre-
hensive Framework. Phys. Rev. Fluids 2018, 3, 074602. [CrossRef]

18. Yin, Y.; Yang, P.; Zhang, Y.; Chen, H.; Fu, S. Feature selection and processing of turbulence modeling based on an artificial neural
network. Phys. Fluids 2020, 32, 105117. [CrossRef]

19. Yang, X.I.A.; Zafar, S.; Wang, J.X.; Xiao, H. Predictive large-eddy-simulation wall modeling via physics-informed neural networks.
Phys. Rev. Fluids 2019, 4, 034602. [CrossRef]

20. Weatheritt, J.; Sandberg, R.D. The development of algebraic stress models using a novel evolutionary algorithm. Int. J. Heat Fluid
Flow 2017, 68, 298–318. [CrossRef]

21. Jiang, C.; Mi, J.; Laima, S.; Li, H. A Novel Algebraic Stress Model with Machine-Learning-Assisted Parameterization Energies.
Energies 2020, 13, 258. [CrossRef]

22. Xie, C.; Wang, J.; Li, H.; Wan, M.; Chen, S. Artificial neural network mixed model for large eddy simulation of compressible
isotropic turbulence. Phys. Fluids 2019, 31, 085112.

23. Schmelzer, M.; Dwight, R.P.; Cinnella, P. Discovery of algebraic Reynolds stress models using sparse symbolic regression. Flow
Turbul. Combust. 2020, 104, 579–603. [CrossRef]

24. Fang, R.; Sondak, D.; Protopapas, P.; Succi, S. Neural network models for the anisotropic Reynolds stress tensor in turbulent
channel flow. J. Turbul. 2020, 21, 9–10. [CrossRef]

25. Zhu, L.; Zhang, W.; Kou, J.; Liu, Y. Machine learning methods for turbulence modeling in subsonic flows around airfoils. Phys.
Fluids 2019, 31, 015105. [CrossRef]

26. King, R.N.; Hamlington, P.E.; Dahm, W.J.A. Autonomic closure for turbulence simulations. Phys. Rev. E 2016, 93, 031301.
[CrossRef] [PubMed]

27. Gamabara, M.; Hattori, Y. Searching for turbulence models by artificial neural network. Phys. Rev. Fluids 2017, 2, 054604.
[CrossRef]

28. Zhou, G.; He, G.; Wang, S.; Jin, G. Subgrid-scale model for large-eddy simulation of isotropic turbulent flows using an artificial
neural network. Comput. Fluids 2019, 195, 104319. [CrossRef]

29. Yuan, Z.; Xie, C.; Wang, J. Deconvolutional artificial neural network models for large eddy simulation of turbulence. Phys. Fluids
2020, 32, 115106. [CrossRef]

30. Maulik, R.; San, O.; Rasheed, A.; Vedula, P. Subgrid modelling for two-dimensional turbulence using neural networks. J. Fluid
Mech. 2019, 858, 122–144. [CrossRef]

31. Nathan, K.J. Deep learning in fluid dynamics. J. Fluid Mech. 2017, 814, 1–4.
32. Bhushan, S.; Burgreen, G.W.; Martinez, D.; Brewer, W. Machine Learning for Turbulence Modeling and Predictions. In Proceedings

of the ASME 2020 Fluids Engineering Division Summer Meeting FEDSM2020, Orlando, FL, USA, 12–16 July 2020.
33. Bhushan, S.; Burgreen, G.W.; Bowman, J.; Dettwiller, I.; Brewer, W. Predictions of Steady and Unsteady Flows using Machine

Learned Surrogate Models. In Proceedings of the 2020 IEEE/ACM Workshop on Machine Learning in High Performance
Computing Environments (MLHPC) and Workshop on Artificial Intelligence and Machine Learning for Scientific Applications
(AI4S), Supercomputing 2020, Online Conference, 12 November 2020.

34. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
35. Lee, M.; Kim, H.; Joe, H.; Kim, H.-G. Multi-channel PINN: Investigating scalable and transferable neural networks for drug

discovery. J. Cheminform. 2019, 11, 46. [CrossRef]
36. Kingma, D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2015, arXiv:1412.6980.

http://doi.org/10.1016/j.jcp.2013.10.027
http://doi.org/10.1063/1.4927765
http://doi.org/10.1016/j.jcp.2015.11.012
http://doi.org/10.2514/1.J055595
http://doi.org/10.1063/1.5048727
http://doi.org/10.1017/jfm.2016.615
http://doi.org/10.1103/PhysRevFluids.2.034603
http://doi.org/10.1007/s10494-017-9807-0
http://doi.org/10.1007/s00162-018-0480-2
http://doi.org/10.1103/PhysRevFluids.3.074602
http://doi.org/10.1063/5.0022561
http://doi.org/10.1103/PhysRevFluids.4.034602
http://doi.org/10.1016/j.ijheatfluidflow.2017.09.017
http://doi.org/10.3390/en13010258
http://doi.org/10.1007/s10494-019-00089-x
http://doi.org/10.1080/14685248.2019.1706742
http://doi.org/10.1063/1.5061693
http://doi.org/10.1103/PhysRevE.93.031301
http://www.ncbi.nlm.nih.gov/pubmed/27078285
http://doi.org/10.1103/PhysRevFluids.2.054604
http://doi.org/10.1016/j.compfluid.2019.104319
http://doi.org/10.1063/5.0027146
http://doi.org/10.1017/jfm.2018.770
http://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://doi.org/10.1186/s13321-019-0368-1

Energies 2021, 14, 1465 34 of 34

37. Maziar, R.; Paris Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707.

38. Warsi, Z.U.A. Fluid Dynamics: Theoretical and Computational Approaches; CRC Press: Boca Raton, FL, USA, 1998.
39. Iwamoto, K.; Kasagi, N.; Suzuki, Y. Direct Numerical Simulation of Turbulent channel Flow at Reτ = 2320. In Proceedings of the

6th Symposium Smart Control of Turbulence, Tokyo, Japan, 6–9 March 2005.
40. Alamo, J.C.; Jimenez, J.; Zandonade, P.; Moser, R.D. Scaling of the Energy Spectra of Turbulent Channels. J. Fluid Mech. 2004, 500,

135–144.
41. Moser, R.D.; Kim, J.; Mansour, N.N. Direct Numerical Simulation of Turbulent Channel Flow Up to Reτ = 590. Phys. Fluids 1999,

11, 943–945. [CrossRef]
42. Lee, M.; Moser, R.D. Direct numerical simulation of turbulent channel flow up to Reτ = 5200. J. Fluid Mech. 2015, 744, 395–415.

[CrossRef]
43. Abe, H.; Kawamura, H.; Matsuo, Y. Surface heat-flux fluctuations in a turbulent channel flow up to Reτ = 1020 with Pr = 0.025

and 0.71. Int. J. Heat Fluid Flow 2004, 25, 404–419. [CrossRef]
44. Hoyas, S.; Jimenez, J. Scaling of the Velocity Fluctuations in Turbulent Channels up to Reτ = 2003. Phys. Fluids 2006, 18, 011702.

[CrossRef]
45. Bernardini, M.; Pirozzoli, S.; Orlandi, P. Velocity statistics in turbulent channel flow up to Reτ = 4000. J. Fluid Mech. 2014, 742,

171–191. [CrossRef]
46. Schlatter, P.; Orlu, R. Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 2010, 659,

116–126. [CrossRef]
47. Jimenez, J.; Hoyas, S.; Simens, M.P.; Mizuno, Y. Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid

Mech. 2010, 657, 335–360. [CrossRef]
48. Sillero, J.A.; Jimenez, J.; Moser, R.D. One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to Re~2000.

Phys. Fluids 2013, 25, 105102. [CrossRef]
49. Schlatter, P.; Li, Q.; Brethouwer, G.; Johansson, A.V.; Henningson, D.S. Simulations of spatially evolving turbulent boundary

layers up to Reθ = 4300. Int. J. Heat Fluid Flow 2010, 31, 251–261. [CrossRef]
50. Eitel-Amor, G.; Örlü, R.; Schlatter, P. Simulation and validation of a spatially evolving turbulent boundary layer up to Reθ = 8300.

Int. J. Heat Fluid Flow 2014, 47, 57–69. [CrossRef]
51. Martinez, D.; Brewer, W.; Strelzoff, A.; Wilson, A.; Wade, D. Rotorcraft virtual sensors via deep regression. J. Parallel Distrib.

Comput. 2020, 135, 114–126. [CrossRef]
52. Rolnick, D.; Tegmark, M. The power of deeper networks for expressing natural functions. arXiv 2018, arXiv:1705.05502.
53. Scotti, A.; Piomelli, U. Numerical Simulation of Pulsating Turbulent Channel Flow. Phys. Fluids 2001, 13, 1367–1384. [CrossRef]
54. Bhushan, S.; Walters, D.K. Development of a Parallel Pseudo-Spectral Solver Using the Influence Matrix Method and Application

to Boundary Layer Transition. Eng. Appl. Comput. Fluid Mech. 2014, 8, 158–177. [CrossRef]
55. Bhushan, S.; Muthu, S. Performance and Error Assessment of Parallel Pseudo-Spectra Methods for Direct Numerical Simulations.

Eng. Appl. Comput. Fluid Dyn. 2019, 13, 763–781.
56. Jamal, T.; Bhushan, S.; Walters, D.K. Numerical Simulation of Non-Stationary Turbulent Flows using Double Exponential

Dynamic Time Filtering Technique. In Proceedings of the ASME 2020 Fluids Engineering Division Summer Meeting FEDSM
2020, Orlando, FL, USA, 12–16 July 2020.

57. Muthu, S.; Bhushan, S. Temporal Direct Numerical Simulation for Flat-Plate Boundary Layer Bypass Transition. J. Turbul. 2020,
21, 311–354. [CrossRef]

http://doi.org/10.1063/1.869966
http://doi.org/10.1017/jfm.2015.268
http://doi.org/10.1016/j.ijheatfluidflow.2004.02.010
http://doi.org/10.1063/1.2162185
http://doi.org/10.1017/jfm.2013.674
http://doi.org/10.1017/S0022112010003113
http://doi.org/10.1017/S0022112010001370
http://doi.org/10.1063/1.4823831
http://doi.org/10.1016/j.ijheatfluidflow.2009.12.011
http://doi.org/10.1016/j.ijheatfluidflow.2014.02.006
http://doi.org/10.1016/j.jpdc.2019.08.008
http://doi.org/10.1063/1.1359766
http://doi.org/10.1080/19942060.2014.11015505
http://doi.org/10.1080/14685248.2020.1788218

	Introduction
	Machine Learning Approach
	Test Cases and Database for Model Training
	Plane Channel Flow
	Governing Equation
	DNS/LES Database
	ML Model Training and Refinement Using Apriori Tests

	Oscillating Plane Channel Flow
	Governing Equation
	DNS Database
	ML Model Training Using Apriori Tests

	Aposteriori Tests of the ML Model
	Steady Plane Channel Flow
	Oscillating Plane Channel Flow

	Conclusions and Future Work
	
	Simplification of Navier-Stokes Equation
	References

