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Abstract: Self-driving cars, i.e., fully automated cars, will spread in the upcoming two decades,
according to the representatives of automotive industries; owing to technological breakthroughs in
the fourth industrial revolution, as the introduction of deep learning has completely changed the
concept of automation. There is considerable research being conducted regarding object detection
systems, for instance, lane, pedestrian, or signal detection. This paper specifically focuses on
pedestrian detection while the car is moving on the road, where speed and environmental conditions
affect visibility. To explore the environmental conditions, a pedestrian custom dataset based on
Common Object in Context (COCO) is used. The images are manipulated with the inverse gamma
correction method, in which pixel values are changed to make a sequence of bright and dark images.
The gamma correction method is directly related to luminance intensity. This paper presents a
flexible, simple detection system called Mask R-CNN, which works on top of the Faster R-CNN
(Region Based Convolutional Neural Network) model. Mask R-CNN uses one extra feature instance
segmentation in addition to two available features in the Faster R-CNN, called object recognition.
The performance of the Mask R-CNN models is checked by using different Convolutional Neural
Network (CNN) models as a backbone. This approach might help future work, especially when
dealing with different lighting conditions.

Keywords: Mask R-CNN; transfer learning; inverse gamma correction; illumination; instance
segmentation; pedestrian custom dataset

1. Introduction

Previous studies presented that energy minimization is a critical area of autonomous
transport system development, where advanced longitudinal and lateral vehicle control
methods will play a key role in achieving expected results [1–7]. Conversely, numerous
research papers propose to improve the efficiency of the vehicle control process through
the development of sensor systems and image detection methods [8–11]. Based on this,
we understand that image detection approaches can directly affect the efficiency of highly
automated transport systems. In light of this, our paper discusses the comparison of
different models influencing the efficiency of image detection processes.

The recent trends in self-driving cars have encouraged researchers to use several object
detection algorithms that include various areas in self-driving cars, such as pedestrian
detection (see Figure 1) [12–15], lane detection, traffic signal detection [16], and many
more. Due to the recent development in CNN and its outstanding performance in these
state-of-the-art visual recognition solutions, these processes have become increasingly
intensive. CNN is basically used for image classifying tasks, but it cannot detect objects.
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For this purpose, many object detection algorithms are available, for instance, SSD (Single
Shot Multibox Detector) [14–17] YOLO (You Only Look Once) [18–21], R-CNN [10], and
Fast R-CNN [22,23]. All object detection models localize objects by using bounding boxes
and classifying them by labels.

This paper focuses on pedestrian detection, especially in different visibility conditions.
The developed dataset is manipulated with the inverse gamma correction method to create
images representing the different lighting conditions. After this development phase, the
Mask R-CNN model [24–28] is trained with this dataset by transfer learning and fine-
tuning techniques [29].
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There are relevant difficulties related to pedestrian detection [31] from an automated
driving point of view, especially when we consider the experiences of highly automated
vehicles’ accidents. For instance, one of the most famous accidents related to highly
automated driving is the well-known Arizona-Uber accident [32,33], where the failure of
the detection was seriously affected by lighting conditions. Visibility is the most important
factor, such as darkness, brightness, and glaring.

2. Literature Review

This paper gives a review of R-CNN models and their variations. The localization
process starts with the coarse scan of the whole image and concentrates on the region of
interest, where the sliding window method is used to predict the bounding boxes.

Ross Girshick proposed the R-CNN model in 2014 [23]. He developed a selective
search method to create 2000 regions for each image called region proposal. It makes the
quality of the bounding box better and helps the CNN model extract high-level features.
Thus, R-CNN models take the image as the input, and then a 2k region is proposed by a
selective search method. After this, it is cropped to a fixed size, called a warped region.
Finally, with the CNN model’s help, objects are localized and classified within the region
of interest. The CNN model uses the Linear Support Vector Machine (SVM) method [33] to



Energies 2021, 14, 7172 3 of 16

classify the classes of objects as well as non-max suppression methods [16] to suppress the
bounding boxes that have a value of less than the critical value.

In other words, R-CNN consists of four processes. First, regions are proposed in the
image with the selective method, and then it is warped in a fixed size. After that, the warped
region is fed in the CNN model with a fixed size of 227 × 227 pixels to classify and predict
bounding boxes. It extracts 4096 feature vectors from each region proposal. The image
contains objects with different sizes and aspect ratios; thus, the region proposal feature
comes in different sizes. Before feeding into the CNN model, it is cropped and warped.

The R-CNN method has reasonable limitations in terms of training time, since it takes
a huge amount of time to classify the 2 k region proposals in each image. At the same time,
it must be mentioned that the selective search algorithm is not a self-learning approach.
Thus, to solve this problem, Girshick proposed the fast R-CNN model.

The Fast R-CNN model is nine times faster than the R-CNN model [22,23], in which
the VGG16 (Visual Geometry Groups 16) [23] approach is used as the backbone. The
architecture is the same as the previous model. However, the input image is fed first into
the CNN, and then region proposals are applied to the proposed region. After that, region
features are warped with the help of the RoI pooling layer. Then, it is reshaped in fixed
size to feed into fully connected layers. Similar to the R-CNN, the 2k region is proposed to
CNN every time, but in fast R-CNN, it is fed at once.

A high computational complexity can characterize R-CNN and Fast R-CNN models
because both use selective search methods to propose the region. Thus, Shaoqing Ren and
his team [22,34] created the idea of a Region Proposal Network (RPN) that replaces the
selective search region proposal method. In faster R-CNN, the image is fed into the CNN
model first to provide a feature map. A separate Region Proposal Network is then used
to predict region proposal, which is further reshaped by using RoI pooling. At last, it is
classified and labeled in the Region of Interest.

3. Mask R-CNN

The Mask R-CNN concept [24,25,27,28] is the extended version of the fast R-CNN
model. It is used to predict a mask that works parallel to the existing branch of classification
and bounding box detection in each region of interest. Because of its simplicity, flexibility,
and robustness, Kaiming He and his team won the COCO challenge in 2016. This detection
system uses one extra feature called RoI Align, which removes the harsh quantization in
RoI Pool.

Mask R-CNN has a similar structure to Fast R-CNN. One additional feature is added,
called segmentation masks, that work parallel to each region of interest (RoI) to predict
the mask, pixel by pixel. Thus, Mask R-CNN gives one extra output, namely masking,
including two existing output: class labelling and bounding box. Mask is quite different
from the output mentioned above because it extracts the feature pixel by pixel alignment.
Thus, it places a colourful layer (mask) on the object, which is the same in size as the
object. At the same time, the bound box has a different aspect ratio that predicts the object
through the rectangular box, which is always bigger in size than the instances available in
the images.

The Mask R-CNN model is a two-stage detection model. The first stage is designed to
provide a proposal for the availability of the object with the help of the Region proposal
Network (RPN) [22,35], which is similar to what is used in Fast R-CNN. In the second
stage, masking is applied in parallel with the class and bounding box, and it gives a binary
mask as an output for each RoI, as shown in Figure 2.
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Figure 2 shows that the input image is fed into the convolution neural network to
extract the object features. Mask R-CNN uses a new feature called Region of Interest (Roi)
Align [32]. This new feature removes the harsh quantization of the RoI Pool. Then, further
convolution layers are used to predict instance segmentation, which works in parallel with
the classification and localization of objects in each region of interest.

4. Methodology

This section presents the applied methodological approaches related to improving
the efficiency of neural network-based detection models. We first describe the concepts
of transfer learning and fine-tuning, as these methods are fundamental for improving
the efficiency of an existing detection network. In light of the above, by comparing the
backbone network types described below, we have the opportunity to determine the
network structure that best supports our goals.

4.1. Transfer Learning and Fine Tuning

In the case of transfer learning [36–39], the pre-trained models are applied in the
solution of various problems by manipulating relevant layers of the network according to
the new application’s requirements. In this methodology, some layers are placed in freeze
conditions. Fine-tuning is different from transfer learning, where all the layers are used
and trained again according to the new application requirements.

This paper uses both techniques to detect the object using Mask R-CNN, where transfer
learning techniques replace the backbone. Two classes replace the output of the Mask
R-CNN, because the dataset contains two classes, background and masking (foreground),
and it is trained again with the help of fine tuning [33,36,40].

4.2. Backbones

As we explained above, the backbone [41] of the Mask R-CNN is a convolution neu-
ral network. We tested six different backbone models in the feature extracting and the
bounding box identification process. Each Mask R-CNN model with different backbones is
trained in different lighting conditions. Since it was not possible to generate the applied
dataset during the research, the training and the test procedure was based on a previously
developed image dataset (such as images with day or night conditions). In accordance
with this, we used a limited number of images from an external database, and we applied
the inverse gamma correction method to transform the images into the required light-
ing conditions. Inverse Gamma Correction Method (IGCM) changes the pixel values to
make the picture bright or dark. Each convolutional neural network takes an image with
559 × 536 pixels as an input and provides a 256-channel output connected to the region



Energies 2021, 14, 7172 5 of 16

proposal network. Accordingly, RPN takes 256 channels as input. Thus, all backbone
models are modified according to the input channel of the RPN. In this case, transfer
learning and fine-tuning methods are used. Accordingly, we briefly describe the different
feature extracting models below.

4.2.1. Alex Net

Alex Net was developed by Alex Krizhevsky and his team in 2012 [42–46]. That
year, they won the ImageNet Challenge in visual object recognition. In their approach,
recognition refers to the prediction of the bounding boxes and the labelling process of the
identified objects in the image. It contains five convolution layers and three fully connected
layers to extract the features. In the present paper, we made modifications; for instance, we
removed all the fully connected layers. After that, we changed the fifth convolution layer’s
output, whose channels are equal to the RPN convolution layer’s input.

4.2.2. Mobile Net V2

Mobile Net V2 is the extended version of the Mobile Net V1 method [14], which uses
an extra layer called a 1 × 1 expansion layer in each block as compared to Mobile Net
V1. Mobile Net V2 [14,17,33,47] replaces the large convolution layer with a depth-wise
separable convolution block, and each block contains a 3 × 3 depth wise kernel to filter the
output. Further, it is followed by a 1 × 1 point wise convolution layer. Thus, it combines
the filters and gives new features. Overall, Mobile Net V1 uses 13 depth-wise separable
convolution blocks, preceded by a 3 × 3 regular convolution layer.

At the same time, Mobile Net V2 uses a 1 × 1 expansion layer in each block in addition
to the depth wise and pointwise convolution layer. The pointwise convolution layer is also
known as the projection layer because it connects a high number of channels with a low
number of channels. Furthermore, the 1 × 1 expansion layer expands the channel number
before going into the depth-wise convolution layer. This model uses new features called
residual connection that help in following the gradient through the neural network. Each
block contains batch normalization and ReLU6 activation function, but the projection layer
does not use the activation function as an output. This model contains 17 residual blocks,
and each block contains depth-wise, pointwise, and 1 × 1 expansion layers. The depth-wise
convolution layer is followed by Batch Normalization and Relu6 activation function.

4.2.3. ResNet50

The ResNet model [38,45–47] is based on learning the residual instead of learning the
low- or high-level features, i.e., residual network. It is used to go deeper and solve complex
problems. Thus, ResNet 50 uses 50 residual blocks [48–50].

4.2.4. VGG11

Karen Simonyan and Andrew Zisserman introduced this model in 2014 [51]. Their
team secured first and second place in the localization and classification problems. This
model has eight convolution layers and three fully connected layers. However, in our case,
we used only the first four layers of this network.

4.2.5. VGG13

One year later, Simonyan and Zisserman, in 2015 [51], investigated the effect of
increasing the layers’ depth. This model contains eleven convolution layers and three fully
connected layers, where a 3 × 3 kernel is applied on each convolution layer with a stride
1 × 1 followed by a max pool layer after every two convolution layers.

4.2.6. VGG16

This network [52–54] consists of thirteen convolution layers and three fully connected
layers, where 3 × 3 filters are used in each convolution layer with a stride size of 1 × 1
and the same padding. Thus, the first two convolution layers contain 64 3 × 3 kernels.
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The input image fed into the first layer has a size of 224 × 224 × 64. It passes through the
second layer, and then max pooling is applied to make the channel double. Thus, the third
and fourth layers contain 128 3 × 3 kernels.

Again, the max pool layer is attached to make the channel double. This process is
repeated through thirteen layers. The following layers are fully connected that contain
4096 units. These are followed by SoftMax to different 1000 classes. However, we must
mention that our investigation considers only convolution layers. It removes the fully
connected layers.

As mentioned above, for the three different VGG models, the model’s accuracy in-
creases with the depth of the model. The error rate of these three VGG models is introduced
in Table 1 below.

Table 1. Error rate of variants of VGG models taken from the paper of VGG 11, 13, and 16 models.

VGG Variant VGG11 VGG13 VGG16

Error Rate 10.4% 9.9% 9.4%

5. Dataset

This paper uses the Penn-Fudan Database for pedestrian detection as well as segmen-
tation (see Figure 3), which is available on the website (https://www.kaggle.com/jiweiliu/
pennfudanpe, accessed on 1 February 2021). It contains 170 images with 345 pedestrian objects,
and it is compatible with both COCO [55–57] and Pascal VOC format [54]. We used the
dataset during our research in COCO format.
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Figure 3. Pedestrian dataset. Developed from [30].

The database consists of three subfiles, namely Annotation, PedMasks, and PNGIm-
ages, where annotation files are in text format, and both PNGImages & PedMasks are in
png format. Before applying a Mask R-CNN model, the dataset is pre-processed. Each
image is normalized and resized to equal sizes, as shown in Tables 2 and 3 below, where
the normalization process transforms the pixel value of the images into the range of 0 to 1.

https://www.kaggle.com/jiweiliu/pennfudanpe
https://www.kaggle.com/jiweiliu/pennfudanpe
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Table 2. The data that is shown in table (a) and (b) are used to modify the images before importing
into the models. (a) Normalization of the dataset before importing into the model; (b) resizing of all
the images in the dataset. Developed from [58].

(a)

Normalize

Mean Standard Deviation

0.485 0.229

0.456 0.224

0.406 0.225

(b)

Resize
Minimum Size Maximum Size

800 1333

Table 3. Here, Mask R-CNN with different backbones is trained with pedestrian dataset at epoch 10.
In a Mask R-CNN, one extra loss called mask loss is added in addition to the losses in faster R-CNN
model, where λc = loss of classifier, λb = loss of box regression, λm = loss of mask, λ0 = objectiveness
loss, λr = loss of RPN box, and λT = overall loss (the minimum values of the columns are denoted by *).

Backbone λc λb λm λ0 λr λT

Alex Net 0.0569 0.1345 0.3612 0.1672 1.8658 2.5856
Mobile Net V2 0.0603 0.1248 0.4285 0.17 1.5136 2.2972

ResNet50 0.0199 * 0.0279 * 0.1115 * 0.0002 * 0.0022 * 0.1617 *
VGG11 0.2872 0.4664 0.2734 0.2229 2.5641 3.814
VGG13 0.3089 0.4694 0.2839 0.2462 2.6469 3.9553
VGG16 0.4191 0.6803 0.3671 0.2607 2.8196 4.5468

The table below (Table 3) introduces the results, where the overall loss λT [24] indicates
the sum of all losses.

λT = λc + λb + λm + λ0 + λr (1)

Equation (1): Total loss (λT) is equal to the sum of all losses.

6. Inverse Gamma Correction

The modification of the luminance characteristics can cause reduced visibility of an
object and decrease the detection capability of the system [59]. However, the effect of the
lighting conditions depends on many other factors, such as the distance of the given object.
Beyond this, the lighting contrast between the object and background can also significantly
influence detection efficiency. Accordingly, the system can capture sometimes darker or
sometimes brighter images depending on the related factors.

Many different algorithms can be used to adjust the contrast and increase or decrease
the brightness of the image. For instance, Histogram Equalization (HE) [60] or Bi-Histogram
Equalization (BBHE) [61] can be applied to modify the lighting-related characteristics of
the investigated images.

This paper uses the inverse gamma correction method to modify the brightness and
darkness of the images. Thus, inverse gamma correction transforms the lighting character-
istics of the input signal by applying a nonlinear power function. The power coefficient
(gamma) represents the nonlinear nature of the human perception process related to the
lighting conditions. Accordingly, the inverse gamma correction transformation is given by
Equation (1) below.

I0 = I1/γ

1 (2)

Equation (2): Equation of Gamma Inverse Method, where I0 is the output intensity
and I1 is the input intensity.
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The value of I0 is between 0 and 1, following the introduced model, and I1 is the
transformed intensity. This formula is applied when gamma’s value is known, and it is
commonly determined experimentally.

In accordance with the blind inverse gamma correction techniques [61–63], gamma is
varied between 0.1 and 1.5 with a step size of 0.1, as shown in Figure 4 below. Following
this, the gamma value of this image is one. The brightness of the image increases as the
gamma value becomes larger, and the image becomes darker as the gamma value decreases.
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7. Instance Segmentation

The instance segmentation [35,58] process involves two main steps. First, it detects
and indicates the object by bounding boxes within defined categories, and in the second
step, segmentation prediction is performed pixel-wise. Instance segmentation (see Figure 5)
is different from semantic segmentation since, beyond the object detection phase, instance
segmentation labels the objects, according to the investigated categories’ sub-classes. In
contrast, semantic segmentation performs the detection and then classifies the objects. We
used the method of instance segmentation with Mask R-CNN in our research. This paper
uses instance segmentation with Mask R-CNN.
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8. Results

The gamma value of the used dataset is assumed to be 1 and is in accordance with the
observed good, day-light conditions of the included images. The dataset was augmented
by the Torch vision 0.3 package’s inbuilt processing methods of the PyTorch Framework.
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First, the dataset was converted into a tensor since PyTorch accepts this structure during
the pre-processing phase. In the next step, the dataset was loaded in the framework with
a batch size number 2. After this, the Mask R-CNN model is applied, which is an inbuilt
module of the Torch Vision packages. The Mask R-CNN model works on top of the faster
R-CNN detection model. It uses one extra feature called mask prediction that is applied
parallel to the object recognition system in each region of interest.

Here, the mask R-CNN model’s backbone is changed with different CNN pre-trained
models through the transfer learning technique. In the figure below (see Figure 6), it can
be observed that ResNet50 has the lowest loss as compared to other models, whereas
VGG16 has the highest loss. In this Mask R-CNN model, anchor boxes are used with a
size (32, 64, 128, 256, 512) where region proposal network generates three different aspect
ratios, namely 0.5, 1.0, and 2.0. Apart from this, the number of epochs was 10 during the
training, and it is optimized with the Stochastic Gradient Descent Method. Parameter
values related to the learning method, the momentum, and the weight decay were 0.005,
0.9, and 0.0005, respectively.
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Figure 6. Mask detection of the image FudanPed00035.png with different Mask R-CNN models,
where the gamma value (γ) is one.

The Mask R-CNN model detects objects by predicting bounding boxes, which can
result in uncertainties due to the process of segmentation prediction, where the images are
decomposed to pixels, the number of which is proportional to the size of the instance.

In the figure above, AP parameter indicates the average precision [11,20,26], and AR
represents the average recall for both bounding boxes and segmentation. Accordingly,
average precision defines how accurate the prediction is. On the contrary, average recall
defines how well identified the proper classes are. The table below (see Table 4) shows that
Mask R-CNN with the ResNet 50 backbone has the highest AP and AR value compared to
the other models because it uses the residual network with a deeper layer. In other words,
it contains 17 residual blocks.

Table 4. Values of Average Precision and Average Recall for both bounding boxes and segmentation
tabulated while using different backbones (the maximum values of the columns are denoted with *).

Backbone AP (Bbox) AR (Bbox) AP (Segm) AR (Segm)

Alex Net 0.213 0.409 0.173 0.357
Mobile Net V2 0.175 0.38 0.105 0.23

Resnet50 0.844 * 0.883 * 0.774 * 0.813 *
VGG11 0.233 0.413 0.298 0.427
VGG13 0.237 0.42 0.2878 0.416
VGG16 0.148 0.359 0.188 0.339

At the same time, VGG16 takes the longest time to train the model. Moreover, ResNet
needs 0.003 s to evaluate it (see Table 5).
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Table 5. Training time and evaluating times are calculated for different backbones (the minimum
values of the columns are denoted with *).

Backbone Model Time Evaluator Time

Alex Net 0.0452 0.0165
Mobile Net V2 0.0606 0.0111

ResNet50 0.075 0.003 *
VGG11 0.046 * 0.0094
VGG13 0.0699 0.0069
VGG16 0.0827 0.0115

In general, Mask R-CNN with ResNet backbone performed well in all aspects, includ-
ing AP and AR indicators (see Tables 6–11). Accordingly, we can conclude that ResNet
based Mask R-CNN model is robust and flexible.

9. Evaluation

In this section, we introduce the evaluation of the investigated networks by process-
ing 10 images with different gamma values. Images are indicated in the tables below
with numbers from 0 to 9. We use score values to compare the different networks to
indicate the probability of the proper classification. Their score value is shown in the
contingency tables. Besides this, the bottom row contains the average score value related
to the different images.

Mask R-CNN with AlexNet Backbone.

Table 6. Top score of the 10 images represented by numbers 0 to 9 with different gamma values (γ)
while using Mask R-CNN with backbone Alex Net.

Top Score Value

Test
Images

γ 0.1 0.2 0.3 0.4 0.5 1 1.5

0 0.1092 0.0587 0 0.0648 0.1715 0.5374 0.1118

1 0.0854 0 0 0.0685 0.158 0.5369 0.069

2 0.1225 0.0594 0.0603 0.0698 0.1518 0.5276 0.0852

3 0.1541 0.0917 0 0.0731 0.1479 0.5605 0.1314

4 0.1415 0.0585 0.0639 0.0824 0.1341 0.5486 0.0953

5 0.1737 0.121 0 0.0913 0.1385 0.5462 0.0887

6 0.1359 0.08 0.0624 0.0841 0.1049 0.5342 0.1157

7 0.1526 0.0743 0 0.0525 0.1144 0.5403 0.1174

8 0.1327 0.0533 0.0509 0.0872 0.1341 0.5252 0.0732

9 0.1198 0 0 0.0851 0.178 0.5135 0.1021

Average 0.13274 0.05969 0.02375 0.07588 0.14332 0.53704 0.09898

Mask R-CNN with MobileNet V2 Backbone.
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Table 7. Top score of the 10 images with different gamma values (γ) while using Mask R-CNN with
backbone Mobile Net V2.

Top Score Value

Test
Images

γ 0.1 0.2 0.3 0.4 0.5 1 1.5

0 0.1037 0.0935 0.0874 0.0826 0.122 0.4899 0.1032

1 0.1021 0 0 0 0.0781 0.6261 0.0756

2 0.109 0.0975 0.0661 0.0771 0.1038 0.6609 0.1351

3 0.114 0.0896 0.0813 0.077 0.1073 0.6643 0.1171

4 0.1365 0.112 0.0945 0.0606 0.1363 0.6215 0.0946

5 0.1389 0.1277 0.059 0.0858 0.1089 0.6422 0.0807

6 0.0878 0.0907 0.0746 0.0616 0.0927 0.6987 0.0856

7 0.0985 0.0954 0.0774 0.0676 0.1007 0.6773 0.1011

8 0.1076 0.1087 0.0947 0.0699 0.127 0.6693 0.1194

9 0.1045 0.0549 0.0725 0.071 0.0851 0.5985 0.0569

Average 0.11026 0.087 0.07075 0.06532 0.10619 0.63487 0.09693

Mask R-CNN with ResNet50 Backbone.

Table 8. Top score of the 10 images with different gamma values (γ) while using Mask R-CNN with
backbone ResNet 50.

Top Score Value

Test
Images

γ 0.1 0.2 0.3 0.4 0.5 1 1.5

0 0.677 0.8755 0.8625 0.8822 0.8686 0.9988 0.88

1 0.6161 0.9058 0.9036 0.9032 0.9071 0.9976 0.92

2 0.6315 0.8889 0.88 0.8846 0.8716 0.9958 0.895

3 0.6486 0.8687 0.8721 0.8778 0.8729 0.9966 0.8862

4 0.613 0.8566 0.8305 0.8427 0.8383 0.9967 0.8588

5 0.6082 0.8319 0.8023 0.7977 0.7933 0.9904 0.8418

6 0.6438 0.8465 0.8541 0.8556 0.856 0.9972 0.8872

7 0.6061 0.8737 0.8579 0.8532 0.8507 0.9982 0.8841

8 0.5955 0.8308 0.8229 0.8121 0.8116 0.998 0.8189

9 0.5269 0.8534 0.8821 0.8685 0.866 0.9985 0.8851

Average 0.61667 0.86318 0.8568 0.85776 0.85361 0.99678 0.87571

Mask R-CNN with VGG11 Backbone.
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Table 9. Top score of the 10 images with different gamma values (γ) while using Mask R-CNN with
backbone VGG11.

Top Score Value

Test
Images

γ 0.1 0.2 0.3 0.4 0.5 1 1.5

0 0.1889 0.1629 0.1914 0.1337 0.1733 0.7792 0.175

1 0.0851 0.0993 0.086 0.1407 0.1965 0.8253 0.1482

2 0.2229 0.1983 0.2062 0.133 0.2092 0.7748 0.1773

3 0.2128 0.2215 0.2034 0.1219 0.2051 0.7706 0.1749

4 0.1816 0.1708 0.1674 0.1421 0.2152 0.75 0.1775

5 0.2326 0.231 0.2264 0.1227 0.1889 0.7653 0.1853

6 0.1875 0.2072 0.1849 0.1176 0.1843 0.819 0.1767

7 0.2115 0.1955 0.1959 0.139 0.1741 0.7952 0.1643

8 0.2199 0.1863 0.2001 0.1452 0.2207 0.7579 0.1791

9 0.1191 0.1097 0.1057 0.1298 0.1668 0.5576 0.2018

Average 0.18619 0.17825 0.17674 0.13257 0.19341 0.75949 0.17601

Mask R-CNN with VGG13 Backbone.

Table 10. Top score of the 10 images with different gamma values (γ) while using Mask R-CNN with
backbone VGG13.

Top Score Value

Test
Images

γ 0.1 0.2 0.3 0.4 0.5 1 1.5

0 0.0706 0.1952 0.1302 0.165 0.1275 0.7111 0.1958

1 0.0685 0.08 0.1694 0.1439 0.1375 0.7227 0.1742

2 0.0671 0.1873 0.1622 0.1585 0.1297 0.7334 0.2018

3 0.064 0.1768 0.14 0.1602 0.1176 0.7446 0.2033

4 0.0703 0.1739 0.1605 0.1666 0.1199 0.6729 0.2156

5 0.0854 0.1767 0.1481 0.1617 0.1222 0.7071 0.193

6 0.1682 0.1718 0.1436 0.1728 0.1383 0.7209 0.2092

7 0.0644 0.1727 0.1269 0.1692 0.1232 0.7559 0.2012

8 0.0714 0.18 0.1202 0.1314 0.1218 0.7607 0.2041

9 0.0676 0.0995 0.1205 0.1205 0.1181 0.688 0.2397

Average 0.07975 0.16139 0.14216 0.15498 0.12558 0.72173 0.20379

Mask R-CNN with VGG16 Backbone.
As shown in the heat map below, Mask R-CNN with Resnet 50 had the best perfor-

mance in all scenarios. If the gamma was 1, the average score value was 99.68%.
As the intensity of the image changes from dark to bright section, the scores of

the ResNet increases until gamma 1. Generally, ResNet50 based Mask R-CNN model
performs well in all scenarios. Even if the images become brighter, the score of the ResNet
50 decreases much slower than the other models (see Table 12).
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Table 11. Top score of the 10 images with different gamma values (γ) while using Mask R-CNN with
backbone VGG16.

Top Score Value

Test
Images

γ 0.1 0.2 0.3 0.4 0.5 1 1.5

0 0.0962 0.0939 0.0966 0.1385 0.0848 0.5924 0.1109

1 0.0922 0.0702 0.0851 0.1592 0.114 0.588 0.109

2 0.0976 0.0807 0.0973 0.1341 0.0857 0.5485 0.1101

3 0.0923 0.0792 0.0923 0.1414 0.0779 0.5059 0.1163

4 0.0936 0.0792 0.0958 0.16 0.1059 0.5174 0.114

5 0.0986 0.1023 0.0995 0.1493 0.1453 0.5552 0.1186

6 0.0891 0.1008 0.0953 0.1225 0.0978 0.5839 0.1133

7 0.0988 0.0841 0.0939 0.145 0.0757 0.5848 0.1193

8 0.0922 0.08 0.0998 0.1355 0.0792 0.5436 0.1232

9 0.0903 0.0732 0.0885 0.1583 0.0941 0.5375 0.1146

Average 0.09409 0.08436 0.09441 0.14438 0.09604 0.55572 0.11493

Table 12. Heat map of the Mask R-CNN models with respect to different values of gamma (γ). The colour of the cells
changes from green to red, where green indicates high values and red indicates low values.

γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.4 γ = 0.5 γ = 1 γ = 1.5
Mask R-CNN_AlexNet 0.13274 0.05969 0.02375 0.07588 0.14332 0.53704 0.09898

Mask R-CNN_MobileNet 0.11026 0.087 0.07075 0.06532 0.10619 0.63487 0.09693
Mask R-CNN_ResNet50 0.61667 0.86318 0.8568 0.85776 0.85361 0.99678 0.87571
Mask R-CNN_VGG11 0.18619 0.17825 0.17674 0.13257 0.19341 0.75949 0.17601
Mask R-CNN_VGG13 0.07975 0.16139 0.14216 0.15498 0.12558 0.72173 0.20379
Mask R-CNN_VGG16 0.09409 0.08436 0.09441 0.14438 0.09604 0.55572 0.11493

In our study, we tested the models on a custom dataset. However, in real life, the
system must deal with real-time datasets. Accordingly, in the future, we are planning to
test the KITTI dataset. It contains 3D data involving Lidar sensor data, images, etc.

We found a robust and flexible detection model (Mask R-CNN) that can perform
well in any scenario, whether it is day or night. In future research steps, we are going to
investigate images from rainy and smoky conditions.

Furthermore, self-driving cars are expected to be equipped with high-resolution
cameras recording gamma value as well. Following this, it seems reasonable to use the
automatic gamma correction method to improve the efficiency of the instance detection
process in different driving conditions.

10. Conclusions

In a nutshell, ResNet50-based mask R-CNN model performs well in all lighting con-
ditions, whether it is bright or dark. Conversely, the total loss of this model is 16.17%.
Summing up, it is found that ResNet50 based Mask R-CNN is better for real-time detection
systems, because self-driving cars run on the road with real data that changes in millisec-
onds. Second, low qualities of images can be automatically corrected with the gamma
correction method. However, a brighter environment can also be a challenging factor. In
addition to this, many factors can significantly influence image quality, such as fog, rain,
smoke, vehicle speed, etc. Thus, from the above results, ResNet-based Mask R-CNN model
is robust, flexible, and can efficiently support the driving process in all driving conditions.
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