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Abstract: The degradation of lithium-ion cells with respect to increases of internal resistance (IR)
has negative implications for rapid charging protocols, thermal management and power output of
cells. Despite this, IR receives much less attention than capacity degradation in Li-ion cell research.
Building on recent developments on ‘knee’ identification for capacity degradation curves, we propose
the new concepts of ‘elbow-point’ and ‘elbow-onset’ for IR rise curves, and a robust identification
algorithm for those variables. We report on the relations between capacity’s knees, IR’s elbows and
end of life for the large dataset of the study. We enhance our discussion with two applications. We
use neural network techniques to build independent state of health capacity and IR predictor models
achieving a mean absolute percentage error (MAPE) of 0.4% and 1.6%, respectively, and an overall
root mean squared error below 0.0061. A relevance vector machine, using the first 50 cycles of life
data, is employed for the early prediction of elbow-points and elbow-onsets achieving a MAPE of
11.5% and 14.0%, respectively.

Keywords: elbow-points; early prediction; lithium-ion battery; internal resistance; parameter
identification

1. Introduction

Sales of electric vehicles (EVs) and energy storage systems are undergoing a marked
growth as battery costs continue to fall and with the introduction of increasingly strict
regulations on CO2 and NOx emissions, deadlines on the decommissioning of fossil fuel
power stations and bans on the sale of internal combustion engines. Lithium-ion (Li-ion)
batteries are widely deployed in EVs and energy storage systems due to their outstanding
characteristics, such as low maintenance requirements, high Coulombic efficiency and
market-leading energy density; however, in operation, Li-ion batteries are sensitive to over-
charging/discharging, high current stresses, over-temperature and under-temperature.
Even when cycled under moderate operating conditions, solid-electrolyte interphase (SEI)
layer growth on anodes gradually consumes active material, leading to poor cyclability.
Extreme operating conditions will further accelerate ageing processes, potentially resulting
in high-risk failure scenarios such as gassing, mechanical cracking of electrodes, internal
short circuits and thermal runaway [1–9]. Furthermore, the degradation rates of identical
chemistry cells differ due to disparities in manufacturing quality and operating condi-
tions [2,10–12]. The accurate prognosis of cell degradation is therefore imperative. This is
referred to as the State of Health (SOH) of the cell and can be defined with respect to its
capacity or its internal resistance (IR). A cell’s capacity fades as its calendar and cycle age
increase, and degradation mechanisms take place within the cell that reduce the available
lithium inventory and accessible active material in the electrodes [13,14]. Conversely, as the
cell is cycled, IR increases due to the thickening formation of the SEI, and the consumption
of electrolyte and lithium in this process [1,2].

Given the importance of driving range, capacity is the primary SOH measurement for
pure EVs; naturally, capacity-based SOH measurement is less important for hybrid electric
vehicles (HEVs), instead, importance is placed on a cell’s ability to supply high operating
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currents. With the increase of IR, the current deliverability of a cell is diminished, making
IR a key SOH measurement for hybrid vehicles. For a given current, increased IR can raise
the terminal voltage during the charging phase. As a result, the imposed charging current
must be taped down to avoid the battery voltage from exceeding its maximum limit; thus,
leading to longer charging times and poor rapid charging ability [9,15–17]. In addition,
the growth of IR values will incur more heat generation for a given load creating more
work for the thermal management system. To the best of our knowledge, the majority
of EV manufacturers only provide a battery warranty securing that the capacity shall
remain above 70% of its initial value, but ignore a battery warranty based on IR. With a
greater understanding of expected IR growth such warranties could be provided. There
is thus significant value to be gained from the prognosis of IR growth trends; however,
the prediction of IR degradation using data from early cycles remains largely unexplored.
There is substantive research e.g., [18,19] conducted for early prediction of capacity but not
for IR.

As discussed in-depth in [19], a cell’s capacity does not degrade linearly throughout
its lifetime: degradation is path-dependent [20], and a strong association exists between
capacity and internal resistance [21]. While the cell’s capacity typically starts to degrade in
a linear manner, there eventually comes a point, called the ‘knee-point’, after which the
rate of capacity degradation increases considerably [22–28]. In [19] one can find a review of
knee-point identification methods [22,26,28], and, crucially, the additional variable ‘knee-
onset’ is introduced (along with an alternative identification mechanism) to provide a
useful indication of the beginning of a sharp increase in the capacity degradation trend.
However, the corresponding notion of ‘knee-point’ and ‘knee-onset’ in IR degradation
curves is absent from the current literature. In this paper, we bridge this gap by addressing
the IR rise curve and the corresponding change points: the ‘elbow-onset’ for when the IR
curve becomes nonlinear and the midpoint of the accelerated IR increase which we call the
‘elbow-point’.

There are three main contributions of this work. Firstly, at a data pre-processing
level, we create an accurate IR predictor utilising machine learning convolutional neural
network (CNN) techniques. This predictor is then used to complete the dataset of [29] (for
which no IR readings were logged). Secondly, underpinned by the completed dataset, the
concepts of elbow-point and elbow-onset points for IR rise curves are proposed along with
corresponding identification methods. Thirdly, we showcase a working example of using
the predicted and real IR data for the early prediction of elbow-point and elbow-onset
using only the first 50-cycles of the cell’s lifespan data.

The rest of this paper is organised as follows. Section 2 introduces the data pool and
the data pre-processing approach addressing a missing IR data problem. In Section 3, we
propose the elbow-onset and -point concepts and identification algorithms, concluded by
a study of the numerous relationships between these quantities. Section 4 presents the
relevance vector machine (RVM)-based machine learning approach for the early prediction
of elbows. Results, contributions and future work are summarised in Section 5.

2. Battery Data Framework and Data Pre-Processing Procedures
2.1. Data Description

We mainly work with the datasets of [18,29]. The data, their description and experi-
mental details can be found at https://data.matr.io/1 (accessed on 21 February 2021)—first
and second blocks, respectively. Throughout this text, we will refer to the combination of
these two datasets as the ‘A123 dataset’. The data pool consists of high-throughput cycling
data for eight batches of commercial lithium iron phosphate (LFP)/graphite cells cycled
under fast-charging conditions: [18] provides data for three batches of approximately 48
cells each, here referred to as batches 1 to 3 (124 cells in total); Ref. [29] provides data for
five batches of cells (233 cells in total), of between 45 and 48 cells each (here referred to as
batches 4 to 8); batch 8 has 45 cells. Cell code notation: across the 8 batches of cells in the
A123 dataset, we refer to cell Y of batch X as bXcY.

https://data.matr.io/1
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All cells in batches 1, 2 and 3 are cycled to, or close to, their end of life (EOL), de-
fined as 80% of initial capacity, in a temperature-controlled environment with a variety
of charge/discharge profiles. It is important to note that, for each individual cell the
charge/discharge profile was kept constant from cycle to cycle. Batches 4–7 were only
cycled for 100–120 cycles and do not exhibit knees nor reach EOL. Cells in batch 8 were
cycled beyond their EOL. The dataset contains both in-cycle and per-cycle measurements.
Discharge capacity, temperature, current and charge are logged at an in-cycle level, and
per-cycle measurements of capacity, IR and charge time are provided. Data are recorded
consistently from the second cycle. Contrary to batches 1–3, batches 4–8 contain no internal
resistance measurements. The IR measurements provided are taken at a consistent Ah
level of 80% state-of-charge (SOC) relative to nominal capacity. Throughout, we refer to
this measurement as the IR of a cell. We note that the IR measurements for batches 1–3
contain a large amount of noise. Severson et al. [18] noted issues with their data logging
equipment which in turn affected some tests.

2.2. Data Pre-Processing via a Machine Learning Approach: Completing the Missing IR Data

Our first goal, to increase the scope of our analysis, is to address the missing IR data
of batch 8. We draw on machine learning techniques and build an IR prediction model
(on the data from batches 1–3) to predict the missing IR data of batches 4–8. Increasing
the number of matched capacity-IR curves from 124 pairs to 357 (= 124 + 233). Of these
357 pairs 169 (= 124 + 45) contain measurements up to or past the EOL. This will enhance
our later analysis comparing elbows, knees and the EOL, as well as the early prediction of
elbows. For statistical reasons, we build a simple yet accurate capacity predictor to test for
distributional dissimilarity between batches 1–3 and batches 4–8.

2.2.1. Pre-Processing and Modelling Pipeline

We split the cells of the dataset into training and test sets: grouping by batch so that
our test set contains an equal percentage of cells from each batch. As input our capacity
and IR prediction models take one charge/discharge cycle of voltage, current and SOC
data (the integral of the current from one full cycle). This data was cleaned, standardised
to have values between 0 and 1, interpolated using the ‘SciPy’ [30] function ‘interp1d’ to
one measurement every four seconds and zero-extended so that the data for each cycle of
each cell was of equal length and consistent time step. The median filter, averaging five
nearest time instants, was applied to smooth the measurements of capacity and IR prior to
prediction.

To design our models for IR and capacity prediction we utilised K-fold cross validation.
A validation set of cells was chosen at random from the training set, our models fitted to
the remaining training set and evaluated on the validation set throughout training. This
step was then repeated K-times with a new validation set and corresponding model. The
average performance of the validation sets was used to optimise model design and choice
of hyper-parameters. K-fold cross validation is particularly useful when working with
small datasets: mitigating the risk of over-fitting a particular validation set [31]. After
settling on the model’s architecture and hyper-parameters (described next), a copy of the
model was fitted to the whole training set and then evaluated on the test set to calculate
performance metrics.

2.2.2. Model for IR Prediction

We propose a model consisting of a convolutional ‘feature extraction’ block followed
by two densely connected layers displayed in Figure 1 and described in Table 1. Our model
was implemented in Python using TensorFlow via the Keras API [32]. All layer names
given in Table 1 refer to the corresponding Keras layers. The model was trained on the
data from batches b1–b3 using the adam optimiser for 50 epochs with a batch size of 526
and the mean absolute error—Equation (1)—as its loss function.
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Figure 1. Schematic of machine learning model for internal resistance (IR) prediction.

Table 1. Proposed architecture of convolutional neural network (CNN) model for prediction of IR.
Hyper-parameters are given in the format: filters, kernel size, activation for conv1d layers; pool size
for max_pooling; dropout rate for dropout; nodes, activation for dense layers.

Layer Name Input Size Hyper-Parameters Output Size

conv1d_1 926× 3 12, 3, ReLU 924× 12
max_pooling_1 924× 12 2 462× 12
conv1d_2 462× 12 32, 3, ReLU 460× 32
conv1d_3 460× 32 32, 3, ReLU 458× 32
max_pooling_2 458× 32 2 229× 32
conv1d_4 229× 32 32, 3, ReLU 227× 32
conv1d_5 227× 32 32, 3, ReLU 225× 32
max_pooling_3 225× 32 2 112× 32
flatten_1 112× 32 - 3584
dropout_1 3584 0.5 3584
dense_1 3584 64, ReLU 64
dropout_2 64 0.3 64
dense_2 64 1, linear 1

The machine learning performance scores selected for this work are the mean absolute
error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE)
defined as follows. For y the vector of true values and ŷ the vector of predicted values

MAE(y, ŷ) =
1

nsamples

nsamples

∑
i=1

|ŷi − yi| , MAPE(y, ŷ) =
100%

nsamples

nsamples

∑
i=1

|ŷi − yi|
yi

, (1)

and RMSE(y, ŷ) =

√√√√ 1
nsamples

nsamples

∑
i=1

(ŷi − yi)2 . (2)

Our model’s performance metrics for IR prediction can be found in Table 2. We are
unaware of works using the A123 dataset for IR estimation. Nonetheless, the estimation of
IR has been addressed for other datasets [33–39]. We obtain an RMSE of 0.00035 and an
MAPE of 1.6% which is low (if nominally compared with capacity estimation accuracy in
the literature).
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Table 2. Average performance of model to predict IR with 95% prediction intervals.

RMSE MAPE (%)

Train Test Train Test

IR 0.00029± 6.2×
10−5

0.00035± 5.0×
10−5

1.19± 0.22 1.60± 0.24

2.2.3. Validation Step via a Model for Capacity Prediction

We have shown that our model for IR prediction is effective on batches 1–3. To see if we
can trust the predictions that this model makes on batches 4–8 we check for non-similarity
between the datasets. We do this by extrapolating on capacity—a variable present for all
batches. This is a standard process in imputation (simple or multiple). To this end, we
utilise a simple feed-forward neural network consisting of three densely-connected layers:
the first two layers containing 32 neurons with the rectified linear unit (ReLU) activation
function and the final layer consisting of a single neuron with a linear activation. The
model was trained for 100 epochs with a batch size of 512 using the adam optimiser and
the mean squared error as its loss function. During training, a dropout of 0.2 was used
between the middle and last layer. Trained on all of the data from batches 1–3 and tested
on batches 4–8, the model obtained the performance metrics displayed in Table 3 with an
MAPE of 0.51%. This test gives us confidence that both datasets [18,29] are indeed not
dissimilar.

Table 3. Average performance of capacity model trained on batches 1–3 tested on batches 4–8, with
95% prediction intervals.

RMSE MAPE (%)

Train Test Train Test

Capacity 0.0053± 4.2×
10−3

0.0095± 4.6×
10−3

0.37± 0.30 0.51± 0.26

The prediction of capacity (and SOH) is of wider interest than our discussion of elbows,
so we briefly compare these results with those found in the literature. We point to Table
1 in [40] (MAPE and RMSE error given) and Table 2 in [41] (error type not given) for a
review/comparative work on capacity estimation. We cannot directly compare our results,
as the data is different. However, from a strictly numerical point of view, our RMSE of
0.0095 and MAPE 0.51% errors for capacity (Table 3) are lower than the values of [40] (Table
1)—for a fair comparison, one would need to test the varying approaches on a common
dataset.

2.2.4. Predicting the Missing IR Data

In order to address the missing data issue, we trained the IR model on batches
1–3 multiple times and an ensemble of these models was used to predict on batches 4–8.
This predicted IR data is available at https://doi.org/10.7488/ds/2957 (accessed on 21
February 2021) . Figure 2 shows the IR for sample cell b8c4 and we strongly emphasise
to the reader that the extrapolation of the IR data past EOL (80% capacity) is, as fully
expected, not reliable; this stems from the limitation of the training dataset (batches 1–3)
with data only up to the EOL. Prediction outside that range of input data is not reliable
as can be seen in Figure 2 where we observe a strong widening in the prediction intervals
past the EOL. The prediction intervals provided throughout the text are calculated in
a frequentist manner. A given model is fitted to data multiple times and performance
metrics/predictions recorded. The empirical average and variance-value of predictions
are calculated and under the assumption of normality one uses those values to produce
prediction intervals (at any given probability quantile level q, e.g., in Figure 2 we have
q = 95% and q = 80%).

https://doi.org/10.7488/ds/2957
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Figure 2. The predicted IR data for cell b8c4 are given by the black continuous line and is formed from the average of
20 predictions. We display 80% and 95% prediction intervals. Beyond the intuition of extrapolation, these intervals show
that predictions past the EOL (capacity) should not be trusted.

2.2.5. Algorithmic Framework

The proposed algorithmic framework takes full advantage of machine learning-based
approaches to solve the missing IR data problem in the raw data pool allowing the genera-
tion of artificial IR data to complete the life cycle data. The predicted IR data can be used
for elbow-point and -onset identification and is able to assist the early prediction of the
elbow-point and elbow-onset in IR curves.

The schematic framework of the algorithms is illustrated in Figure 3. Section 2
introduces the data pre-processing procedure, where a CNN-based predictor has been
trained on the data from batches 1–3 to predict the missing IR of batches 4–8. For validation,
a capacity estimator was trained to test for dissimilarity between the two datasets. In
Section 3, using the completed data we confirm significant linear relationships between
knee/elbow-points, -onsets and EOL. Further tests are carried out in Section 4 relating
to the early prediction of elbow-points and -onsets. In particular, the straightforward
RVM-based quantitative method is applied for the early prediction of elbows.

Full life cycle data 
(missing IR data)

CNN model to predict 
missing IR 

ANN model to predict 
capacity for validation 

Completed life cycle data 
with capacities and IR  

Data pre-processing procedure

Completed life 
cycle data Bacon-Watts 

models 

Double Bacon-
Watts models 

IR curve fitting
Elbow-points

Elbow-onsets
Linear regression 

model (elbow, 
onsets, EoL)

Identification of elbows-points and –onsets, and their relations

Completed first 
50 life cycle data

RVM method for 
quantitative prediction of 
elbow-points and -onsets

Early prediction of elbow-points and -onsets

Elbow-points, elbow-onsets, temperature 
(T), capacity (Q), voltage (V), current (I), IR

Figure 3. Graphical abstract for the proposed algorithmic framework.
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3. Identification of Elbows, Knees and Their Relations
3.1. Methodology

Fermín et al. [19] proposed the use of the Bacon–Watts (Equation (5)) and the double
Bacon–Watts model (Equation (6)) for the identification of knee-point and knee-onset,
respectively. We will use the same basic methodology, with the addition of several steps
to account for noise in the data and potential sigmoid behaviour. The high level of noise
present in the IR data, see Figures 4a and 5a, prevents the Bacon–Watts model from neatly
fitting the data, and this is overcome via a smoothing step as described in Algorithm 1
(block 1) below. We report that this noise also causes issues for the alternative knee
identification methods proposed in [19,22,26], see Figure 5. In addition, we observed
sigmoid-type capacity fade curves for some cells in batch 8, and hence, we employ a
subroutine to isolate the knee/elbow identification from the right-most plateau. We present
first the algorithm and afterwards reason its several steps.

Algorithm 1 ’Smoothed Bacon–Watts’: Identification of knee/elbow-point and -onset
Block 1: Data smoothing.
1. Fit isotonic regression to (capacity/IR degradation) lifespan data (across the full curve).

2. Determine data-truncation cycle-point n∗:
(a) Fit (3) (Asymmetrical sigmoidal) to isotonic regression curve,
(b) Find cycle-number n∗: cycle at which 2nd derivative of fitted (3) changes sign,

else last cycle in series.
3. Fit (4) (line-plus-exponential) to isotonic regression curve up to cycle n∗.
Block 2: Identification.
4. Fit Bacon–Watts model (5) to (4). Identify knee/elbow-point.
5. Fit double Bacon–Watts model (6) to (4). Identify knee/elbow-onset.

The isotonic regression step, Step 1, solves several issues: it annuls the behaviour of
capacity increase or IR decrease across the first few cycles and removes the influence of
sharp movements where the IR decreases or increases due to measurement errors. From
first principles, our choice reflects the fact that the electrochemical degradation mechanisms
within the cell are irreversible. For a given load and set of ambient conditions, IR increase
may be caused by the thickening of the SEI on the anode which irreversibly consumes
lithium and electrolyte. Additionally, IR increase can be caused by a loss of anode and
cathode material which can result from many factors, such as electrode particle cracking
and loss of electrical contact as a result of mechanical expansion/contraction during cycling,
corrosion of current collectors at low cell voltage and binder decomposition at high cell
voltage. These same mechanisms also lead to an irreversible reduction in capacity and,
as such, the monotonicity of the model is reflective of the real-world evolution of a cell’s
capacity over its lifespan. The isotonic regression is performed using the Scikit-learn
Python package [42] and the procedure is described in [43].

Throughout the manuscript, and the following equations, the generic ε variable
denotes the errors/residuals of its associated model, indicated as a superscript, and is a
normal random variable with zero mean and finite (unknown) variance.

The asymmetrical sigmoidal fitting step, Step 2. The asymmetrical sigmoidal (‘as’)
model is described by Equation (3)

Yas = d +
a− d[

1 +
( x

c
)b
]m + εas, (3)

where a and d associate to the top and bottom plateau of the curve respectively, b controls
the slope between plateaus, m the level of asymmetry and c determines the inflexion point.
For given data, the constants are estimated by straightforward least-squares estimation
(similarly for subsequent parametric models).
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In several cells from batch 8, we observe a sigmoid-type capacity fade curve where,
after passing the knee and then degrading linearly for some time, the degradation ap-
proaches a plateau (e.g., cell b8c4). To isolate the detection of knees/elbows from this
behaviour, we propose the fitting of the asymmetrical sigmoidal model to then truncate the
data before said plateau (point n∗) via the 2nd derivative truncation rule.

The final smoothing step, Step 3, involves fitting the parametric line-plus-exponential
(‘le’) model of Equation (4) to the isotonic data (from Step 2) up to cycle n∗. This idea
can be traced back to [44] (Section 2.2.1) under the name of ‘Exponential/linear hybrid
model’—[36,45] discuss other parametric models. The line-plus-exponential is described by
the following model:

Yle = β0 + β1x + β2 exp(λx− θ) + εle, (4)

where β0, β1 and β2 control the intersection point and slope of the line, and the size of
the exponential, respectively. The quantity λ controls the ‘speed’ of the exponential and
θ controls where the impact of the exponential starts. The main motivation for model
(4) is that for many cells, the degradation of IR is very close to linear until close to the
elbow-onset followed by a sharp elbow-point.

For the identification of the knee/elbow-point, Step 4, we use the Bacon–Watts model.
Fermín et al. [19] (Equation (1)) describe the Bacon–Watts (‘bw’) model (5) as a two straight-
line relationships around the transition point x1:

Ybw = α0 + α1(x− x1) + α2(x− x1) tanh{(x− x1)/γ}+ εbw, (5)

where α0, α1 and α2 control the slopes of the intersecting lines and the intercept-weigh of
the leftmost segment respectively and γ controls the abruptness of the transition. We fix γ
as a small value to obtain an abrupt transition. After optimisation, the fitted value of x1 is
defined as the knee/elbow-point.

The identification of the knee/elbow-onset, Step 5, is performed by the double Bacon–
Watts model (‘dbw’) (6) (also [19] Equation (2)) modifying Bacon–Watts to identify two
transition points, concretely:

Ydbw = α̂0 + α̂1(x− x0) + α̂2(x− x0) tanh{(x− x0)/γ̂}+ α̂3(x− x2) tanh{(x− x2)/γ̂}+ εdbw, (6)

as in Equation (5), the parameters α̂i and xj are estimated and γ̂ is chosen as a small value
to produce abrupt transitions at x0 and x2. The knee/elbow-onset is defined as the change
point x0.

Figure 4 displays the output of Algorithm 1 applied to the IR curve of cell b1c29
(non-predicted data). Elbow-point and its onset are identified, and the smoothing steps
are illustrated showing the fitted isotonic regression and line-plus-exponential model
against the input data (for this cell, Step 2 yields n∗ as the final cycle number). Figure 5
displays the performance of other known algorithms for knee identification applied to
the elbow identification problem. We find that [19,22,26]’s algorithms are too sensitive
to noise to provide consistent identification results. Our approach addresses the noise
issue allowing for coherent elbow identification. From a statistical point of view, any
identification approach will be affected by the noise in the data; thus, the identified elbows
will be less exact than the identified knees, for which the data is much smoother. For
comparison, the non-parametric bootstrap procedure was used to calculate 95% confidence
intervals (CI) for the knee/elbow-points and -onsets identified by Algorithm 1. The average
CI’s width was 24 cycles for the elbow-point, 4 cycles for the knee-point, 35 cycles for the
elbow-onset and 5 cycles for the knee-onset; this difference is a direct consequence of the
noise present in the IR data. Finally, Algorithm 1 applied to knee identification recovers
fully the results of [19] (we omit these results).
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The width of the 95% confidence interval (computed by the non-parametric bootstrapping procedure) for the elbow-point of
this curve is 23 cycles, and for the elbow-onset it is 38 cycles.
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Figure 5. (a), Comparison of elbow-points obtained with Algorithm 1, [19]’s Bacon–Watts, maximum curvature and slope
changing ratio methods on a sample of cells from the A123 dataset (from left to right b2c34, b1c30, b3c15, b3c1, b1c3).
(b), Comparison of elbow-points for all cells in the A123 dataset. One expects to see a linear relationship between EOL
and elbow-point; of the methods compared only Algorithm 1 and the algorithm of Satopaa et al. [2011] recover a linear
relationship reliably, however, by examining plot (a), we see that Satopaa’s algorithm selects the end point as the elbow.

Zhang et al. [28] report for a dataset of nickel-manganese-cobalt cells that the knee-
point appeared at between 90–95% nominal capacity; in [19], it was reported that the
knee-point, for batches 1–3 of the A123 dataset, appeared on average at 95% nominal
capacity and the knee-onset at 97.1% nominal capacity, with an average gap of 108 cycles
between the knee and its onset. We report that, for the A123 dataset batches 1, 2, 3 and
8, on average, the elbow-onset appears at 103.0% initial IR (93.6% nominal capacity) and
the elbow-point at 104.7% initial IR (91.3% nominal capacity), with the elbow-onset and
its point on average 52 cycles apart; on average, both elbows appear after the knee-point.
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These reported figures are calculated from the smoothed exponential curve as described in
Algorithm 1.

3.2. Linear Relations

Figure 6 illustrates the strong linear relationships observed between the calculated
knee/elbow-points and the EOL, making it possible to estimate each point given a mea-
surement or prediction of another point(s). These linear relations are obtained using a
standard linear regression model y = c0 + c1x + ε, where y denotes the dependent variable,
x the independent variable, ε represents the residuals, and c0 and c1 control the intercept
and slope of the linear model, respectively. The obtained coefficient values along with their
confidence intervals are presented in Table 4, where the knee relations agree with those
found in [19] (Table 1).

We present the linear relationships obtained when including the predicted IR data.
From viewing Figure 6, comparing the green squares and black circles, the reader will ap-
preciate that their inclusion did not significantly influence the linear relationship obtained.
This observation lends a second layer of credibility to the predicted IR data: the elbows
displayed in the predicted IR match closely with what one would expect given the linear
relationships observed on batches 1–3.
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Figure 6. (a), Linear regression model linking the knee-point to end of life. (b), elbow-point to end of
life. (c), knee-point to elbow-point. (d), knee-onset to elbow-onset. Every linear model is presented
with a 95% confidence band on the plotted regression line; all linear relations here are calculated
from the A123 dataset enriched with the predicted IR data for batch 8. Elbow points derived from the
predicted IR data are highlighted as open black circles; the reader will appreciate that their inclusion
did not significantly influence the linear regression results obtained.
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Table 4. Coefficients of four linear regression models relating the knee-point (a) and the elbow-point
(b) to the end of life, the knee-point to the elbow-point (c) and the knee-onset to elbow-onset (d),
respectively. The p-values for β1 were computed using the Wald test, and the small values allow the
rejection of the null hypothesis that a linear relationship does not exist. The 95% confidence intervals
for the estimated coefficients are calculated via bootstrapping. The coefficient of determination, R2, of
these linear regression models is (a) 0.9822, (b) 0.9896, (c) 0.9818 and (d) 0.9520; all close to 1, showing
that the fitted models explain the observed data well.

(a) Knee-Point to EOL (b) Elbow-Point to EOL

Coefficient Estimate p-value Coefficient Estimate p-value

Intercept (β0) 17± 21 Intercept (β0) 121± 11
Slope (β1) 1.26± 0.04 4.0× 10−148 Slope (β1) 0.97± 0.02 4.5× 10−162

EOL = 1.26× knee-point + 17 EOL = 0.97× elbow-point + 121

(c) Knee-Point to Elbow-Point (d) Knee-Onset to Elbow-Onset

Coefficient Estimate p-value Coefficient Estimate p-value

Intercept (β0) −103± 28 Intercept (β0) −143± 42
Slope (β1) 1.30± 0.05 3.6× 10−147 Slope (β1) 1.51± 0.08 4.5× 10−112

elbow-point = 1.30× knee-point− 103 elbow-onset = 1.51× knee-onset− 143

4. Early Prediction of Elbows

A real-word challenge is how to predict the trajectory of IR growth, e.g., the elbow
points in IR curves as to detect early signs of unacceptable degradation. For example, to
filter out cell production lots that will exhibit faster increases in IR or to schedule HEV
battery replacement/maintenance. We complement the previous section in scope of the
findings of [19] (Section 3). We apply the quantitative knee prediction algorithm developed
there to the early prediction of elbows without any additional optimisation, i.e., ‘as is’.
A full description of the model and feature extraction process can be found in [19] and
supplementary material; however, we provide a brief overview. It is outside the scope of
this paper to revisit the early prediction of knees.

The quantitative prediction of the elbows is performed by a RVM [46], a type of linear
regression mechanism, taking features extracted from the early life of the cells. The feature
extraction process takes as input the first 50-cycles of the available per-cycle and in-cycle
measurements (capacity, IR, charging-times, voltage, current, temperature) and draws on
time-series analysis to calculate a vast collection of summary statistics without input from
domain expertise (see [19] Supplementary Figure S5). Then, a sequential feature selection
funnel is deployed to select around 100 features to train the RVM [19] (Supplementary
Figures S6 and S7). When using batch 8 the input IR is the predicted IR from Section 2.2.4—
the cases with/without batch 8 are distinguished. The model is trained on data from all
but one cell and tested on the remaining cells (leave-one-out framework); this process
is independently repeated such that each cell is used for testing once. The performance
metrics displayed in Table 5 are the average of the test performances.

The resultant early predictions are reported in Table 5, where two points should be
made salient. Firstly, on elbows vs. knees prediction, when compared to [19], the model
performs worse predicting elbows than when predicting knees: MAPE 13.8% vs. 12.0%,
elbow-onset vs. knee-onset, and MAPE 10.7% vs. 9.4%, elbow-point vs. knee-point—overall,
the elbow prediction is up to 2% worse when compared with knee prediction. This lower
accuracy in elbow (vs. knee) prediction was expected as the input IR measurements are
much noisier than the capacity measurements, and hence, the identification of elbows
is inherently less exact, which in turn affects the predictive performance—as argued in
Section 3.1, the confidence intervals for the elbow identification are significantly wider
than those for the knees. Due to this higher noise in the elbows, when predicting elbows
from input data, the relationship between input data and elbows will be weaker/noisier
than when predicting the knees.
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Secondly, the inclusion of the predicted IR data leads to a marginally worse average
performance of our model: the MAPE worsens by 0.2% for the elbow-onset prediction and
by less than 0.8% for the elbow-point prediction, see Table 5. This critically showcases that
the generated IR data may be used for the prediction of elbows—which we emphasise was
an input feature to the RVM.

Table 5. Result of RVM regressor for elbow-onset (a) and elbow-point (b) when predictions are made from the first 50 cycles.
The 90% confidence intervals (CI) were calculated via bootstrapping. The entry ‘With b8?’ refers to results computed with
(‘Yes’) and without (‘No’) the inclusion of the artificially predicted IR data of batch 8.

(a) Elbow-Onset Prediction (b) Elbow-Point Prediction

With b8? Metric Score CI (α = 0.1) With b8? Metric Score CI (α = 0.1)

No MAE (cycles) 89.1 [77.0, 101.8] No MAE (cycles) 76.3 [64.5, 88.6]
MAPE (%) 13.8 [12.4, 15.3] MAPE (%) 10.7 [9.5, 12.0]

Yes MAE (cycles) 91.3 [79.4, 104.0] Yes MAE (cycles) 83.4 [72.8, 94.6]
MAPE (%) 14.0 [12.6, 15.5] MAPE (%) 11.5 [10.4, 12.8]

From a methodological point of view, we employed the simple RVM algorithm of [19]
in a direct manner: without any additional optimisation to take into account the noisier IR
data or the predicted IR data. This was a choice to prove that the generated IR data can
be used for early prediction. There is indeed room for future improvements in the early
prediction of IR elbows and such is left for future research. Lastly, increasing the number
of cells displaying elbows by prediction to 169 (= 124 + 45) will benefit approaches that are
highly dependent on the size of a dataset.

5. Conclusions and Future Work

In this original work, the IR rise curve of Li-ion cells is characterised by the novel
concept of ‘elbow-point’ and ‘elbow-onset’; a generalist identification algorithm is then
proposed. The proposed approach is able to handle not only measurement noises but
also sigmoid-type patterns in capacity fade and IR rise curves. The findings highlight
significant linear relationships between EOL, capacity knee-point/IR elbow-point and
capacity knee-onset/IR elbow-onset for the data under study.

Two machine learning-related goals were achieved. The first, part of the data pre-
processing step, draws on neural network techniques to build independent IR and capacity
SOH predictors achieving a small MAPE of 1.6% and 0.4% respectively—these results are
of wider general interest. The proposed IR estimator has been deployed to complete an
existing cell cycling dataset with missing IR measurements resulting in a well-rounded
life cycle dataset encompassing both capacity and IR data. The generated data is publicly
available. Such datasets can be used for both identification and the early prediction of
elbows in IR curves. We then provided an illustrative example for such an early predictor
of IR elbows. Furthermore, the cells with predicted IR are shown to be usable for the early
prediction of elbows: resulting in only slightly worse average performance than when they
are excluded (the MAPE worsens by less than 0.8%).

The methods of elbow identification and prediction, in this work, have commercial
value to battery manufacturers as well as end users such as fleet managers and energy stor-
age utility operators. Accurate early forecasting of the IR elbows will allow manufacturers
to set appropriate performance and lifetime warranties for their products. Additionally,
elbow forecasting allows battery users to accurately and conveniently schedule battery
maintenance and replacement, or adjust the duty cycle to accommodate the reduced
performance of the battery pack as it degrades.

In the future, the accuracy of the early prediction will be enhanced. Multiple dimen-
sions of inputs encompassing the predicted IR data and other measurements will be used
to train the model with an improved tolerance for noisy data. Overall, elbow identification
and elbow early prediction can be used to influence the design of the thermal management
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system: accounting for the additional heat dissipated by cells as they approach their EOL. A
study comparing the relations between knee/elbow-onset and -point across more datasets
is left to future work.

Supplementary Materials: The predicted internal resistance dataset created to complement batches
4–8, those of the [29] dataset, is available online at https://doi.org/10.7488/ds/2957 (accessed on 21
February 2021).
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