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Abstract: The paper discusses two mathematical models for the air flow through a plate heat
exchanger with parallel plates. The first exhausts the used air and then supplies the fresh air. The
second exhausts the used air above the plate and simultaneously supplies fresh air under it (counter-
flow exchanger). In both cases, the exhaust air heat is used to heat the supply air. The purpose of the
research is to verify which exchanger uses the exhaust air heat more efficiently. The method of the
Trefftz function was used to determine approximate solutions of the analysed problems. The results
obtained for 1.2 mm thick steel, aluminium, and copper plates and for external winter, summer, and
spring–autumn temperatures are discussed. The results indicate that steel is the best material for a
plate heat exchanger, and the counter-flow exchanger is more efficient of the two. Thanks to the use
of thin steel plates and the reduction of the air exchange time to a few minutes, cheap and efficient
counter-flow exchangers can be obtained.

Keywords: heat transfer; heat exchanger; recuperator; Trefftz method

1. Introduction

A recuperator is a device used, among others, for supplying and extracting air from
rooms as part of ventilation systems with heat recovery (recuperation systems). Connected
to a properly executed ventilation system, it recovers heat (energy) from air, reducing the
building’s energy demand. The most important part of any recuperator, which determines
heat recovery parameters, is the heat exchanger located centrally in the recuperator. There
are many recuperator types, including those discussed in monographs [1,2] and presented
on numerous websites, e.g., [3]. The exhaust air flows in the heat exchanger without mixing
with the supply air. Energy is exchanged between the air fluxes. It enables the recovery of
heat or cold (depending on the season). Numerous publications discussing heat exchanger
types are known.

The paper discusses plate heat exchangers. A heat exchanger of this type is composed
of many metal plates, and heat is transferred by the liquids flowing through them. The
exchanger, made mainly of weather-resistant aluminium, deserves particular attention due
to its unique design, which ensures the highest known efficiency, with a 100% share of
fresh air. When one of the exchanger’s sections takes heat from the exhaust air, the other
gives off the stored heat to the cold supply air.

Another important feature is frost resistance. In the vertical positions, the upper part
is cold, and the bottom part is warm. Condensate drops fall down to the warmer part,
from where they are routed to the sewerage system. This direction of the condensate flow
excludes the possibility of condensate getting into the cold part, preventing it from freezing.
The main advantage is undoubtedly self-cleaning, which is ensured by a two-way air flow.
For this reason, the effectiveness of two types of exchangers was analysed in order to
optimise the design parameters.

Plate heat exchangers are among the most efficient heat transfer devices. However,
the main limitation of plate heat exchangers is the fact that they can only be used in a
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relatively low pressure and temperature, [4]. Therefore, only heat exchangers operating
under a small temperature difference (up to 50–60 ◦C) between the room from which the
air is extracted and the outside area will be considered.

In a parallel flow exchanger, the air can be exchanged in two ways: (a) first, used
air is exhausted from the room; then, fresh air is supplied from outside, or (b) used air
is exhausted from the room, and at the same time, fresh air is supplied (counter-flow
exchanger). In both cases, the heat collected during air exhaust is released by the panel to
the fresh air supplied from the outside.

The literature does not focus on modelling the heat flow itself through a heat exchanger
with parallel plates. In a number of studies, a model and a computational grid were
developed to simulate a heat exchanger, and then fluid dynamics (CFD) computation
software was launched. When assembling the heat exchanger, complicated and irregular
narrow channels were created. For example, in [5] and [6], the authors dealt with heat
exchangers and their different geometries. In [7], the authors presented a comparison of
various grids for a plate heat exchanger modelled by a tetrahedral mesh. The influence of
oblique waves on the heat transfer surface was investigated in [8]. Heat transfer in a channel
with parallel plates was studied in [9] using Dissipative Particle Dynamics with energy
conservation (eDPD). In [10], the design of a new plate heat exchanger and its cost were
compared to heat exchangers available on the market. The production of heat exchangers
(the medium is a liquid) with the use of 3D printing was discussed in [11]. The heat transfer
was modelled by the Boltzmann mesh method. In the report [12], the application of a quasi
1-D code (Phyton) for the design of heat exchangers was described. The heat transfer was
modelled by the balance of thermal energy and by empirical heat transfer correlations. A
series of quasi-counter-flow parallel membrane channels was used for the construction of
an air dryer in [13]. In addition, in [14], a numerical model simulating the operation of a
drying system based on a parallel membrane system was considered.

Heat flow and transfer in a recuperative air-to-air counter-flow heat exchanger was
studied numerically in [15]. The results therein indicate that the lowest possible material
thickness is crucial for developing the most effective recuperative air-to-air counter-flow
heat exchanger with high efficiency and low-pressure losses, the properties of the material
itself being irrelevant.

The authors of [16] demonstrated that larger heat exchangers offer better efficiency
and lower pressure drop with the same velocity.

A uniform air stream is very often applied as an inlet boundary condition of a heat
exchanger in studies using computational fluid dynamics software. However, in actual
applications, the inlet flow conditions are not uniform. The effect of non-uniformities on
the thermal performance characterised in a wind tunnel for a commercially available plate
water/air heat exchanger was investigated in [17].

To the authors’ best knowledge, the problem of temperature distribution in time in
the heat exchanger plate during the exhaust/supply air has not been the subject of any
research yet.

This paper focuses on the heat distribution within an exchanger plate. As the plate is
heated/cooled by air, the obtained plate temperatures at the air inlet and outlet correspond
to the supply or exhaust air temperatures. The thermal conductivity equation based on
Fourier’s law was used to describe the heat flow through the plate. Boundary conditions
describing the effect of air on the plate for both heat exchangers were formulated. For
the sake of simplicity, the effects associated with air moisture or air contamination were
omitted. By applying the Trefftz method, as described in Section 3, approximate solutions
of heat conduction equations for both exchangers were obtained and discussed.

For the calculations, the assumed room temperature was 21 ◦C, while the outside
temperatures were simulated as follows: frosty winter (−19 ◦C), early spring and later
autumn (+1 ◦C), and hot summer (+31 ◦C). In [15], where a recuperative counter-current
air-to-air plate heat exchanger was tested numerically using the Fluent software, it was
found that the thinnest possible material is crucial for creating the most efficient air-to-air
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recuperative heat exchanger with low efficiency and low-pressure losses, and the properties
of the material itself do not matter. The presented research confirmed the conclusions from
the cited paper.

Mathematical description of the heat transfer issues for both types of exchangers is
formulated in Section 2. In Section 3, the Trefftz method is discussed. An approximation of
solutions for both exchangers using a linear combination of the Trefftz function (T-functions)
is presented. Moreover, objective functionals are built. Minimization of the functionals
leads to a system of algebraic equations for the coefficients of these linear combinations.
Calculation results are presented in the form of graphs and tables in Section 4. In Section 5,
results for both types of exchangers are compared, and further types of counter-flow steel
plate exchangers are discussed. The conclusions summarize the results obtained.

2. Formulation of Equations and Conditions for Both Tested Heat Exchangers

A heat exchanger structure is made up of subsequent plate layers separated with
successive air layers, which means it is a geometrically repeatable structure (the top and
bottom plates are omitted). As a result, in the case of the “supply first from one side,
then the other” operation, it is sufficient to take into consideration only one-half of the
plate thickness with one-half of the air layer and assume the zeroing heat flux at the plate
centreline with respect to y, (comp. Figure 1). In the case of supply from both sides (over
the plate in one direction, and below in the opposite), the entire plate cross-section has to
be considered, as shown in Figure 2. The shorter cross-sectional edges of the exchanger
plate are hereinafter referred to as inner or left and outer or right.
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Figure 2. A counter-flow heat exchanger.

Disregarding the heat generated per unit of volume, we get an equation that will
constitute a base for the computations, namely, [18,19],

∇2T − 1
a

∂T
∂t

= 0 (1)
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where T (K) describes temperature, a = k
ρc

[
m2

s

]
is the so-called thermal diffusivity coef-

ficient, k (W/(mK)) is the thermal conductivity coefficient, ρ (kg/m3) stands for density,
c (J/(kg K)) is specific heat, t (s) stands for time, and ∇ is the gradient operator.

The problem is two-dimensional. Spatial coordinates will be denoted as x and y.
Heat exchange between the inner heat exchanger plates and the air supplied by the

exchanger can follow two ways.
As mentioned in the Introduction, the heat exchange between the internal plates of

the exchanger and the air supplied by the exchanger can take place in two ways: (a) first
exhaust from the room, then supply from the outside; (b) simultaneous exhaust above the
plate and supply air below it (counter-flow supply).

The air moves between the plates at a speed va (m/s). After the time l
va

, (l, (m), being
the length of the plate), it will reach the opposite end of the plate. The time is very short in
relation to the total time of the supply (exhaust) operation; therefore, its potential impact
on the thermal process is ignored.

The following dimensionless variables are introduced:

ξ =
x
l

, η =
y
l

, Fo =
at
l2 τ− Fouriernumber, Bi =

αl
k
− Biotnumber (2)

where α
[

W
m2K

]
is the heat transfer coefficient.

In both considered exchangers, the heat transfer coefficient α will be different for heat
penetration on shorter edges (ξ = 0 and ξ = 1), where it is assumed that air is immobile,
and different on longer edges (η = ± h

l ), where it moves at a velocity of va. The coefficient
α is defined as falling within a range of 5–37 W

m2K , [20]. The relationship between α and
laminar flow velocity, va, is determined by the equation [21,22].

α =

{
5.8 + 4vaforva < 5m/s
7.12va

2forva ≥ 5m/s

[
W

m2k

]
(3)

The kinematic viscosity ν for air within a range of –20 to 30 ◦C changes in the range
11.8 to 16 mm2/s. For the maximum air velocity,va = 4.5 m/s (parallel to the longer
cross-section edge), the Reynolds number Re = vah/ν will change within a range of 457 to
338. It means that laminar flow occurs between the plates, because for air flowing over the
flat layer (h = 0.0012 m—air duct height, adopted as plate thickness), the bottom critical
Reynolds number is Rekr > 105 [23–25].

On the shorter plate edges, it is assumed that the air velocity is zero, i.e., the heat
transfer coefficient is α1 = 5.8 W/(m2 K). On the longer edges 0 < va < 5 m/s and
α2 = 5.8 + 4va W/(m2 K), (comp.(2.3), Biot numbers will be accordingly marked with Bi1
and Bi2.

Equation (1) in dimensionless coordinates takes the form

∇2T − ∂T
∂τ

= 0, 0 < ξ < 1, 0 < η <
h
l

τ > 0. (4)

Initial and boundary conditions for variant (a) are presented below. A heat exchanger
plate cross-section with marked central surface and boundary conditions when air is
exhausted from the room, variant (a1), or from outside, variant (a2), is shown at Figure 1.

Variant (a1)

• Initial condition at air flow from TL to TR

∇2T − ∂T
∂τ

= 0, 0 < ξ < 1, 0 < η<
h
l

, τ <0. (5)

• Boundary conditions
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∇2T − ∂T
∂τ

= 0, 0 < ξ < 1, 0 < η<
h
l

, τ <0 (6)

∂T
∂η

(
ξ,

h
l

, τ

)
= −Bi2

[
T
(

ξ,
h
l

, τ

)
− TL

]
, 0 < ξ < 1, 0 < τ < τend (7)

∂T
∂ξ

(1, η, τ) = −Bi1(T(1, η, τ)− TR), 0 < η <
h
l

, 0 < τ < τend. (8)

• Condition of symmetry

∂T
∂η

(ξ, 0, τ) = 0, 0 < ξ < 1, 0 < τ < τend. (9)

Variant (a2)

• The initial condition is described by the final condition for the variant (a1):

Ta2(x, y, 0) = Ta1(x, y, tend) (10)

where tend is the end moment of the supply (exhaust) process, Ta1(x, y, tend), stands for the
end temperature in variant (a1), and Ta2(x, y, 0) is the initial temperature in the variant (a2);

• Equations (8) and (9) hold, and

∂T
∂ξ

(0, η, τ) = Bi1(T(0, η, τ)− TL), 0 < η <
h
l

, 0 < τ < τend (11)

∂T
∂η

(
ξ,

h
l

, τ

)
= −Bi2

[
T
(

ξ,
h
l

, τ

)
− TR

]
, 0 < ξ < 1, 0 < τ < τend. (12)

Variant (b)—counter-flow exchanger (comp. Figure 2)
The initial condition takes the Equation (5). Boundary conditions are as follows:

∂T
∂ξ

(0, η, τ) = Bi1(T(0, η, τ)− TL),−
h
l
< η <

h
l

, 0 < τ < τend (13)

∂T
∂η

(
ξ,

h
l

, τ

)
= −Bi2

[
T
(

ξ,
h
l

, τ

)
− TL

]
, 0 < ξ < 1, 0 < τ < τend (14)

∂T
∂ξ

(1, η, τ) = −Bi1(T(1, η, τ)− TR),−
h
l
< η <

h
l

, 0 < τ < τend (15)

∂T
∂η

(
ξ,−h

l
, τ

)
= Bi2

[
T
(

ξ,−h
l

, τ

)
− TR

]
, 0 < ξ < 1, 0 < τ < τend. (16)

3. Solution Method
3.1. Trefftz Functions

The Trefftz method, [26], will be used to solve the problem. Its essence is the solution
approximation using a linear combination of Trefftz functions (T-functions), constructed for
Equation (4). Each of the T-functions satisfies the equation for which it has been developed.

There are three known methods of deriving the T-functions; they are described in
more detail in many monographs and papers, e.g., [27]. The authors of [28] proved that a
T-function system for a linear partial differential equation constitutes a complete function
system for this equation. The proof is based on expanding the solution into a Taylor series
and appropriately replacing the time derivatives by spatial derivatives therein. It means
that any solution to this equation can be presented using an infinite series of these functions
with appropriate coefficients. A finite linear combination of T-functions can be used as
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a base to develop an approximate solution. Of course, the more T-functions are used to
obtain an approximate solution, the more accurate the approximation will be.

T-functions for a one-dimensional problem have the form

vn(x, t) = ∑[n/2]
k=0

xn−2ktk

(n− 2k)!k!
. (17)

n = 0, 1, . . . . [x]= floor(x) means the integer part of number x. Two-dimensional
T-functions are obtained as products of the one-dimensional T-functions:

gm(x, y, t) = vn−k(x, t)vk(y, t) (18)

where k ≤ n. The relationship between m and n, k can be expressed as follows:

m(n, k) =
{

m(0, k− 1) + k + 1 when n = 0, k > 0
m(n− 1, k) + n + k when n > 0

, n, k = 0, 1, 2, . . . ;

m(0, 0) = 0.

(19)

An approximate solution, Tap
M (ξ, η, τ), expressed by dimensionless variables, Equation (2),

takes the form

Tap
M (ξ, η, τ) =

M

∑
m=0

cmgm(ξ, η, τ) =
M

∑
m=0

cmvn−k(ξ, τ)vk(η, τ) (20)

where k ≤ n.

3.2. Objective Functionals

In order to determine the constants {cm}m=0,1,...,M, the mean square approximation
of meeting the boundary and initial conditions by the function Ta

M(ξ, η, τ) will be used.
Individual conditions, Equations (5) to (16), will be used to develop functionals, Ja1, Ja2,
and Jb, describing the inaccuracy of satisfying these conditions for each variant separately
(so-called objective functionals). The minimization conditions for each functional will be
used to derive an algebraic system of equations for {cm}m=0,1,...,M.

Ja1({cm}) =
∫ 1

0

∫ h/l
0 (Tap

M (x, y, 0)− (TL(1− x) + TRx))
2
dxdy+

∫ h
l

0
∫ τend

0

[(
∂Tap

M
∂x (1, y, t) + Bi1

(
Tap

M (1, y, t)− TR

))2
+
(

Tap
M (0, y, t)− TL

)2
]

dtdy+

∫ 1
0

∫ τend
0

(
∂Tap

M
∂y

(
x, h

l , t
)
+ Bi2

[
Tap

M

(
x, h

l , t
)
− TL

])2
dtdx +

∫ 1
0

∫ τend
0

(
∂Tap

M
∂y (x, 0, t)

)2
dxdt

(21)

Ja2({cm}) =
∫ 1

0

∫ h/l
0

(
Tap

M (x, y, 0)− Ta1(x, y, τend)
)2

dxdy+

∫ h
l

0
∫ τend

0

[(
∂Tap

M
∂x (1, y, t) + Bi1

(
Tap

M (1, y, t)− TR

))2
+

(
∂Tap

M
∂x (0, y, t)− Bi1

(
Tap

M (0, y, t)− TL

))2
]

dtdy+

∫ 1
0

∫ τend
0

(
∂Tap

M
∂y

(
x, h

l , t
)
+ Bi2

[
Tap

M

(
x, h

l , t
)
− TR

])2
dtdx +

∫ 1
0

∫ τend
0

(
∂Tap

M
∂y (x, 0, t)

)2
dtdx

(22)
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Jb({cm}) =
∫ 1

0

∫ h
l
− h

l
(Tap

M (x, y, 0)− (TL(1− x) + TRx))
2
dxdy+

∫ h
l
− h

l

∫ τend
0

{(
∂Tap

M
∂x (0, y, t)− Bi1

(
Tap

M (0, y, t)− TL

))2
+

(
∂Tap

M
∂x (1, y, t) + Bi1

(
Tap

M (1, y, t)− TR

))2
}

dtdy+

∫ 1
0

∫ τend
0

{(
∂Tap

M
∂y

(
x, h

l , t
)
+ Bi2

[
Tap

M

(
x, h

l , t
)
− TL

])2
+

(
∂Tap

M
∂y

(
x,− h

l , t
)
− Bi2

[
Tap

M

(
x,− h

l , t
)
− TR

])2
}

dtdx

(23)

Jb({cm}) =
∫ 1

0

∫ h
l
− h

l

(
Tap

M (x, y, 0)− (TL(1− x) + TRx)
)2

dxdy+

∫ h
l
− h

l

∫ τend
0

{(
∂Tap

M
∂x (0, y, t)− Bi1

(
Tap

M (0, y, t)− TL

))2
+

(
∂Tap

M
∂x (1, y, t) + Bi1

(
Tap

M (1, y, t)− TR

))2
}

dtdy+

∫ 1
0

∫ τend
0

{(
∂Tap

M
∂y

(
x, h

l , t
)
+ Bi2

[
Tap

M

(
x, h

l , t
)
− TL

])2
+

(
∂Tap

M
∂y

(
x,− h

l , t
)
− Bi2

[
Tap

M

(
x,− h

l , t
)
− TR

])2
}

dtdx

(24)

To achieve the best solution approximation, the objective functional should reach a
minimum. A minimum condition for this functional is zeroing of all of its first derivatives
with respect to the cm, m = 0, 1, . . . , M. Thus, the obtained equations form an algebraic
system M + 1 of linear equations with the M + 1 unknowns. They will take the form

∂J({cm})
∂cm

= 0, m = 0, 1, . . . , M. (25)

The coefficients cm, m = 0, 1, . . . , M, as in Equation (20) are solutions to the system of
Equation (25).

In order to check how many terms of a linear Equation (20) have to be included
in the computations to obtain a sufficient result accuracy, the values of the air outlet
temperature, i.e., Tap

M (l, h, tend), were checked, in cases where M = 44, 54, 65, 77 and 90
(terms are numbered from zero). The tests adopted steel as the material, tend = 600 s as
the process time, and the l and h values as in Section 4.1. The results presented in Table 1,
calculated for three values of outside temperature TR, exhibit slight differences on the
second decimal place.

Table 1. Studies involving the number of linear combination (3.2) terms regarding computation accuracy.

Material TR,
◦C

T(l,h,tend),
◦C, M = 45

T(l,h,tend),
◦C, M = 55

T(l,h,tend),
◦C, M = 66

T(l,h,ten d),
◦C, M = 78

T(l,h,tend),
◦C, M = 91

Steel,
va = 0.5

−19 −10.94 −11.1 −11.1 −10.98 −10.98

1 5.03 4.99 4.99 5.01 5.01

31 28.98 29 29 29 29

The result of these considerations, combined with the observation that in each case,
the time of calculations performed by the PC using the MAPLE program was of the order
of a few minutes, finally allowed us to adopt the number of 66 T-functions, i.e., M = 65.

4. Computation Results

The following data were adopted for the computations:
TL = 21 ◦C (room or inside temperature),
TR = −19 ◦C (outside temperature), 1 ◦C, 31 ◦C,
l = 1.2 m (plate section length),
h = 0.0006 m (plate section half height),
va = 0.5 m/s and 4.5 m/s,
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α1 = 5.8 W
m2K ,

α2 = 5.8 + 4va
W

m2K ,
tend = 300 s
M = 65 (66 T-functions), (n = 0, 1, . . . , 10, k = 0, 1, . . . < n, respectively, comp.

Equation (19)).
Calculations were conducted for copper, aluminium, and steel. Their thermophysical

data are presented in Table 2. The temperature of plate surface, y = h, was studied for
x ∈ (0, l) and t ∈ (0; tend).

Table 2. Plate material [29,30].

ρ [kg/m3]
c

[J/(kg K)] k [W/(mK)] a · 106

[m2/s] α (W/(m2 K))

copper 8933 385 386 112.2 5.8 + 4vva < 5

aluminium 2702 903 204 83.6 5.8 + 4vva < 5

stainless steel 7970 561 19.5 4.36 5.8 + 4vva < 5

4.1. Results for Variant (a)

For the temperature calculation in variants (a1) and (a2), the objective functionals Ja1

and Ja2 were used (cf. Equations (21) and (22)). First, the copper plate was considered.
The temperature distribution for the case for TR = −19 ◦C, va = 0.5 m/s is presented in
Figure 3 for time is given in seconds and distance in meters.
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Figure 3. Temperature graphs for the upper surface of a copper plate for TR = −19 ◦C, va = 0.5 m/s
(top drawings) and va = 4.5 m/s (bottom drawings) in the case of air exhaust from the room (variant
a1) and air supply to the room (variant a2).
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On the left side in Figure 3, one can see the initial temperature for air exhaust from the
room changing linearly from TL = 21 ◦C to TR = −19 ◦C, variant (a1). In the same Figure,
above the axis describing time t, one can see a change of the right plate end temperature,
from Tout

0.5 (l, h, 0) = −19 ◦C to ca. Tout
0.5 (l, h, tend) = 2.5 ◦C for air velocity of va = 0.5 m/s

and to ca. Tout
4.5 (l, h, tend) = 15.2 ◦C, when va = 4.5 m/s.

When supplying air from the outside into the room, variant (a2), as seen in the
graphs on the right side, it can be seen how an air temperature of −19 ◦C changes, using
heat of air exhausting out of the room. At air velocity va = 0.5 m/s, the right end of
the plate cools down after 5 min from ca. Tout

0.5 (l, h, tend) = Tin
0.5(l, h, 0) = 2.5 ◦C to ca.

Tin
0.5(l, h, tend) = −6.1 ◦C. At velocity of va = 4.5 m/s, this temperature changes from

Tout
4.5 (l, h, tend) = Tin

4.5(l, h, 0) = 15.2◦C to Tin
4.5(l, h, tend) = −13 ◦C. In the case of the inlet into

the room, with air velocity va = 0.5 m/s, the air temperature reaches Tin
0.5(0, h, tend) = +1.2 ◦C

after 5 min. For a velocity va = 4.5 m/s, this value is ca. Tin
4.5(0, h, tend) = −12.2 ◦C.

For aluminium and steel and for other values of external temperatures, the tempera-
ture distributions are similar to those presented in Figure 3. The temperature values for
copper, aluminium, and steel plates are presented in Table 3.

Table 3. The temperatures (in ◦C) for x = 0 and x = l from the room side (superscript ‘in’), and from the outside (‘out’), for
air exhaust from the room and supply to the room, at various outside temperatures and air velocities of 0.5 m/s and 4.5
m/s, in the case of copper, aluminium, and steel plates—comparison. TL = 21 ◦C, tend = 300s (time of exhaust/supply).
Subscripts indicate va.

TR
Outside

Tout
0.5 (l,h,tend)=
Tin

0.5(l,h,0)
Outside

Tin
0.5(l,h,tend)
Outside

Tin
0.5(0,h,tend)

Inside

Tout
4.5 (l,h,tend)
=Tin

4.5(l,h,0)
Outside

Tin
4.5(l,h,tend)
Outside

Tin
4.5(0,h,tend)

Inside

Cu Al Steel Cu Al Steel Cu Al Steel Cu Al Steel Cu Al Steel Cu Al Steel

x19 2.5 6 −3.9 −6.1 −7.6 −9.2 1.2 −2.5 6.2 15.2 18 10.6 −13 −15.8 −11.3 −12.2 −15.5 −8.4

1 11.8 13.5 8.5 7.4 6.7 5.9 11.1 9.3 13.6 18.1 19.5 15.8 4 2.6 4.9 4.4 2.7 6.3

31 25.6 24.7 27.2 27.8 28.1 28.5 25.8 26.9 24.7 22.5 21.7 23.4 29.5 30.2 29.1 29.3 30.1 28.3

The analysis of data in Table 3 indicates that the best plate material is steel, and the
air velocity should be around 0.5 m/s, since in the case of such heat transfer combination,
the supplied air temperature in high frosts is not too low, and in the case of high positive
temperatures, it does not significantly deviate from room temperature. This is indicated
by the values in column Tin

0.5(0, h, tend) (inside) showing that the temperature of the air
supplied to the room is relatively highest in frosty winter and lowest in hot summer.

Copper plates give slightly higher temperature values than aluminium plates. How-
ever, copper is more expensive than aluminium or steel (steel is USD 1.84/lb, aluminium
is USD 2.87/lb, while copper is USD 4.27/lb, [31,32]) and is therefore omitted in further
discussion concerning the exhaust-supply heat exchanger.

4.2. Results for Variant (b)

For the temperature calculation in variants (b), the objective functional Jb was used
(cf. Equation (23)). The temperature graphs, when air from the room flows above a plate,
and the air into the room flows under the plate are shown and discussed below, again,
for copper, aluminium, and steel. Plate surface temperature, y = ±h, was studied for
x ∈ (0, l) and t ∈ (0, tend). Figure 4 shows an example of the temperature distribution
in the plate as a function of time. Since the plate thickness is very small compared to its
length, for y = +h and y = −h, its temperature turns out to be virtually the same. As
before, the copper plate was considered first.
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Figure 4. Copper plate temperature graph for TL = 21 ◦C, TR = −19 ◦ C and two air flow ve-
locities, va = 0.5 m/s and va = 4.5 m/s, in the case of air exhaust above the plate and air supply
under the plate.

The temperature distributions for aluminium and steel and for other values of external
temperatures are similar to those presented in Figure 4. Table 4 focuses on the temperatures
for tend, since they are lowest in the frosty winter (highest in the hot summer) throughout
the entire process of supplying air into the room.

Table 4. The temperatures (in ◦C) of the air for x = 0 and x = l for a counter-flow heat exchanger,
depending on the material, ◦C, two air velocities and various outside temperatures. Supply/exhaust
time tend = 300 s, l = 1.2 m.

TR
◦C

T(0,h,tend), ◦C
Supply

T(l,h,tend), ◦C
Exhaust

Cu Al Steel Cu Al Steel

m/s
va va va va va va va va va va va va

0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5

−19 8.2 3.2 7.1 2.2 13 6.1 −6.2 −1.2 −5.1 −0.2 −11 −4

1 14.6 12.1 14 11.6 17 13.5 7.4 9.9 8 10.4 5 8.5

31 24.2 25.4 24.5 25.7 23 24.7 27.8 26.6 27.5 26.3 29 27.3

The analysis of data in Table 4 indicates that the best plate material for the counter-flow
heat exchanger is also steel, and the air velocity should be around 0.5 m/s or slightly higher.
It should be noted that in the case of severe frosts and at a supply velocity of 0.5 m/s, the
plate temperature on the air inlet into the room falls from the initial value of 21 to 13 ◦C
after 300 s, while in the case of high positive temperatures, it increases above 21 ◦C but
does not exceed 23 ◦C.

Again, copper plates give slightly higher temperature values than aluminium plates.
However, for the reasons mentioned above, for counter-flow heat exchangers, copper plates
are also omitted in the further discussion.

5. Discussion

The analysis of the results presented in Section 4 shows that the use of a counter-flow
exchanger is a better method of air exchange, and the best material of the heat exchanger
plates is steel. This is illustrated in Table 5. In the case of a counter-flow heat exchanger, the
temperature of the air supplied into the room is relatively highest when it is cold outside
and lowest when it is hot.
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Table 5. Comparison of temperatures for x = 0 and x = l after tend = 300 s, for a steel-plate
recuperator, operating in the exhaust–supply mode and for a counter-flow heat exchanger.

TR, ◦C
T(0,h,tend), ◦C

Supply
T(l,h,tend), ◦C

Exhaust

Exhaust–Supply Counter-Flow Exhaust–Supply Counter-Flow

va, m/s 0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5

−19 6.2 −8.4 13 6.1 −9.2 −11.3 −11 −4

1 13.6 6.3 17 13.5 5.9 4.9 5 8.5

31 24.7 28.3 23 24.7 28.5 29.1 29 27.3

The analysis in Section 4 was applied to a situation when air transfer inside the
room lasted 300 (exhaust) + 300 (supply) seconds or with a counter-flow process lasting
300 s. Tables 6–8 show the supply and exhaust temperatures tend in exchangers made of
0.8 m, 1.0 m, and 1.2 m long plates, after a heat transfer time of 300, 600, and 900 s, in the
counter-flow mode.

Table 6. Temperatures for x = 0 and x = l on the air outlet from the room and fresh air inlet into the
room for a counter-flow heat exchanger made from steel plates, ◦C, various air exchange durations,
two air velocities, different outside temperatures, and plate lengths l = 0.8 m.

TR
◦C

T(0,h,tend), ◦C
Supply

T(l,h,tend), ◦C
Exhaust

300 s 600 s 900 s 300 s 600 s 900 s

m/s
va va va va va va va va va va va va

0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5

−19 12.6 5.9 8.1 2.3 5.4 1.4 −10.6 −3.8 −6.1 −0.3 −3.4 0.6

1 16.8 13.4 14.6 11.7 13.2 11.2 5.2 8.6 7.4 10.4 8.8 10.8

31 23.1 24.8 24.2 25.7 24.9 25.9 28.9 27.2 27.8 26.3 27.1 26.1

Table 7. Temperatures for x = 0 and x = l on the air outlet from the room and fresh air inlet into the
room for a counter-flow heat exchanger made from steel plates, ◦C, various air exchange durations,
two air velocities, different outside temperatures, and plate lengths l = 1 m.

TR
◦C

T(0,h,tend), ◦C
Supply

T(l,h,tend), ◦C
Exhaust

300 s 600 s 900 s 300 s 600 s 900 s

m/s
va va va va va va va va va va va va

0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5

−19 12.9 6 8.6 2.4 5.7 1.5 −10.9 −3.9 −6.4 −0.3 −3.6 0.6

1 16.9 13.5 14.7 11.7 13.3 11.2 5.1 8.5 7.3 10.3 8.7 10.8

31 23 24.8 24.1 25.7 24.8 25.9 29 27.2 27.8 26.3 27.2 26.1
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Table 8. Temperatures for x = 0 and x = l on the air outlet from the room and fresh air inlet into the
room for a counter-flow heat exchanger made from steel plates, ◦C, various air exchange durations,
two air velocities, different outside temperatures, and plate lengths l = 1.2 m.

TR
◦C

T(0,h,tend), ◦C
Supply

T(l,h,tend), ◦C
Exhaust

300 s 600 s 900 s 300 s 600 s 900 s

m/s
va va va va va va va va va va va va

0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5

−19 13 6.1 8.6 2.5 5.8 1.5 −11 −4 −6.6 −0.4 −3.8 0.6

1 17 13.5 14.8 11.7 13.4 11.2 5 8.5 7.2 10.3 8.6 10.8

31 23 24.7 24.1 25.6 24.8 25.9 29 27.3 27.9 26.3 27.2 26.1

As indicated by the data from Table 6, when the exchanger operation time is 300 s, with
plates 0.8 m long and air velocity 0.5 m/s, the temperature difference between air supply
in frost conditions and hot weather is about 10.5 degrees, with the outside temperature
difference reaching 50 degrees. When high heat transfer velocity (4.5 m/s) takes place, this
difference is almost twice as high (ca. 19 degrees).

A longer operation time of the counter-flow plate heat exchanger, at the air velocity
of 0.5 m/s, lowers the supply air temperature for x = 0 in severe frosts even to 8.1 ◦C
after 600 s and to 5.4 ◦C after 900 s. In the case of high supply velocity of 4.5 m/s, the
final supply temperatures are significantly lower than for a supply velocity of 0.5 m/s. In
addition, the equalization of the supply and exhaust temperature over time on both plate
ends is visible.

This indicates that exchangers with 0.8 m long plates should be used at low air flow velocities.
Table 7 indicates that the extension of exchanger plates from 0.8 to 1.0 m slightly

increases the supply temperatures in severe frosts. A longer heat exchanger operation time
leads to a reduced difference between supply and exhaust temperatures, just like for an
exchanger that is 0.8 m long.

Table 8 shows that further extension of exchanger plates improves temperature but
only slightly. It follows that the best exchanger plate length is 1 m.

As mentioned in the Introduction, exchangers are built mainly of the weather-resistant
aluminium. However, the presented computations indicate that steel would be a material
better in terms of heat dissipation when supplying fresh air into a room. It is obvious
that a steel plate can be much thinner than that adopted for the purposes of this paper.
The presented research shows that the thinner the plate, the less the supply air heats up,
although the differences are slight. The differences in the final air temperatures are greater
only in severe frosts, as presented in Table 9.

Table 9. Comparison of temperatures on the fresh air inlet to a room, T(0, h, tend), for various outside
temperatures and a counter-flow heat exchanger made of 1.2 mm thick aluminium plates and of steel
plates of various thickness for an air exchange duration tend = of 300 s and air velocities va = 0.5 m/s
and va = 4.5 m/s.

TR, ◦C
T(0,h,tend), ◦C

Al Steel, h = 1.2 mm Steel, h = 0.8 mm Steel, h = 0.4 mm

va, m/s 0.5 4.5 0.5 4.5 0.5 4.5 0.5 4.5

−19 7.1 2.2 13 6.1 6.1 1.5 2.5 −0.5

1 14 11.6 17 13.5 13.5 11.3 11.7 10.3

31 24.5 25.7 23 24.7 24.7 25.9 25.6 26.4
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As can be seen in Table 9, the final air inlet temperature T(0, h, tend), at approximately
1 ◦C, is lower by ca. 0.5 ◦C for 0.8 mm thick steel plates than for 150% thicker aluminium
plates; however, in the case of air supply during a hot summer day, this difference is only
0.2 ◦C. Only during a harsh winter, the difference in the final temperatures is ca. 2 ◦C.
Therefore, a heat exchanger with 0.8 mm thick steel plates will exhibit similar performance
to a heat exchanger with aluminium plates. It should be noted that it is much cheaper,
although it is a little heavier. For steel plates ca 0.4 mm thick, the final air inlet temperatures
are less favourable than for aluminium plates that are 1.2 mm thick (almost 5 ◦C for a harsh
winter, more than 2 ◦C for the spring–autumn period, and approximately 1 ◦C for a hot
summer). However, at the same time, the weight of a heat exchanger made of 0.4 mm thick
steel plates is a bit lower than the weight of that made of aluminium plates, and with the
exchanger operation time less than 300 s, the final air inlet temperatures will be similar to
the temperatures achieved in an aluminium-plate exchanger.

It should be noted that the temperatures achieved for steel plates with a thickness of
0.4 mm and 0.8 mm, and a supply velocity of 0.5 m/s are very similar to temperatures at a
supply velocity of 4.5 m/s but for plates that are thicker by 0.4 mm.

As mentioned in the Introduction, exchangers are mainly made of the weather-
resistant aluminium. However, the presented computations indicate that steel would
be a better material in terms of heat dissipation when supplying fresh air into a room.

Consider the temperature transfer efficiency of aluminium and steel exhaust/supply
and counter-flow heat exchangers. The efficiency is calculated from the formula, [33],

ηT =
Tin − TR
TL − TR

(26)

where Tin stands for supply air temperature, and TR and TL are outside and room tempera-
ture, respectively. The average of TL and T(0, h, tend) for va = 0.5 m/s is taken as Tin (see
Table 3 for exhaust/supply and Table 4 for counter-flow exchangers). When comparing the
temperature transfer efficiency for the considered heat exchangers, its value is calculated
for TR = 1 ◦C and TL = 21 ◦C. For the counter-flow exchanger, we get ηT,Al = 0.825,
ηT,steel =0.9, and for the exhaust/supply, ηT,Al = 0.7075, ηT,steel =0.815. The advantage
of the counter-flow heat exchanger over the exhaust-supply heat exchanger and steel over
aluminium is evident. In addition, steel is cheaper than aluminium (steel is USD 1.84/lb,
aluminium is USD 2.87/lb). However, steel plate heat exchangers are heavier. The use of
thinner steel plates can reduce the weight.

6. Conclusions

The Trefftz functions have been adopted as the baseline for the approximate solution
of the problem. As shown in Table 1, it is sufficient to use the first several dozen T-functions
in order to achieve an approximate solution that describes the temperature field in the
exchanger plate with adequate accuracy, approximating the fulfilment of the boundary
conditions by means of the least squares method.

As could be expected, the plate thickness (1.2 mm) in relation to the length means
that although the equation has been solved for x, y, t (dimensionless ξ, η, τ), the results
practically depend only on x and t. It follows that the plate section of the heat exchanger
can be considered one-dimensional.

The results clearly show how temperature distribution depends on air velocity. It is
obvious that lower air velocities are more favourable in terms of recovering heat from the
supplied heat that is transferred with the air during extraction. In numerical terms, this is
described in Tables 3–8.

The presented analysis indicates that counter-flow exchangers are more effective than
those operating in the exhaust–supply mode. If we consider plates that are 0.8 m, 1.0 m,
and 1.2 m long, their length is of secondary significance; it seems that the best results
in relation to the potential production costs are obtained for the length l = 1.0 m. The
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comparison of the three considered materials for the heat exchanger plates shows that steel
is the best.

The exchanger operation time is significant to the temperature of air supplied to the
room. In the case of cold periods, this time should be shorter. In the case of positive
temperatures, the exchanger operation time can be longer, and the computation results
indicate that 300 s is the best option.

Air humidity and pollution are not included in the analysis. However, the results
obtained with the simplifications applied are in line with the practice of designing and
using heat exchangers/recuperators.
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Poland, 1981. (In Polish)

31. Prices of Metals. Available online: https://agmetalminer.com/metal-prices/ (accessed on 8 December 2021).
32. Copper Prices: Check Live & Historical Copper Spot Prices. Available online: https://www.moneymetals.com/copper-prices

(accessed on 8 December 2021).
33. Heat Recovery Efficiency. Available online: https://www.engineeringtoolbox.com/heat-recovery-efficiency-d_201.html (ac-

cessed on 8 December 2021).

http://doi.org/10.1080/01457632.2016.1142316
https://www.engineersedge.com/thermodynamics/overall_heat_transfer-table.htm
http://doi.org/10.3390/en14123637
https://agmetalminer.com/metal-prices/
https://www.moneymetals.com/copper-prices
https://www.engineeringtoolbox.com/heat-recovery-efficiency-d_201.html

	Introduction 
	Formulation of Equations and Conditions for Both Tested Heat Exchangers 
	Solution Method 
	Trefftz Functions 
	Objective Functionals 

	Computation Results 
	Results for Variant (a) 
	Results for Variant (b) 

	Discussion 
	Conclusions 
	References

