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Abstract: This work proposes an Artificial Neural Network (ANN) able to provide an accurate
forecasting of power produced by photovoltaic (PV) plants. The ANN is customized on the basis
of the particular season of the year. An accurate analysis of input variables, i.e., solar irradiance,
temperature and air humidity, carried out by means of Pearson Correlation, has allowed to select,
day by day, the most suitable set of inputs and ANN architecture also to reduce the necessity of
large computational resource. Thus, features are added to the ANN as needed, avoiding waste
of computational resources. The method has been validated through data collected from a PV
plant installed in ENEA (National agency for new technologies, energy and sustainable economic
development) Research Center, located in Casaccia, Rome (Italy). The developed strategy is able to
furnish accurate predictions even in the case of strong irregularities of solar irradiance, providing
accurate results in rapidly changing scenarios.

Keywords: photovoltaic; artificial neural network; PV power; forecasting

1. Introduction

The last decade saw a widespread diffusion of alternative energy sources in order to
promote environmental protection against global warming and to reduce the emission of
carbon dioxide in Earth’s atmosphere. Nowadays, a significant quantity of electric energy
is derived from renewable energies and PV technologies are experiencing a widespread
diffusion. This approach follows the requirements proposed by the Paris Agreement signed
in 2016; it involves 195 countries among the members of the United Nations Framework
Convention on Climate Change that are committed to reduce greenhouse gas emissions to
zero by the mid of the 21st century.

Variable renewable energy (VRE), such as solar PV and wind, constitute emerging
energy sources due to their flexibility and low environmental impact and countries all over
the world are experiencing their penetration in the market. Figure 1 shows the annual level
of penetration of VRE registered in 2018: some countries, such as South Australia, Denmark
and Ireland, have reached the fourth phase of this process, that corresponds to almost the
totality of consumption being supplied by VRE. The trend is clear: the diffusion of VRE
in many countries is going to increase significantly in the following years; in particular,
shares of VRE are going to rise from 5-10% to 10-20% over the next years in some areas,
as depicted in Figure 2. On another hand, the adoption of renewable energies is able to face
the problem of the exhaustion of fuel reserves fossil. Among non-polluting energy sources,
wind and solar are the most promising but, since the amount of energy that can be drawn
from the sun is even higher than the world energy demand, solar energy has attracted a
greater interest. Hence, several efforts are being made in order to optimize solar energy
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production, transmission and storage. This latest aspect is of main importance since it is
not only performed through a dedicated accumulator (e.g., batteries), but it includes novel
solutions such as using electrical vehicles as mobile storage devices [1]. Indeed, in this case
it is important to optimize power transfer efficiency [2].

In this scenario, the topic of PV produced power forecasting plays a relevant role.
The development of methods able to provide an accurate prevision of produced PV power
would lead to a more efficient management of energy and increased reliability of the system
itself. Indeed, PV energy is largely affected by weather conditions and, hence, is subject
to sudden variations. The factor that mostly impacts on PV generated power is solar
irradiance, but also temperature and air humidity can be relevant; the influence of these
latter variables on PV power can differ from one location to another and, hence, an analysis
is needed when considering plants located in different geographic locations. The fluctuant
nature of such parameters makes the setup of a prediction model quite complex. This
variability impacts on the reliability and accuracy of the forecast, hence, has to be well
understood and managed. Several approaches have been addressed to provide an accurate
forecasting of PV energy and carefully analysed according to the particular application.

The goal of this work is to achieve an accurate forecasting of the power generated
by the PV system in order to optimize the management of energy flows concerning the
electrical storage system. The ANN-based model presented is utilized for day-ahead PV
power forecasting with fifteen-minute intervals. The performance of the proposed method
is demonstrated with a case study using an actual dataset collected from ENEA RC situated
in Casaccia, Rome (Italy). The nominal power of the PV plant is 4.2 kW.

As a first step the most recent approaches existing in literature for PV power prediction
are presented in order to provide researchers with a complete overview of available
solutions. Then, new solutions are suggested and presented in detail showing the necessity
of an adequate wide set of input data and the relevance of weather information to the
energy management. An accurate analysis of data has allowed to select the most influential
inputs to be provided to the network and to identify a suitable size of the training set.
Finally, the main concepts behind ANNSs are reported and the cases of study are shown:
mainly, three cases have been identified to choose the better network architecture. After the
description of the developed neural system, the validation phase is discussed and the
experimental results are shown emphasizing the advantages obtained in the optimization
of power management.
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Figure 1. Variable renewable energy (VRE) level of penetration registered in 2018 [3]. Source: IEA
(2019). Status of Power System Transformation 2019. All rights reserved.
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Figure 2. Trend of VRE penetration up to 2023 [3]. Source: IEA (2019). Status of Power System
Transformation 2019. All rights reserved.

2. Literature Review

Recent studies in the field of PV energy generation have focalized on analyzing PV
power forecasting methods. Several approaches exist in literature that allow to achieve
acceptable solutions. Hence, a systematic literature review is needed in order to take
stock of the most promising and effective forecasting techniques. While a standard is not
established to categorize PV power forecasting approaches, some criteria can be useful to
clearly visualize the various aspects that characterize this research field.

A first distinction can be made in terms of parametric and non-parametric models.
The former rely on white-box approaches where each subsystem can be modelled through
a set of mathematical equations that are functions of some parameters and that describe
the phenomenon and its dynamics; in general, these methods suffer from uncertainties in
the output, as a consequence of approximations introduced with the aim of simplifying
the model. Physical models belong to this group [4]. In the specific case of PV power
forecasting, the principal weakness is that there is a strong dependence of the result on
atmospheric variations and this approach better fits when dealing with quite regular
atmospheric conditions. Moreover, the computational costs associated to the simulation
of power converters connected to PV sources can be prohibitive for large systems and
optimization is often required [5].

The second approach, instead, assumes that the PV system is a black box whose
characteristics are unknown: in this case historical data are needed to reconstruct the
behavior of the system; the reliability of the model is strictly linked to the quality and
accuracy of past information. One of the cons of this approach is that the plant must be
operating for a period in order to provide the input data; on the other side, non-parametric
models are fault tolerant with respect to eventual input errors [6].

Each of the methods that will be described hereafter, are non-parametric models.

Statistical methods use as inputs past information and are useful for short-term
forecasting. It is possible to enhance the accuracy of these methods making use of historical
data belonging to recent times with respect to the moment of prevision. Autoregressive
moving average (ARMA) and AR Integrated MA (ARIMA) models are part of this class.
They are able to establish correlations between time-series and ARIMA is particularly
suited for irregular data patterns [7-9].

Regression methods, instead, require a mathematical model and several independent
variables to provide the predicted value of a dependent quantity, i.e., PV power in our case;
this requirement is the main drawback of the method [10,11]. Moreover, these models have
to be designed for the specific case of study.

Conversely, machine learning approaches make use of larger datasets exploiting the
ability of such methods of learning from examples and of managing non-linear prob-
lems. The best-known approach belonging to this group is constituted by ANNs. ANNs
draw their strength from plasticity, adaptability and generalization capabilities. Actually,
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they are considered among the most effective tools to provide satisfactory forecasting
results [12-18]. Generally, ANNs with a single hidden layer are suitable to solve even
complex tasks; however, when the relationship among inputs and outputs is more elabo-
rate, this simple architecture can be not sufficient. Therefore, different architectures and
types of ANNs have been studied such as Multilayer Perceptron (MLP), Multilayer Feed
Forward (MLFF), Radial Basis Function (RBF) and Recurrent ANNs (RNN). The afore
mentioned architectures add complexity to the model: this is a drawback of ANNS; in
addition, ANNSs are particularly sensitive to starting guesses and, as a consequence, their
random initialization may reduce results reliability and accuracy. Machine learning also
includes fuzzy logic (FL), a method preferred in the case of medium-term forecasting since
it requires long processing times [19].

Similarly, Support Vector Machine (SVM) is a machine learning method that is based
on supervised learning but, unlike ANNS, is not strongly dependent on past data. However,
SVM is strongly linked to the value assigned to some characterizing parameters and this
initialization is the weakness of SVM-based approaches [20].

In some cases, hybrid models [21-23] are built mixing the characteristics of multiple
methodologies and trying to conjugate the advantages of each method. The main drawback
of a multiple model is its complexity with respect to single model approaches; it has
been demonstrated that in most cases results achieved through single models are quite
satisfactory [24,25].

It can be noticed that a distinction is often made in literature between univariate and
multivariate prediction methods, the former using only previous PV power data and the
latter including also weather information. In [26] a comparison is shown between two
RBFNNSs with different input vectors; the ANN with a unique input vector allows to achieve
a higher prediction accuracy. As highlighted in [27], univariate models are often satisfactory
for short-term forecasting. From another point of view, prediction models can be classified
on the basis of the nature of input data; some methods use exogenous data [25,28] that are
coming from prediction models, while others are based on the knowledge of past weather
information or no-exogenous data [29].

Regardless of the nature of data, a pre-processing step must be considered to improve
the forecasting accuracy. This step consists in a correlation analysis between the temporal
variables, that strongly influence the PV power generation, and the PV power output.
The most used correlation analysis method is the Pearson one, that allows to identify
the relationship between two variables through the calculation of Pearson’s coefficient.
These variables concern all metereological data that can be measured on the plant, such as
the solar irradiance, ambient temperature, air humidity, wind speed. A deep correlation
analysis is conducted in [13,30] to identify the order of significance of meteoreological
variables. The effect of environmental factors, especially of ambient temperature and
relative humidity, on PV panel performance, is carried out by means of a correlation analysis
in [31]. The strong impact of temperature on PV power generation is demonstrated in [32].
On the other hand, a preliminary correlation analysis underlines the strong correlation
between solar irradiance and PV power while a moderate correlation is that with air
temperature and wind speed [33].

Moreover, the accuracy of the prevision depends on the forecast horizon. The forecast
horizon can be defined as the time interval into the future in which the forecast has to be
accomplished. Therefore, the same model with its optimized parameters provides different
results when varying the forecast horizon. The literature generally classifies PV power
forecasting methods into three groups according to time horizon. The forecasting of PV
power generation done for one hour, several hours, one day, or up to seven days is known
as short-term forecasting. Short-term forecasting of PV power refers to approaches able to
provide previsions up to seven days and it is important in smart management energy sys-
tems where the need for an intelligent distribution of generated power is essential [34-36].
When the prevision is done for more than one week up to one month, we are dealing with
a medium-term forecasting; in this case, methods are useful for providing an estimate of
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future power production. Lastly, long-term forecasting methods predict PV power gener-
ation from one month to one year and they are suitable for planning accurate strategies
of energy distribution. Sometimes, a further group is added to consider very short-term
forecasting methods, generally applied when a sudden prevision is needed within a time
period smaller than an hour [27]. In the present work we try to build a method able to
conjugate the benefits of each presented approach, trying to exploit the advantages of
Artificial Intelligence and to reduce the drawbacks related to it. This method is, then,
inserted in a wider project that involves the optimal distribution of PV generated power
among storage system, load and electrical grid.

3. Data Analysis

The training of a suitable neural network requires an essential previous step. The se-
lection of an appropriate dataset is the most critical point in the process of designing
an ANN [37] since the choice of the database strongly affects the performance and the
convergence of the network.

Before the development of the neural network, the literature suggests an analysis of
potential input data across an extended time period in order to identify the variables that
are more relevant to the learning process [25,37,38]. A study of the variables that contribute
to the network output allows to establish which of them would constitute the inputs of the
network [39].

3.1. Data Collection

Data used for the development of the neural system belong to a PV plant located in
Research Center ENEA Casaccia (Rome, Italy), shown in Figure 3.

Figure 3. Photovoltaic (PV) plant located in Research Center ENEA Casaccia used to validate the method.

The PV system is equipped with a SMART metering system, shown in Figure 4, able to
acquire the electrical and physical quantities during system operation. The smart metering
system is structured on two levels: the first level consists of the registers made available
by the manufacturers of the inverters and the various electrical storage systems, while
the second level is constituted by a series of power transducers installed directly on the
terminals of the machines. Moreover, the power produced by the plant and that exchanged
with the network is acquired by means of suited sensors. The smart metering system is
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periodically queried by an Energy Management System (EMS), through ModBus-TCP
protocol, in order to communicate with the various devices. The acquired quantities are
processed by the management and control software and stored with a 15 s sample time
on a daily file, providing 5760 samples. The plant has been functioning since November
2018. Therefore, the available data are recorded within the date range from 1 November
2018 to 10 January 2021. In the present application, a time step of 15 min has been chosen
for gathering data: hence, each daily input is composed by 96 samples. The samples,
collected to perform a preliminary data analysis, are the PV produced power measured,
as already mentioned, by means of sensors, and weather data gathered from a weather
station mounted close to the plant, i.e., solar irradiance, temperature and air humidity.

-
=

S

|
e
;,

Figure 4. SMART metering system of PV plant.

A seasonal analysis is useful to identify any possible meteorological scenario. As will
be explained in the following sections, there is a strong association between solar irradia-
tion and PV produced power; as a consequence, the shape of daily generated power can be
considered an indicator of the variability of solar irradiance during the day. Figures 5-8
show the trends of produced power referred to a single week of each season. It can be
noticed that summer and winter are mainly characterized by quite regular days that repro-
duce a well recognizable shape. In spring and autumn, instead, a significant irregularity
occurs that does not allow to identify a typical trend. In Table 1, Pyax, Prean, Guax and
Tax refer to the maximum and mean PV output power, global horizontal irradiance and
maximum air ambient temperature, respectively. It is evident that the higher value of
power, and, hence, of irradiance, is encountered in spring; nonetheless, the mean value of
power is higher in summer than in spring: this is due to irradiance inconstancy during
spring. The lower value of maximum power encountered in summer instead of in spring is
due to the increase in temperature that increases the thermal losses and reduces the PV
systems output. These facts suggest that a seasonal distinction of data can be useful for the
learning process of the network.
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Table 1. PV plant data referred to seasonal periods shown from Figures 5-8.

Season Pyiax (W) Piiean (W) Giax (W/mz) Tinax (°C)
Spring 4912.4 872.4 1237.0 21.7
Summer 3401.8 1101.7 992.5 35.1
Autumn 3538.4 259.5 578.6 18.6
Winter 4256.2 956.9 715.6 16.0

In this way, as will be shown, the presented network will be able to forecast power
even when dealing with weather irregularities, as a result of an accurate tuning of network
parameters based on the analysis of input data.

LA

OO 50 100 150 200 250 300 350 400 450 500 550 600 650
Samples

w
I

Power [kW]
[A]

Figure 5. Trends of produced power referred to spring period from 26 April 2020 to 2 May 2020.
Days show significant irregularity and the produced power is not characterized by typical profiles.

i

OO 50 100 150 200 250 300 350 400 450 500 550 600 650
Samples

Figure 6. Trends of produced power referred to summer period from 15 July 2020 to 21 July 2020.
Days are regular and the power profiles have a well recognizable shape.
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Figure 7. Trends of produced power referred to autumn period from 30 October 2020 to 5 November
2020. Days show significant irregularity and the produced power is not characterized by typical
profiles; it also assumes the lower value with respect to other seasons.
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Figure 8. Trends of produced power referred to winter period from 27 January 2020 to 2 February
2020. Days are mainly regular and power profiles have a well recognizable shape except for a few
days which are more intermittent.

3.2. Data Pre-Processing

Meteorological parameters have a deep impact on PV power generation. These
parameters can differ from one geographical location to another.

Weather parameters and PV power output may experience different correlations, i.e.,
degree of association with each other, at different locations. The accuracy of a model in the
prediction of a certain quantity is linked to the correlation of input and output values of
the model itself.

Two methods are presented in literature for estimating the correlation between two
variables. The Pearson correlation coefficient is typically used to evaluate the linear re-
lationship between these variables, while the Spearman correlation analysis evaluates
the relationship between two variables that change together not necessarily in a propor-
tional manner.

For our purpose, Pearson’s correlation coefficients have been chosen since they are
preferred in the case of raw data and for a better reproducibility of the work (most works are
based on Pearson analysis); Pearson’s coefficients allow to measure the level of association
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between two continuous variables and they are based on the method of covariance. The
Pearson coefficient, rx,y, between two variables x and y is expressed as:

Fay = Z?:l (xi — x)(yi — .]7) (1)
, \/Z?:l (xi — f)z\/Z?ﬂ(xi —x)?

where, 7 is sample size, x; and y; are the individual sample points indexed with 7 and

r= Y. 1 x; is the sample mean, similarly for 7.

Pearson’s analysis gives information not only on the magnitude of association, but also
on its direction. The Pearson’s coefficient, rxy, Can range from —1 to +1 where an abso-
lute value below 0.5 indicates poor association and a value close to 1 corresponds to
strong correlation.

Time series data of PV power output and its corresponding weather variables are
needed to set up the prediction model. The target of the presented ANN is the DC
photovoltaic power forecasted for the next day. Literature reviews [40] report a strong
correlation between solar irradiance and PV power output, especially in the case of sunny
days, but also when dealing with cloudy or rainy days. These facts are confirmed by
our statistical analyses, reported in Figure 9. The relationships existing among available
weather parameters, i.e., irradiance, temperature and air humidity, and the predicted
quantity are reported in Figure 10 where the analysis has been performed in a time frame
of 33 days.

L .04 :
0.8 | a
g 0.64
= 06| a
0.42
0.4 l |
G H T

Figure 9. Pearson’s correlation coefficient, 7,y between the output power and the input variables:
irradiance, G, air humidity, H and temperature, T.

0.7<r <09

0.5 <r<0.7

0.5 <r< 0.7

Figure 10. Pearson’s correlation coefficient among irradiance and output power (on the left) and among temperature and

output power (on the right) obtained in the time frame of 33 days.
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In addition, a time variable is included as input. It is necessary to anticipate some
characteristics of the developed ANN that will be better analysed in the following para-
graphs. The proposed ANN is supposed to provide a daily prevision of the DC power
requirement but, since its training set is constituted by information concerning a set of
days before the forecast, a time indication is needed. Data reporting the indication of the
month are unnecessary for the network since a constant quantity shows no correlation with
a vector, the DC power in our specific case. Moreover, vectors of day, hour, minutes and,
eventually, seconds are discontinuous and should not be used when training networks
since such discontinuities may lead the learning process to diverge. Hence, a time vector
has been considered providing a sinusoidal mapping of the day with time step of 1 min;
this allowed to include a continuous representation of the daytime.

While other variables could be considered as input vectors, the increased size of the
input matrix will enhance complexity and computational cost of the ANN; as a matter of
facts, a central point is the design of a neural model characterized by an optimal size of
the input data. This aspect will be discussed in Section 4 where some comparisons are
shown between our network and other ANNs making use of a training set comprising
multiple variables.

4. Methodology

The literature review of Section 2 stresses the wide use of ANNSs in prediction applica-
tions thanks to their adaptability and generalization capabilities, including the forecasting
of PV produced power.

The well-known Feed Forward Neural Network approximates a mapping function
from input variables to output variables and readily learns linear and nonlinear rela-
tionships. Owing to its simple architecture, it is capable to achieve good performances
with low computational costs. These features also make it widely used in time series
forecasting. While feed forward neural networks show great capabilities, the forecasting
performances could be improved by using recurrence or reusing past inputs and outputs.
A network which remembers previous inputs or feedbacks previous outputs may have
greater success in determining time dependent patterns. So, the modified version of the
Feed Forward architecture characterized by a dynamic feedback is analysed. Thus, every
hidden layer neuron has the ability to process previous values together with new input
signals. In this way, the neural network can also learn the temporal dependence that varies
with circumstances, in our case with meteorological conditions.

The proposed method is implemented in MATLAB environment that allowed to
program our network through a powerful and performing tool; thanks to the Neural
Network Toolbox the designing phase is simplyfied allowing the programmer to focus on
the most relevant aspects of the ANN implementation, i.e., the choice of the most suitable
characteristics (architecture of the network, number of layers and neurons and selection
of the most suitable training algorithm) and the analysis and refinement of the data to be
used in the training phase.

4.1. Artificial Neural Network Model

A generic ANN architecture consists of input, hidden and output layers that are com-
posed by a set of artificial neurons connected to each other through adjustable connection
weights.

The neural unit, shown in Figure 11, can be mathematically expressed as:

Up = ) WjX; ()
=1
Vi = @ (uk + by) ®)

where x; are the inputs of a generic neuron k that are multiplied by their respective
connection weights, wy; and then summed. The sum is applied to the activation function ¢
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along with the bias by that can be positive or negative, so it can increase or decrease the net
input of the activation function.

Activation
function
Input Output
Signals < ¢ Tk

Synaptic
weights

Figure 11. Scheme of an artificial neuron.

The ANN ability to provide a reasonable solution can be achieved by means of
a training process that consists in iteratively tuning the values of synaptic weights in
order to minimize an error defined as the difference between model predictions and real
observations. During the training process, the derivatives of the error are back propagated
to each layer in order to modify parameters.

One of the most used learning algorithms is the Levenberg-Marquardt that updates
weights as follows:

Wi = Wi — (J Je + 1)~ rex @)

the error ¢ is the difference between the desired and the actual output and ] is the Jacobian
matrix of the error vector, e;. The parameter y is increased or decreased at each step. This
cycle continues until the desired output or a stopping criteria, that can be a threshold error
or maximum number of epochs, is reached.

A good training is performed if generalization occurs, meaning that the ANN is able
to provide a sufficiently accurate result also in response to inputs that are not faced during
the training process. If the aforementioned features are achieved, the ANN will be robust
also against noisy data.

Usually, the main problem to be addressed is how to choose the number of delays and
neurons in each layer. Since there is no exact procedure to solve this problem, the architec-
ture of the ANN is selected on the basis of a trial and error process. As far as the time delay
is concerned, it is often necessary, especially when data show a strong time dependence.
The setup of a delay needs a detailed stability analysis, because it could cause fluctuation
and uncertainties of the ANN; therefore, it is fundamental for the network to reach the
global stability at an equilibrium condition. Another important parameter influencing the
ANN capabilities is the number of neurons. The optimal number of neurons is chosen by
means of a minimum error criteria-based analysis.

As the design of ANN follows a trial and error process in order to select its optimal
parameters, several proves need to be made before the final architecture is achieved.

The accuracy measurement of any PV power forecasting model is performed by
means of standardized performance errors, such as Mean Square Error (MSE), Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error
(MAPE), Weighted Mean Absolute Percentage Error mean (WMAPE), Relative Error (MRE),
and Mean Bias Error (MBE) [41].

In our analysis the RMSE and WMAPE are evaluated in order to make an easy
comparison with other neural models present in literature:

1 N
RMSE = N Z(.‘/forecasted - ]/tufgﬂ‘t)z ®)
i=1



Energies 2021, 14, 707

12 of 22

N _
WMAPE — 121:1 |]/forecasted yfﬂ7g€t| % 100 ®)

N Zf\i] ‘]/target |

where 1 is the sample size, Y forecasted are the expected values and yiarger are the known val-
ues.

4.2. ANN Model Development

In our study, to design the best ANN architecture three different conditions are
surveyed: these are the variation of the number of neurons, the size of the training set
and the difference among a static and a dynamic architecture. The investigation of the
most suitable inputs for the ANN training is deeply explained in Section 3. By referring
to the correlation analysis, further studies are conducted to select the best combination of
available data and the correct size of training set. Hence, to develop an accurate model the
following cases of study are analysed:

*  (Case #1. Selection of appropriate network inputs based on the previous correlation
analysis and assessment of the right size of the training set.

e  Case #2. After assembling the training set, the ANN capabilities are evaluated by
varying the number of neurons.

¢ Case #3. The performances of an ANN static model are compared with the ones
of a dynamic model. We introduce a “memory effect” to the Feed-Forward (static)
architecture, providing the network with a dynamic behaviour. As will be shown in
Section 4.2.3, the idea is that of supplying the ANN with the last PV power prediction
value in order to compose a sort of power time-sequence. In this way, it is possible to
exploit the pros of dynamic ANN without implementing a real one, hence avoiding
the cons related to them, e.g., need of large computational resources and more complex
training processes.

Performances of the ANN are evaluated on the power profiles of Figure 12, each
belonging to the last day of the respective season shown from Figures 5-8.

5 Autumn Sumimer Winter Spring |

A ) |

|
0 50 100 150 200 250 300 350
Samples

Figure 12. ANN target referred to, from left to right, an autumn, summer, winter and spring day.

4.2.1. Case #1

By referring to the correlation analysis of Section 3, different combinations of inputs
are tested and the RMSE and WMAPE of each combination are evaluated. For this analysis,
an FF architecture is chosen, the number of hidden neurons is fixed to 10 and the number
of days composing the training set is fixed to 20, considered a good trade-off between the
size of training set and the complexity of the ANN. Four input combinations are analysed:
in each of them time and irradiance vectors are included since the first is fundamental to
distinguish days, the second is the most correlated input with the ANN output. Therefore,
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a first inputs combination, composed by only time and irradiance vectors is considered. The
WMAPE obtained is about 37.5%. In the second and third combinations further inputs are
added, temperature and air humidity, respectively. Experimental results confirm the levels
of association determined by Pearson correlation analyses, reported in Figure 9. The last
combination includes all variables. The last three datasets improve the performances but,
the second set is the only bringing WMAPE below 15%. The errors obtained for each
combination are reported in Table 2. In particular, WMAPE and RMSE are evaluated for
each day in Figure 12 and an average of the errors is computed and reported in Table 2.

Table 2. Weighted Mean Absolute Percentage Error mean (WMAPE) and Root Mean Square Error
(RMSE) for different inputs combinations.

ANN INPUTS RMSE (W) WMAPE (%)
Time + Irradiance 390.12 37.50
Time + Irradiance + Temperature 120.50 14.97
Time + Irradiance + Humidity 240.78 21.02
Time + Irradiance + Temperature + Humidity 230.66 19.46

This analysis allows to select time, irradiance and temperature vectors as the most
appropriate ANN inputs.

The second step consists in finding the correct training set size or rather choosing
what is the right number of days that need to be included in the training set. In particular,
the number of days is supposed to vary in a range from 5 to 30.

Figure 13 shows the WMAPE for each season. It is worth to note that the WMAPE
reaches its minimum at 5 days training for summer and winter; as far as spring and
autumn is concerned, a set composed by 30 days is necessary because of the variability of
weather conditions. Therefore, the size of the training set can be reduced in summer and
winter. Definitively the size of the training set in summer and winter consists of 3 inputs
vectors, each of 480 samples, while in spring and autumn each input vector is composed
by 2880 samples.

WMAPE (%)
=

ot

60
= 40
cal
Ay
= | 00— ]
= 20
— Summer - — Spring
Winter Autumn
5 10 5 20 25 30 0 5 10 15 20 25 30
Days Days

Figure 13. Mean Absolute Percentage Error referred to summer and winter days for different sizes of the training set (from

5 to 30 days), (on the left). WMAPE referred to spring and autumn days for different sizes of the training set (from 5 to 30

days), (on the right).

4.2.2. Case #2

After selecting the most appropriate training set, a further step is necessary, that is to
choose the number of neurons in the hidden layer. Several trials have been conducted by
varying the neurons from 4 to 22. The results are obtained by considering a training set
composed by both 5 and 30 days. Average WMAPE and RMSE errors obtained for each
season are evaluated and reported in Figure 14.
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It is evident that a training set constituted by 30 days allows to reach a lower error
for almost all cases. Furthermore, the errors are similar in a range from 5 to 10 neurons,
as shown in Figure 14. Therefore, this work proposes an automatic strategy able to evaluate
the best ANN performance, where the ANN inputs are fixed while the size of training set
is chosen according to the season between 5 or 30 days and finally the number of neurons
varies from 5 to 10. This reconfigurable procedure allows to obtain the best architecture
according to the season.

600
% 400
o é 200 — 5 days
M 30 days
10 15 20 0 5 0 = =

Neurons Neurons

Figure 14. Weighted Mean Absolute Percentage Error (on the left) and Root Mean Square Error (on the right) referred to 5
and 30 days training sets for different numbers of neurons (from 4 to 22).

4.2.3. Case #3

Despite the degree of freedom introduced by the arbitrary choice of the number of
neurons, the ANN architecture obtained so far shows good results for sunny days but,
in the case of partly cloudy ones the ANN is not always able to achieve generalization.
Therefore, a time delay, At, equal to 15 min in the FF architecture is introduced, providing
the network with a dynamic behaviour, Figure 15: the DC produced power at time step
(t — At), P(t—At), is included as fourth input.

Table 3 shows that WMAPE is greatly reduced if a further input is considered. In partic-
ular, for summer and winter, it slightly decreases when a D-FFNN architecture is considered.
As regards autumn and spring, a significant gain occurs: the error is reduced below the
20%.

Table 3. WMAPE and RMSE achieved by static and dynamic neural networkNN.

WMAPE (%) FFNN WMAPE (%) D-FFNN
Spring 20.07 14.78
Summer 4.04 3.12
Autumn 21.85 15.63
Winter 6.89 421

An evaluation of the errors concerning the training and validation phases leads to
choose a static or a dynamic ANN having a number of neurons varying from 5 to 10
according to the particular day. A summary of the optimal dynamic ANN architecture is
given in Table 4.



Energies 2021, 14, 707

15 of 22

Table 4. Summary of dynamic Artificial Neural Network (ANN) parameters.

ANN Parameters

Inputs 3-Time, Irradiance,
Temperature

Outputs 1-PV power

Number of layers 3-Input, Hidden, Output

Number of hidden neurons 5:10

Number of delay 1-PV power

Functions Log-sigmoid, Linear

Learning algorithm Levemberg-Marquardt

5. Validation and Results

After the training process, the ANN performances are evaluated by checking if the
ANN is able to forecast the power produced in days outside the training dataset; the test is
performed over a single day (96 samples for 4 inputs). In particular, three different classes
of days have been identified: completely sunny or completely cloudy days, characterized
by a regular irradiance shape, quite irregular days that show some spikes coming from
few passing clouds and, finally, heavily irregular days in which the original “bell shape”
of the PV power production is poorly recognizable. Three different days are chosen,
one for each class, that are not part of the training database. This choice allows to test
the generalization capabilities of the neural system by considering different scenarios.
Figures 1618 demonstrate that the ANN is able to predict PV power with high accuracy
for days with different levels of cloudiness. In Figures 16-18 the continuous line represents
real measurements while the discontinuous blue and red lines refer to the FFNN and
D-FFNN predictions, respectively.

Figure 16 illustrates the prediction of both ANN types for the 7 July 2019, an example
of sunny day with few weather variations. The FFNN architecture including 6 neurons
allows to get a WMAPE around 3.7% and a RMSE of 39.8; on the other hand the D-FFNN
architecture with 5 hidden neurons reaches a WMAPE equal to 2.64% and an RMSE of 34.98.

Figure 17 is referred to the 10 January 2019, classifiable as a quite regular day with
a small amount of cloudiness. The FFNN architecture including 8 neurons achieves a
WMAPE around 17.62% and a RMSE of 289.8; on the other hand the D-FFNN architecture
only takes 5 hidden neurons to obtain a WMAPE equal to 11.41% and RMSE of 206.03.

Finally, Figure 18 shows the prediction obtained for the 4 April 2019, a strongly irregular
day characterized by a high level of cloudiness: the WMAPE is 28.41% and 21.11% for FFNN
and D-FFNN, respectively, while their respective RMSE are about 701.02 and 540.75. In this
case, the FENN and D-FENN architectures includes 10 and 7 neurons, respectively.

The analysis conducted on these three different days demonstrates that the proposed
neural system properly works. Moreover, it is worth noting that a higher degree of
cloudiness corresponds to irregular shapes of output PV power, that are responsible for
higher errors in the prediction. In order to guarantee an acceptable error, the number
of neurons belonging to the hidden layer in the FFNN architecture has to be increased.
If this is not enough, our strategy involves the inclusion of a quarter of hour delay that
provides a dynamic behaviour to the network and allows to improve the accuracy of
the forecast. Indeed, when providing the ANN with a delay, the network turns into a
memory-based method, D-FFNN. In this way, its output at any given time is depending on
both the present inputs and the history of past outputs. In our case, the introduction of a
delay allows to catch any power fluctuation caused by uneven shading conditions in order
to take these variations into account in the training phase of the neural network and to
improve its performances. Hence, a more complex architecture, D-FFNN, is exploited only
for days showing an irregular shape. This adaptability represents the key of our neural
system, that is able to daily forecast the power output with great accuracy, also in variable
weather conditions. This feature makes the system suitable to be incorporated in smart
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grids, both for forecasting the generated PV power in a short term and for improving smart
energy management.

Lastly, a comparison is reported between the proposed method and other forecasting
methods recently presented in the literature. In [42] an RNN-based PV power prediction
method is presented. It is possible to compare this approach with our strategy as far as
the seasons winter and summer is concerned; as a matter of facts, for such seasons two
days are chosen in the cited article whose irradiance profiles can be compared to ours in
the case of quite regular irradiance shapes. The reported WMAPE for winter and summer
is respectively 6.36% and 1.94%, while our results are 3.12% for summer and 4.21 % for
winter; hence the average WMAPEs of the two cases are comparable, but we avoided the
use of complex ANN architectures. Another work in which an ANN is used is [43]; in
this work an LSTM neural network is used. WMAPE is reported to be among 20% and
48% according to the season in exam, while in our case it is always below 20%. Moreover,
in [44] another ANN-based PV power prediction method is shown. In particular, the ANN
is trained with satellite images. The paper reports an improved WMAPE of 22.5%, slightly
above the values reached by our method. [45] presents an SVM-model for one day-ahead
forecasting of PV power for different weather conditions, such as clear-sky, cloudy and
rainy days. The forecast ability is expressed by means of MAE that is around 28 and 35 W
for regular and irregular weather conditions, respectively; our strategy allowed to reach a
MAE of 2.9 and 17.1 W, respectively. Additionally [46] obtains high performances for sunny
and partially cloudy days by implementing an MLP-based forecaster. The MAE achieved is
below 15 W for all investigated cases, quite similar to the results we reported in Table 5.

Hereafter, the results achieved by our neural approach are illustrated. It is evident
the increasing complexity in providing an accurate prediction when dealing with shape
irregularities of power profile. The MAE achieved by the reconfigurable ANN for three days
with increasing levels of irradiance irregularity are reported in Figures 16-18, respectively.

Table 5 shows that for regular days both networks achieve a high level of accuracy:
the MAE is below 6 W. As already demonstrated by MAPE evaluation for partly cloudy
and variable days, the D-FFNN shows better results than FFNN architecture with a MAE
below the 20 W. Among the recent methods in literature, the hybrid models allow to reach a
lower error, but as mentioned in the literature review, their disadvantage depends on their
complexity. Therefore, our reconfigurable model could represent a valid alternative to existing
methods thanks to its simplicity and its high performing ability to forecast PV power.

Table 5. Mean Absolute Error (MAE) achieved by the reconfigurable ANN.

MAE (W) FFNN MAE (W) D-FFNN
Sunny day 53 29
Partly cloudy day 31.3 12.0
Variable day 21.65 17.1

Input Hidden Output
layer layer layer

Figure 15. Dynamic Feed Forward Neural Network (D-FFNN) architecture.



Energies 2021, 14, 707 17 of 22

3.5 | I
— Target
3 --- FFNN ||
--=- D-FFNN
25+ 2
g 15 :
Al
1 [ |
0.5+ 2
0 - S A ~,
0 20 40 60 80

Samples

Figure 16. Prediction of a sunny day, 7 July 2019: the continuous line indicates the real measurements
and the discontinuous line refers to the D-FFNN predicted values.
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Figure 17. Prediction of a partly intermittent day, having a quite irregular shape, 10 January 2019:
the continuous line indicates the real measurements and the discontinuous line refers to the D-FFNN
predicted values.
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Figure 18. Prediction of a variable day, having an irregular shape, 4 April 2019: the continuous line
indicates the real measurements and the discontinuous line refers to the D-FFNN predicted values.

6. Strategy for Energy Flows Management

Apart from the need of simply forecasting the amount of PV power production,
the knowledge in advance of such a quantity is of paramount relevance in the protection
of the battery bank constituting the storage system of a PV system. The forecasting
strategy presented so far is just a piece of a broader method aimed at extending the
lifetime of batteries by avoiding stress conditions on the energy storage system. Since it is
possible to exchange power between the PV generator, the grid and the storage system,
it is necessary to implement a technique for managing such power flows within the EMS
(Energy Management System) controller of which the ENEA smart PV system is equipped,
Figure 19. The EMS includes the embedded controller of National Instruments CRIO 9068
suitable for controlling and monitoring applications that includes an FPGA and a real-time
processor running the NI Linux Real-Time operating system.

Figure 19. EMS (CRIO 9068 controller).

The system consists of a computer that allows communication with the instruments
and sensors placed on the PV system. As afore mentioned, the implemented strategy
constitutes an important tool in the power management of smart grid. With the availability
of both PV power production prediction and electrical load consumption estimation,
a computation of power surplus or deficit will be done, in order to establish which one will
be applied between the energy storage system and the grid. In literature, it is possible to
identify two main flux management strategies:
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e  Standard management for self-consumption. In the time intervals in which the power
generated by the photovoltaic panel is greater than that required by the user load,
the excess part is supplied to the battery pack, until it reaches full charge. When the
storage system can no longer absorb power, this is fed into the grid. Otherwise, when
the power supplied by the generator is lower than that required by the load, this is fed
by the storage system until it is completely discharged and then by the mains. With
this management technique, the storage system is subject to continuous charge and
discharge cycles, thus limiting its average life. Furthermore, there is a risk of feeding
high power peaks into the network which would worsen the desired quality.

¢ Peak-shaving. With this technique we try to eliminate the drawbacks of the standard
self-consumption technique; as a matter of facts, in this case the excess power is fed
into the network and only if this excess is very high is it supplied to the storage system.
This ensures a longer average life of the accumulator and limits the power peaks fed
into the network, safeguarding the quality of energy. However, not knowing how
the trends of the power requested by the user and that supplied by the PV will go,
there is a risk of creating a condition in which the accumulator never supplies the
load, thus leading to an underuse of the storage equipment and significantly reducing
self-consumption, a primary advantage in the installation of photovoltaic systems (or
in general of renewable energy systems).

The forecasting method shown in this paper, instead, is a basic block that, combined
with an accurate electrical load prediction, has suggested the idea of developing a strategy
for an optimal management of batteries charge/discharge. In this context, the idea was born
of introducing the potential of forecasting techniques into energy management systems and
in particular of energy flows between production plants and storage systems, Figure 20.
In particular, if a higher power profile and therefore a large excess of power is expected,
the charge of the cells is slowed down, preferring the input into the grid; otherwise, if the
excess power is lower, the storage charge is accelerated and then the load can be powered.
With this management, an average battery life should be obtained that is considerably
longer than in the previous cases, guaranteeing the quality of the network and consumer
savings, through a smart management of power flows. To implement this management
model it is therefore necessary to dispose of a predictive model for the maximum power
profile of the PVs and of the load.

|

PV — | = — Power Management =] = —
System = Strategy e

P s Electrical Load

Energy Storage System

Figure 20. Block diagram of our energy flows management system.

7. Conclusions

An accurate PV power forecasting method has been developped based on a reconfig-
urable Feed Forward neural network. Definitely:

¢ A detailed analysis has been carried out, showing the importance of weather condi-
tions and their influence on PV power; as a result of this, the atmospheric variables
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that have the greatest impact on PV power production have been identified and used
as inputs to train the ANN.

*  An accurate study of the irregularity of daily irradiance has led to the development
of a neural model with great plasticity and capable of reducing the complexity of its
architecture when it is not needed. The resulting ANN can be defined tunable since it
adapts itself according to the particular irradiance profile.

e After the simulation performed in MATLAB environment, validations have been
done for a practical PV plant located in ENEA Casaccia RC (Rome, Italy), using the
proposed forecasting neural model.

The ability to reduce the uncertainty of generated power makes the model particularly
suitable for integration into smart grids, where the key point is the energy management.
The results demonstrate that the achieved accuracy is very high, also under variable
weather conditions. This strategy is inserted in a broader scenario where we wish to
achieve good results in the optimization of the processes of charge/discharge of the storage
system, in order to extend the life-time of the battery pack. A further step will be the
developent of an effective method for forecasting the electrical load consumption.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network

PV Photovoltaic

VRE Variable Renewable Energy
ARMA  Autoregressive Moving Average
ARIMA  Autoregressive Integrated Moving Average
MLP Multilayer Perceptron

MLFF Multilayer Feed-Forward

RBF Radial Basis Function

RNN Recurrent Neural Network
SVM Support Vector Machine

EMS Energy Management System
MSE Mean Square Error

RMSE Root Mean Square Error

MAE Mean Absolute Error
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MAPE Mean Absolute Percentage Error

MRE Mean Relative Error

MBE Mean Bias Error

WMAPE Weighted Mean Absolute Percentage Error
D-FFNN  Dynamic Feed Forward Neural Netwrok

RNN Recurrent Neural Network
LSTM Long-Short Term Memory
ELM Extreme Learnig Method
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