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Abstract: The determination of thermal structure functions from transient thermal measurements
using network identification by deconvolution is a delicate process as it is sensitive to noise in the
measured data. Great care must be taken not only during the measurement process but also to ensure
a stable implementation of the algorithm. In this paper, a method is presented that quantifies the
absolute accuracy of network identification on the basis of different test structures. For this purpose,
three measures of accuracy are defined. By these metrics, several variants of network identification
are optimized and compared against each other. Performance in the presence of noise is analyzed by
adding Gaussian noise to the input data. In the cases tested, the use of a Bayesian deconvolution
provided the best results.

Keywords: compact thermal models; thermal impedance; transient thermal measurement; time
constant spectrum; thermal structure function; network identification by deconvolution

1. Introduction

In the field of thermal management, detailed finite element models and multiphysics
simulations are developed to predict the behavior of a system with high accuracy. From
these detailed descriptions, reduced-order models are constructed which guide thermal
design and system-level integration [1].

However, measurements on real devices can never be replaced completely. There are
a number of aspects in which physical measurements and simulations complement and
depend on each other. These include the development of new materials, the quantification
of their physical parameters, the verification of simulation results, as well as quality
assurance in production processes.

A commonly applied method for thermal measurements is network identification
by deconvolution [2–4] as first described by Vladimir Székely and Tran Van Bien of the
Budapest University of Technology in 1988 [5] and standardized by JEDEC Committee
JC15 in 2010 [6]. In this method, the dynamic properties of a one-dimensional heat path
are derived from a transient thermal measurement, i.e., the temperature response to a
step in heating power. After a transition to the logarithmic time domain, the temperature
response is differentiated, from which the time constant spectrum is computed by numerical
deconvolution. Finally, a Foster-to-Cauer transformation is performed to obtain the thermal
structure function.

As network identification by deconvolution is a very noise sensitive procedure, effort
is put into finding an optimal measurement setup and evaluation procedure. In this context,
Lasance and Poppe state that the “Zth curves must be extremely noise free” ([7], p. 129)
and the JEDEC standard notes that the method is “extremely sensitive to noise” ([6], p. 16).
To achieve a high accuracy, good performance in the steps of differentiation and decon-
volution is crucial [8]. In particular for short times, noise is detrimental to the accuracy
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of the method. In an attempt to address this issue from the experimental side, Schmid et
al. have developed a time-saving algorithm for transient thermal analysis which reduces
noise in the measured data via repeated measurements [9]. On the algorithmic side, the
effects of noise on time constant spectra and structure functions have been considered [10].
However, the question remains as to which the most suitable procedure is. Responding to
these challenges, a method for verifying the accuracy of implementations was presented
by Szalai and Székely [11]. While this procedure allows to evaluate the general suitability
of an implementation, an absolute measure of accuracy is needed for a fair comparison
between the different approaches.

For differentiation, the JEDEC standard recommends a straight line fit [6]. Schmid
et al. used a Savitzky-Golay filter of second order [12]. In this work, a Savitzky-Golay filter
of first order with an adaptive step size subroutine is used. For the evaluation of thermal
transients, the evaluation software of the Simcenter T3Ster Master by Mentor Graphics is
commonly used. The details of its implementation are, however, not disclosed.

For deconvolution, Fourier deconvolution as well as Bayesian deconvolution have
been discussed [13,14]. In the literature, much effort has been put into developing good
window functions [15]. The JEDEC standard describes a deconvolution based on a Fermi fil-
ter [6]. Székely found success using a Gauss filter [16]. In principle, Wiener optimal filtering
is also possible [17]. An approach using inverse filtering is presented by Székely [18].

A detailed analysis of Bayesian deconvolution is given in [19–21] and a derivation
specifically for network identification by deconvolution can be found in [22]. The use of
Bayesian deconvolution is reported by Ezzahri and A. Shakouri [2]. For the main iteration,
Székely recommends using approximately 1000 steps [13,23]. The same number is used by
Schmid et al. [9]. Pareek et al. use 1000 to 2000 steps [14].

For the Foster-to-Cauer transformation, three methods are reported [24]. An approach
using polynomial long division is described in detail in [25]. A state-space method is laid
out in [26]. A tridiagonalization method is presented by Codecasa in [24].

Modern approaches offer the possibility to bypass the deconvolution step [27].
An approach by Codecasa uses a multi-point moment matching technique [28] to cal-
culate the Foster network from the thermal response. In this way, it is also possible to
generate the thermal structure function directly from the spatial distribution of the thermal
resistances and the thermal capacitances of a three-dimensional thermal model.

In this work, a suggestion is made how to rank accuracies of thermal structure func-
tions and time constant spectra resulting from a specific implementation of network identi-
fication by deconvolution. Typical variants of the method are systematically analyzed and
improved with respect to their accuracy.

2. Network Identification by Deconvolution
2.1. Linear Responses

This section gives an overview of key mathematical relations in the context of net-
work identification by deconvolution. For an introduction into the subject, the reader is
referred to [6,7]. A detailed theoretical treatment is given in [13]. Detailed information on
transmission lines and structure functions can be found in [29].

A transient thermal measurement captures the thermal response of a device to a step
in heating power. Here, the concept of linear time-invariant systems plays a major role
for the mathematical description. In this formalism, an input function is related to an
output function via the impulse response, h(t), which reflects the behavior of the system.
The heating power, P(t), serves as input function, while the temperature curve, T(t) is the
output function. Both are connected by a convolution equation,

T(t) = T0 +
∫ t

0
P(t′)h(t− t′)dt′ , (1)
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where T0 is the equilibrium temperature. The impulse response is defined as the reaction
of the system to a delta-function input. It is connected to the step response, a(t), via
differentiation,

h(t) = ∂t a(t) . (2)

In the context of transient thermal measurements, the step response, a(t), is also called
thermal impedance, Zth(t). It is defined as

Zth(t) =
T(t)− T0

P
, (3)

where P describes the height of the power step.

2.2. Thermal Equivalence Networks

The goal of network identification by deconvolution is to derive a thermal equivalence
network for a given driving point impedance of Z(s), where s is the complex frequency.
The resistances and capacitances of the electric network should relate to the thermal
resistances and thermal capacitances of the system. The theory of network identification
by deconvolution provides analytical equations to directly obtain the parameters of an
equivalence network of a Foster-type RC-ladder, see Figure 1. However, these resistances
and capacitances, denoted Ri and Ci, are not directly related to their thermal counterparts
in the device. For this reason, the Foster-type network is subsequently converted to a
Cauer-type network, see Figure 2.

Figure 1. Foster-type RC-ladder network with n sections. Each section comprises a parallel resistance
and capacitance.

Figure 2. Cauer-type RC-ladder network with n sections. In this network, the resistances and
capacitances correspond to the thermal equivalents in the device. As differentiation to the Foster
network, Cauer-type components are denoted with a prime.

The impedance, Z(s), of a Foster-type RC network with n stages is a sum of impedances
of each stage,

Z(s) =
n

∑
i = 1

Ri
1 + s

σp,i

. (4)

This function has poles at s = −σp,i =
−1
τi

. Here, τi, are the time constants, which are
defined as

τi = Ri · Ci . (5)

Its step response, a(t), can be directly constructed from the network and amounts to

a(t) =
∫ ∞

−∞
ρ(τ)

(
1− exp(− t/τ)

)
dτ (6)
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For easier generalization to the infinite case, n→ ∞, (6) is presented in integral form.
It is formulated with the help of the time constant spectrum, ρ(τ), which is a sum of delta
functions,

ρ(τ) =
n

∑
i=1

Ri δ(τ − τi) . (7)

2.3. Logarithmic Time

For practical computations, it is easier to work in logarithmic time, z, and to use the
logarithmic time constant, ζ, which are defined as

z = ln
(

t
t0

)
and ζ = ln

(
τ

τ0

)
. (8)

Often, t0 and τ0 are suppressed, as it is done below. Using these definitions, the
logarithmic thermal impedance, a(z), is defined as

a(z) = Zth(t = exp(z)) , (9)

and the logarithmic impulse response, h(z), follows as

h(z) = ∂z a(z) . (10)

In logarithmic time, the time constant spectrum (7), becomes

R(ζ) =
n

∑
i=1

Ri δ(ζ − ln(τi)) . (11)

The integral relation for a(t), (6), converted to logarithmic time reads

a(z) =
∫ ∞

−∞
R(ζ)

(
1− exp(− exp(z− ζ))

)
dζ (12)

and its derivative is

h(z) =
∫ ∞

−∞
R(ζ) exp(z− ζ − exp(z− ζ))dζ . (13)

2.4. Network Identification

To identify the thermal resistances and capacitances of the Cauer network, see Figure 2,
the Foster network has to be calculated first. The components of the Cauer network are
directly related to the time constant spectrum. The integral in (13) can be interpreted as a
convolution of the time constant spectrum, R(ζ),

h(z) = (R⊗ wz)(z) , (14)

with the weight function, wz(z),

wz(z) = exp(z− exp(z)) . (15)

From the logarithmic time constant spectrum, the resistances, Ri, and capacitances, Ci,
of the Foster network follow,

Ri = R(ζi) · ∆ζi , (16)

Ci =
exp(ζi)

R(ζi) · ∆ζi
. (17)

Here, ζi is the logarithmic time constant discretized with step size ∆ζi, where i =
1, . . . , n.
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Next, the Foster network has to be converted to a Cauer network. To differentiate
the components, Cauer resistances, R′i, and Cauer capacitances, C′i , are denoted with a
prime. In the Cauer network, the capacitances are directly connected to the grounded lower
port, i.e., these resistances and capacitances directly correspond to thermal counterparts.
As described in the introduction, there are several ways to perform this conversion.

Finally, the Cauer network is related to the physical structure of the system.
To this end, the linear thermal resistances density, r(x), and the linear thermal capaci-
tances density c(x) are defined. Here, x is the one-dimensional spatial coordinate of the
physical system. The cumulative resistance, RΣ(x), and the cumulative capacitance, CΣ(x),
are the antiderivatives, i.e.,

RΣ(x) =
∫ x

0
r(x′)dx′ , (18)

CΣ(x) =
∫ x

0
c(x′)dx′ . (19)

The thermal structure function is then defined as the function, CΣ(RΣ), and constitutes
the final result of the network identification by deconvolution, see [29].

2.5. Inverse Calculations

In network identification by deconvolution, a thermal equivalence network is con-
structed from a thermal impedance, whereas in inverse calculation, the thermal impedance
is derived from a given thermal network. From a uniform transmission line with total
resistance Rth and total capacitance Cth, the input impedance, Zin(s), can be calculated
according to

Zin(s) =

√
Rth
sCth

ZL +

√
Rth
sCth

tanh(
√

sRthCth)√
Rth
sCth

+ ZL tanh(
√

sRthCth)

. (20)

Here, ZL is the load impedance, which is either zero or equal to the input impedance
of the previous transmission line in case of connected transmission lines.

Given the impedance of the transmission line, the logarithmic time constant spectrum
is its the imaginary part, =, along the negative real axis,

R(ζ) =
1
π
=[Z(s = − exp(−ζ))] . (21)

To avoid poles in the impedance, see (4), a small angle, δ, is introduced into the
complex frequency, i.e., the integration path is slightly rotated into the complex plane,

s = −(cos(δ) + i sin(δ)) exp(−ζ) . (22)

3. Methodology
3.1. Measures of Accuracy

To evaluate the accuracy of an implementation for network identification, a reference
structure is defined. It has the form of a chain of uniform transmission lines, here called
a piecewise uniform structure function. Then, an inverse calculation is performed to
obtain its thermal impedance. Starting from this impedance, network identifications are
performed with the goal to reconstruct the reference structure.

For the evaluation, the measure of accuracy plays a central role. The goal is to find
two suitable functionals, one for measuring the accuracy of the time constant spectrum and
one for the structure function. These should adequately measure the degree of similarity
between the theoretical ideal and a given solution.

One challenge in comparing two different time constant spectra is the sharpness of the
peaks. When comparing two spectra, it is not sufficient to directly integrate the difference
between them via an L2-norm. Due to the sharpness of the peaks, the overlap between
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two adjacent peaks is small and their relative distance outside the overlap is not taken into
account. In addition, the height of the peaks in the theoretical ideal depends on the angle δ.
The goal is to develop a measure which is insensitive to the value of δ.

For this reason, the integrated time constant spectrum, R(ζ), is considered,

R(ζ) =
∫ ζ

−∞
R(ζ ′)dζ ′ . (23)

In this form, the delta-function-like peaks of a theoretical time constant spectrum
become a staircase function. By using R(ζ), the total area under the curve is measured
and can be included in the evaluation. For the time constant spectrum in particular, this is
important as the area under the curve is proportional to the total resistance.

Thus, the measure of accuracy for the time constant spectrum, mR, has the form of an
L2-norm of the difference between the integrated theoretically ideal and the reconstructed
time constant spectra,

mR =

√∫ ∞

−∞

(
Rtheo(ζ)−R(ζ)

)2dζ . (24)

As time constant spectra are equal to zero in the limit ζ → ±∞, the integration
boundaries are set to infinity. The L2-norm is chosen, as opposed to an absolute norm,
to weight larger differences stronger than smaller ones. A large difference can occur for
example if the location of a peak is shifted on the ζ-axis. To calculate the difference between
two spectra, possibly one of the spectra has to be interpolated to match the other.

For the structure function, CΣ(RΣ), a more complex functional is necessary. This is
mainly because of the following three challenges that arise when quantitatively comparing
structure functions.

Firstly, the cumulative thermal capacity, CΣ, typically spans several orders of magni-
tude. For this reason, it is often plotted on a logarithmic axis.

Secondly, the structure function is constructed from the thermal resistances and capacities
provided by the Foster-to-Cauer transformation. Consequently, two structure functions will
not have exactly the same set of RΣ,i on which they are defined. This means that the starting
and end points of two structure functions will not generally be the same, i.e., either one of the
structure function has to be extrapolated or the other has to be truncated.

This is important as, thirdly, structure functions calculated via Bayesian deconvolution
or Fourier deconvolution typically feature a smeared-out divergence at the end. This is
a real disadvantage of these methods. Nevertheless, the measure of accuracy should not
consider whether the structure function ends at, for example, CΣ = 1015 or CΣ = 1050.

Given these challenges, the following measure of accuracy for the structure function,
mS, is defined,

mS =
∫ RΣ,max

RΣ,min

∣∣ log(CΣ,theo(RΣ))− log(CΣ(RΣ))
∣∣dRΣ . (25)

The logarithm is used to not overemphasize deviations at high values of CΣ. In the
logarithm, CΣ is to be inserted in units of J/K. It also helps to not disproportionately punish
a structure function with a long divergence. For the same reasons, all structure functions
are truncated at CΣ = 1× 106. The integration limits, RΣ,min and RΣ,max, are defined as

RΣ,min = arg min(CΣ,theo) and RΣ,max = arg max(CΣ) . (26)

For the lower boundary, the theoretical structure function defines the limit of integra-
tion and the recovered structure function is truncated or extrapolated accordingly. For the
upper boundary, the limit is defined by the recovered structure function. Alternatively,
the divergence of the recovered structure function could be extrapolated to match the
theoretical structure function. However, this would make the divergence the dominant
contribution to mS. In contrast, extrapolating the theoretical structure function is not an
issue, as it does not diverge. Truncating the recovered structure function when the theo-
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retical structure function ends puts a bias into mS to favor divergences at higher RΣ in the
recovered structure function, i.e., it is biased to overestimate the total thermal resistance.
For this reason, the limits are defined as in (26).

Measuring the accuracy of structure functions via (25) means that the absolute accuracy
of the total thermal resistance is not reflected in mS. The upper integration limit is defined
by the point of the divergence via (26). Only the shape of the divergence is taken into
account and not its relative position. For these reasons, an additional measure of accuracy is
used to characterize the total resistance belonging to the recovered structure function. The
difference in total resistance, ∆RΣ, is calculated by comparing the theoretically expected
resistance RΣ,th to RΣ,max as defined in (26),

∆RΣ = |RΣ,th − RΣ,max| . (27)

3.2. Computations in the Presence of Noise

To evaluate the robustness of the algorithms when confronted with real measure-
ment data, Gaussian noise is added to the theoretically calculated thermal impedance.
The standard deviation of the noise, σ, is defined via the signal-to-noise ratio, RSN, and the
asymptotic value of the thermal impedance, Zth(t→ ∞),

RSN =
Zth(t→ ∞)

σ
. (28)

As the results should not depend on a single noise pattern only, many noisy thermal
impedances are generated and solved. For the calculations, 2000 randomly generated
noisy thermal impedances are evaluated. As a result, the median over the 2000 solutions is
calculated and compared on the basis of the accuracy measures (24), (25), and (27).

For the impulse response, the median is calculated point by point as all discrete z-
values, on which the solutions are defined, are identical. For the structure function, each
solution is interpolated and, if necessary, also extrapolated to guarantee that they all have
the same domain. The normalized structure functions are then averaged by pointwise
calculation of the median. Finally, the divergence of the median structure function is
truncated as described above.

The time constant spectra, however, are not averaged directly, as the result would be
highly biased towards zero. Here, the integrated time constant spectrum is computed for
each realization. The set of resulting integrated time constant spectra is then averaged. For
the sake of accuracy comparisons, this is acceptable, since only integrated time constant
spectra are compared finally.

The Gaussian distributed random numbers are generated via the default random
number generator available in NumPy 1.19.2. To guarantee repeatability, for each of the
2000 realizations an individual fixed seed is used. For repeated calculations with different
parameters, for instance in the case of the same calculation with two different signal-to-noise
ratios, identical noise patterns are generated, but with different standard deviations. In any
case, averaging over 2000 repetitions makes the median almost completely independent of
a particular set of noise patterns.

4. Algorithmic Details
4.1. Optimal Regression Filtering

In this work, the network identification by deconvolution relies on a regression filter
to reduce noise in the thermal impedance and to calculate its derivative. Explicitly, the data
are smoothed by so-called LOcally Weighted Scatterplot Smoothing (LOWESS). During
derivation, it is important to choose an appropriate window length that balances the bias-
variance tradeoff. For this, Stein’s Unbiased Risk Estimate (SURE) is applied. The idea
is based on a paper by Krishnan and Seelamantula [30]. Here, an adaptation suitable for
network identification is presented. One challenge lies in taking into account the unevenly
spaced measurement data.
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The measurement of a noisy signal is described by assuming an underlying real
signal, si , which, is subject to (Gaussian) noise, wi , such that the observed values
are xi = si + wi . Here, i enumerates the data points and each set, {xi, si, wi}, has an
associated logarithmic time, zi . From the set of all measurement points, XXX, a small
subset, xxx, is taken to approximate the true value, si , at a specific location. The size of
the interval measured in logarithmic time, z, is called window length, L, while the
window size, N, denotes the number of data points. To achieve a good fit, the window
length has to be chosen carefully. A polynomial of low order is fitted to xxx via a least
squares regression that generates a prediction, fi(xxx), of si . Where possible, xi is located
in the center of xxx, such that xxx lies inside [xi − L/2, xi + L/2]. In practice, approximating
via a polynomial of first order has performed best. The derivative of si is then simply
approximated by its gradient.

Each data point is assigned a weight inversely proportional to the local density of
points, such that sparse sections of the signal are not underrepresented. In addition, the
data points are weighted according to their distance, ∆x, from xi via a tricubic weight
function w(∆x), which is defined as

w(∆x) =


(

1− |∆x|
L

3
)3

for ∆x < L

0 for ∆x ≥ L

. (29)

Next, the adaptive step size subroutine is outlined. As si is unknown in practice,
the magnitude of the error made with the prediction is unknown. The estimated error of
the prediction, fi(xxx), of si is called the statistical risk. Here, it is calculated via SURE [30].
According to SURE the associated risk,Ri, is

Ri = E
{

fi(xxx)2 − 2 fi(xxx)xi + 2σ2 ∂ fi(xxx)
∂xi

}
+ s2

i . (30)

In practice, the measurement points are not evenly spaced which is a requirement
for fast Fourier transformations and Bayesian deconvolution. Thus, the derivative is not
evaluated at zi, but at a location nearby, z̃i. The set of new logarithmic time provides a
constant spacing ∆z̃. The number of points, Ng, to be chosen for the new grid is considered
below. On the basis of (30), the optimal window length is chosen by searching for an L
that minimizes Ri. In practice, the search is limited to an interval, L ∈ [L−, L+], within
reasonable boundaries. Freely choosing L at each z̃i often leads to an oscillating behavior,
i.e., additional high frequency noise in the output. The initial window length L0 at z̃0 is
freely chosen in the interval [L−, L+], while in each subsequent step the window length
is incremented or decremented by ∆L. At each z̃i the risk associated with the window
lengths L− ∆L, L, and L + ∆L is calculated and the window lengths adjusted accordingly.
In addition, this update scheme limits the amount of computational work introduced by
the adaptive step size subroutine.

4.2. Deconvolution

For Bayesian deconvolution, a prior distribution equal to the impulse response, h(z),
is used, but a constant prior distribution is also possible. Beyond a certain number of
iteration steps the results are independent of the prior distribution.

In Fourier space, the impulse response becomes a function of the logarithmic frequency,
Φ. A filter, F[Φi], is applied to each component Φi of the spectrum. As defined in (31),
components beyond the cut-off frequency, Φc, are suppressed. Frequencies between −Φc
and Φc are damped according to the window function, FWindow, in question,

F[Φi] =

{
0 for |Φi| > Φc

FWindow for |Φi| ≤ Φc
. (31)
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For the window function, many forms are possible, a selection of which is tested
in the following. The support of the filter function, i.e., its non-zero components, forms
an array with NW entries that are numbered from zero to NW from negative to positive,
n = 0, 1, . . . , NW. For each window function, the width of the window is controlled via
Φc, which is realized in the form of NW in the definitions below. The Nuttall window, the
Hann window, and the rectangular window are defined as

FRectangular[n] = 1 , (32)

FHann[n] = sin2
(

π n
NW

)
, (33)

FNuttall[n] = 0.355768 − 0.487396 · cos
(

2π n
NW

)
+ 0.144232 · cos

(
2π n
NW

)
− 0.012604 · cos

(
2π n
NW

)
.

(34)

The Nuttall window is a sum-of-cosines window with specific numerical prefactors
developed by Nutall [31]. The Gaussian window has an additional parameter, σ, which is
restricted to σ ≤ 0.5,

FGaussian[n] = exp

−1
2

(
n− NW

2

σ NW
2

)2
 . (35)

The Fermi window is a special case as it does not use a finite cut-off frequency, Φc.
Instead, it uses two parameters, µ and β, which control its width and slope. The support is
the entire spectrum,

FFermi[n] =
1

exp( |Φ|−µ
β ) + 1

=
exp(− |Φ|−µ

β )

1 + exp(− |Φ|−µ
β )

. (36)

The right-hand side of (36) is more stable for small β.

5. Reference Structures

For comparison, three reference structures are defined. Their theoretical transient
thermal impedances serve as artificial measurement data. The difference between
the original and the recovered time constant spectrum and the structure function is
quantified to give a measure of accuracy. The structures are defined as piecewise
uniform structure functions consisting of several sections with thermal resistances
and capacitances.

The thermal resistances, Rth, and capacitances, Cth, in Table 1 are chosen to be
roughly similar to real electronic devices of varying complexity. While the time con-
stant spectrum of structure 3 consists essentially of a single peak and has only three
sections, structure 1 includes many smaller and larger peaks resulting from five sec-
tions. An illustration of the corresponding structure functions as well as the time
constant spectra, impulse responses, and thermal impedances is given in Figure 3.

For realistic measurement data, the exact theoretical thermal impedance is covered
by the addition of white noise. In this way, the performance of the algorithms is
studied under non-ideal conditions. To avoid a systematic error, a high accuracy for
the reference functions must be ensured. The first step is thus to investigate how large
the error associated with the calculation of the theoretical thermal impedance is.
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Table 1. Total thermal resistances and capacitances of the sections of the three piecewise uniform
structure functions that serve as reference structures.

Structure 1 Structure 2 Structure 3
Rth Cth Rth Cth Rth Cth

Sections K/W J/K K/W J/K K/W J/K

Section 1 5 1 × 10−5 10 1 × 10−4 20 1 × 10−1

Section 2 15 1 × 10−3 10 1 × 10−1 20 1 × 10−4

Section 3 10 1 × 10−4 10 1 × 10−4 10 1 × 10−3

Section 4 10 1 × 10−2 10 1 × 10−3 - -
Section 5 10 1 × 10−1 10 1 × 100 - -
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Figure 3. Overview on the three test structure functions (top left), their corresponding time constant spectra (top right),
impulse responses (bottom left), and thermal impedances (bottom right), calculated at δ = 0.03°. For presentability, the
time constant spectra plotted are calculated with δ = 1.5°.

As the impedance, Z(s), of the piecewise uniform structure function has poles on
the negative real axis, a small angle, δ, must be introduced. This, however, leads to a
small systematic error in the calculation. While for smaller values of δ this kind of error
decreases, at the same time the peaks in the time constant spectrum become narrower and
consequently the discretization error increases. To compensate for this, the sampling rate of
ζ is increased. For all following calculations, R(ζ) is evaluated in the interval ζ ∈ [−20, 10]
at a total of 1× 106 points. This increases the computation time of a theoretical thermal
impedance to several minutes on the desktop computer used in this work (Windows 10,
Intel Core i7-8665U CPU with 1.90 GHz, 16 GB RAM).
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All three test structures have a total thermal resistance of Rth,Σ = 50. Ideally, the
theoretical thermal impedance should exactly match this value by satisfying the relation
Rth,Σ = Zth(t → ∞). However, due to the discretization error and the finite angle δ,
Zth(t→ ∞) is smaller than Rth,Σ in practice. The difference is denoted as ∆Rth,

∆Rth = |Rth,Σ − Zth(t→ ∞)| . (37)

Table 2 shows the values of ∆Rth/Rth,Σ averaged over the three test structures for
different values of δ. As expected, the smallest value of δ shows the smallest deviation.
To further reduce the error, a larger interval of ζ is sampled to capture finer details at small
values of ζ. For all subsequent calculations, δ is chosen to be δ = 0.03°.

Table 2. Deviation in thermal impedance Zth(t→ ∞) averaged for structure 1 to 3 at various δ.

δ 5.00° 3.50° 2.00° 1.50° 0.50° 0.10° 0.03°
∆Rth/Rth,Σ 2.82% 1.98% 1.15% 0.87% 0.32% 0.09% 0.05%

6. Performance Quantification
6.1. Parameter Comparison

For the calculations presented in this section, the input data consist of the exact thermal
impedances belonging to thermal structure functions 1 to 3 and are comprised of 1× 106

uniformly distributed measurement points for ζ ∈ [−20, 10]. The solutions are compared
to the theoretical ideal using the accuracy measures mR, mS, and ∆RΣ as defined in (24),
(25), and (27).

There are several parameters such as the window length increment, ∆L, and the
number of points in the derivative, Ng, which have to be specified as well. For some of these
variables, tuning is crucial to guarantee a good performance. An obvious example is the cut-
off frequency, Φc, which determines the width of the filter during Fourier deconvolution.
Other parameters, such as Ng, have only a small effect on the result beyond a certain size.
For a fair comparison between the methods, it is important to set these parameters to the
identical values wherever possible.

Though Bayesian deconvolution also has a tunable parameter, namely the number
of iterations, it is easier to handle than Fourier deconvolution. Figure 4 shows how the
accuracy measure depends on the number of steps for Bayesian deconvolution. The number
of steps tested covers three orders of magnitude from 1× 102 to 5× 105. The accuracy
converges with increasing number of steps, though the speed of convergence depends
significantly on the complexity of the test structure. For structure 3, convergence for mS is
not achieved even after 5× 105 steps.

The computation time for Bayesian deconvolution depends not only on the number
of steps, but also on the number of data points, Ng, as this determines the size of the
matrices involved. For the calculations shown in Figure 4, the number of points was set to
Ng = 250. Bayesian deconvolution with O(105) steps takes approximately half a minute.
(Windows 10, Intel Core i7-8665U CPU with 1.90 GHz, 16 GB RAM).

In all tested examples, convergence is achieved much later than discussed in the
literature, which suggests the use of about 1000 steps [13,23]. However, according to the
results depicted in Figure 4 it seems appropriate to use up to 105 iteration steps and more.

Besides the process of deconvolution, derivation is also an important factor affecting
the overall accuracy. In particular, this is true in the presence of noise. There are four
important parameters in total which are varied when using optimal regression filtering.
These are the minimum window length L−, the maximum window length L+, the window
length increment ∆L, and the number of steps Ng.
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Figure 4. Accuracy of the time constant spectrum, mR, and structure function, mS, as a function of number of steps for
Bayesian deconvolution. The number of points is set to Ng = 250.

For all noise-free calculations, this includes the Bayesian deconvolution as well as
Fourier deconvolution, the following configuration is used,

L− = 0.05 , L+ = 3.00 , ∆L = 0.10 , Ng = 250 . (38)

The window length, L, is measured in logarithmic time, z. This means a window
of size L = 3.0 corresponds to an interval of size ∆z = 3.0 in the thermal impedance.
The starting window length is automatically chosen by the algorithm. In the presence of
different levels of noise, the parameters have to be adjusted for optimum performance.

To illustrate the dependency of the result on the filter configuration, Figure 5 compares
the ideal structure function for structure 2 with different solutions. Each solution is
computed with the help of a Gaussian filter using different values of Φc and fixed σ. Filter 1
is too narrow, leading to a significant loss of information in the result. In contrast, filter 11
is too wide, with the consequence that residual noise components are amplified and the
total resistance is overestimated considerably. The best result is obtained for a filter width
that lies in between Filter 1 and Filter 11. In the example, filter 8 performs best.

For Fermi and Gaussian filters, it is more difficult to find a good value for the filter
configuration as these filters depend on two parameters. This is a significant disadvantage
for Fermi and Gaussian filters, because the optimum filter has to be searched in a two-
dimensional parameter space. In contrast, the Nuttall, Hann, and rectangular filters depend
on one parameter only. To determine suitable filter configurations, a linear search as in
Figure 5 is performed. This procedure must be repeated for each of the three test structures
and both accuracy measures, mR and mS, all tested filters, namely the Fermi, Gaussian,
Nuttall, Hann, and rectangular filters and different signal-to-noise ratios.

6.2. Performance in the Case of Perfect Data

Table 3 summarizes the performance metrics for all tested structures and methods
without artificial noise added to the thermal impedance. A number of filter configurations is
tested and the best one is selected in the sense explained above. This means, a different filter
configuration is used to generate the accuracies for mR and mS. Results are summarized
in Table 3. For Bayesian deconvolution, the number of points is set to Ng = 250 and the
number of steps is set to 5× 105.
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Figure 5. Various attempts (gray curves) for the cut-off frequency, Φc, in a network identification
using a Gaussian filter (35) for a fixed value of σ. Filter 1 is too narrow, filter 11 is too wide, while
filter 8 yields the best result. For comparison, the ideal result for structure 2 is shown.

Table 3. Best accuracy for all methods in the absence of noise. The best performing method in each
column is double underlined, the second best result is underlined. The first five methods denote
selections for the window functions, FWindow.

Structure 1 Structure 2 Structure 3

mR mS ∆RΣ mR mS ∆RΣ mR mS ∆RΣ

Method K/W K/W K/W K/W K/W K/W K/W K/W K/W

Fermi 4.7 7.7 0.06 5.8 9.6 0.91 8.1 16.3 2.91

Gaussian 5.1 8.9 0.08 7.6 9.4 0.27 9.3 13.8 0.09

Nuttall 4.7 8.2 0.12 6.8 8.5 0.38 10.1 11.5 0.15

Hann 4.4 7.4 0.28 6.3 7.5 0.44 8.9 10.8 0.91

Rectangular 4.0 38.7 6.94 5.4 41.4 6.31 7.6 129 31.08

Bayesian 3.4 3.7 0.04 3.8 4.4 0.02 5.7 3.1 0.01

A comparison of filter choices used in Fourier deconvolution shows mixed results with
no clear winner which performs best on every metric. The rectangular filter shows good
results for the time constant spectrum. The corresponding structure functions, however,
are very inaccurate. The accuracy of the rectangular filter for the time constant spectrum
vanishes in the presence of noise. The Hann filter stands out because it performs best
among the Fourier based methods for mS on all structures. The additional effort of finding
an optimum filter in a two-parameter space does not yield a more accurate result.

In practice, the use of mR for time constant spectra obtained via Fourier deconvolution
tends to rank noise-induced oscillations in the spectrum better than one might intuitively
expect. This is not the case for Bayesian deconvolution, where a strictly positive spectrum
is guaranteed by the algorithm.

There is a clear trend in the computational difficulty of the three test structures.
For almost all methods, the calculation of structure 1 gives the most accurate results.
Nevertheless, the shape of its thermal structure function, time constant spectrum, and
impulse response is complex (Figure 3 and Table 1). Structure 3 gives the least accurate
results even though it includes only three sections. The Bayesian deconvolution performs
best on this structure function, which has a sharply peaked time constant spectrum and
profits greatly from the high amount of iteration steps used, see Figure 4.
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6.3. Performance in Presence of Noise

Here, the amount of data forming the thermal impedance is reduced to 1000 points uni-
formly distributed on the ζ-axis by interpolating the full size exact impedance.
In addition, Gaussian noise with standard deviation defined via (28) is added to the
theoretical thermal impedance. The tested signal-to-noise ratios are 50, 100, 200, 500, 1000,
2000, and 5000. As an example, for a transient thermal measurement with a total tempera-
ture rise of 100 K and a measurement accuracy of 20 mK the signal-to-noise ratio amounts
to RSN = 5000.

For optimal performance, a tuning of the derivative parameters is very important.
In all following calculations the setup (39) is used which achieves acceptable accuracy for
all tested configurations,

L− = 0.60 , L+ = 15.0 , ∆L = 0.20 , Ng = 250 . (39)

Though individually adjusting the derivative parameters for every noise level would
provide a slight gain in accuracy, here, a single set of derivative parameters is used. This is done
to limit the number of free parameters and to reduce the influence of manually set parameters.

For Fourier deconvolution, it is not possible to use the same filter width for all signal-
to-noise ratios. Instead, for every pair of window function and signal-to-noise ratio the
parameters involved such as the cut-off frequency, Φc, are manually tuned to achieve
acceptable results. The manual tuning process of the filter parameters in the presence
of noise is a tedious process. In contrast, for Bayesian deconvolution no adjustment is
required, except for the number of iterations, which is set to 3× 104.

Figure 6 shows a comparison of the performance in the presence of noise for all
window functions introduced above. The rectangular filter shows the worst performance
on all metrics, while the Bayesian deconvolution retains its advantage even in the presence
of noise. The relative difference between the methods decreases with increasing noise level.
The Fermi and Hann window stand out as the more accurate filters. The Fermi window is
the recommended filter according to [6]. However, the Hann window is easier to use in
practice as it depends only on a single parameter while having comparable accuracy.

A comparison of the computational difficulties to recover structures 1 to 3 in the
presence of varying noise level for Bayesian deconvolution is shown in Figure 7. Compu-
tations of structure 1 show the most accurate results while structure 3 appears the most
difficult one to recover. The recovered structure function profits significantly more from
a decreasing noise level than the time constant spectrum. Surprisingly, a good accuracy
measure for the structure, mS, function is not necessarily based on a good mR.
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Figure 6. Accuracy of the median integrated time constant spectrum and median structure function, calculated via Fourier
and Bayesian deconvolution as a function of the signal-to-noise ratio from 2000 noise realizations.
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Figure 7. Accuracy of the median integrated time constant spectrum and median structure function calculated via Bayesian
deconvolution for the three test structures as a function of the signal-to-noise ratio from 2000 noise realizations.

7. Conclusions

Since its standardization by the JEDEC Solid State Technology Association, network
identification by deconvolution has become a well-known measurement technique for
determining thermal parameters in one-dimensional systems. Many implementations
of the network identification algorithm exist. In this work, three measures of accuracy
are presented to quantify the exactness of calculated time constant spectra and thermal
structure functions. Using these measures, several variants of network identification by
deconvolution are optimized and their performance is compared. To test the robustness
of the algorithms, Gaussian noise of varying amplitude is added to the input data. Of all
cases tested, Bayesian deconvolution with a large number of iteration steps, O(105), has
performed best. For Fourier deconvolution, the Hann window stands out as a good filter
choice among the tested filters.

8. Patents
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10 2019 214 472.
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