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Abstract: The integration of multi-energy systems to meet the energy demand of buildings represents
one of the most promising solutions for improving the energy performance of the sector. The energy
flexibility provided by the building is paramount to allowing optimal management of the different
available resources. The objective of this work is to highlight the effectiveness of exploiting building
energy flexibility provided by thermostatically controlled loads (TCLs) in order to manage multi-
energy systems (MES) through model predictive control (MPC), such that energy flexibility can be
regarded as an additional energy source in MESs. Considering the growing demand for space cooling,
a case study in which the MPC is used to satisfy the cooling demand of a reference building is tested.
The multi-energy sources include electricity from the power grid and photovoltaic modules (both of
which are used to feed a variable-load heat pump), and a district cooling network. To evaluate the
varying contributions of energy flexibility in resource management, different objective functions—
namely, the minimization of the withdrawal of energy from the grid, of the total energy cost and of
the total primary energy consumption—are tested in the MPC. The results highlight that using energy
flexibility as an additional energy source makes it possible to achieve improvements in the energy
performance of an MES building based on the objective function implemented, i.e., a reduction of
53% for the use of electricity taken from the grid, a 43% cost reduction, and a 17% primary energy
reduction. This paper also reflects on the impact that the individual optimization of a building with a
multi-energy system could have on other users sharing the same energy sources.

Keywords: energy flexibility; district cooling; model predictive control; multi-energy system; rule-
based control

1. Introduction

In recent years, programs aimed at increasing the efficiency and sustainability of the
building sector have entered into force all over the world. For instance, the Energy Per-
formance of Buildings Directive (EPBD) [1] in the European Union (EU) requires Member
States to reduce the energy demand of their entire building stock by 80% before 2050 by tran-
sitioning to nearly zero energy buildings (NZEBs). In addition to encouraging strategies for
reducing the buildings’ energy requirements for heating and cooling, it also suggests the
consideration of optimal combinations of available energy sources (e.g., renewable energy
sources (RESs), district heating (DH) and district cooling (DC)) when planning, designing,
building and renovating industrial or residential areas [1]. Conventionally, in fact, the
different building energy requirements have been met by individual energy carriers that
do not interact with each other. However, the exploitation of their optimal combination
could increase both the efficiency and the flexibility of local energy systems [2].
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When a number of different energy sources are integrated into a building, this is
referred to as a hybrid or multi-energy system (MES). An MES is where electricity, heating,
fuels, and other types of energy vectors interact optimally with each other at various
levels [3]. Focusing on residential buildings, natural gas and electricity can be energy
sources for various generators, including boilers, electric heat pumps (HPs), chillers and
combined heat and power (CHP) systems, which can then be used to produce electricity,
heating and cooling [3]. Furthermore, MESs can integrate RESs and use energy sources
recovered from optimized system management (e.g., harvesting energy from natural gas
distribution networks [4]). Furthermore, the interaction of buildings at the district level
(e.g., heating or cooling energy in DH or DC) can be exploited, and building loads can
be easily shifted thanks to the different energy storage systems that can be integrated
in MESs [5]. In this way, energy flexibility can be considered as an energy source in its
own right.

Several configurations of multi-energy systems applied to buildings have been ana-
lyzed in the literature with the aim of showing their effectiveness in terms of efficiency
and sustainability. For instance, Aste et al. [6] introduced a fully renewable urban district
in which a low-temperature and small-sized wood biomass district thermal plant was
integrated with groundwater heat pumps and solar photovoltaic (PV) systems. Energy
simulation demonstrated that controlled exploitation of multiple energy sources in a dis-
trict heating system allowed for greater self-consumption of renewable sources, with a
low request for grid electricity. Liu et al. [7] determined a 40% reduction in CO2 emissions
when a hybrid HVAC (Heating, Ventilation and Air Conditioning) system, consisting of
a CHP plant and a liquid-desiccant system, was used to match the power and thermal
demand of a demonstration building in Beijing, China.

Other papers have focused on the identification of optimal operating strategies for spe-
cific MES systems in order to achieve specific energy objectives. For instance, Ren et al. [8]
assessed a multi-objective optimization model in order to determine the optimal strategy
for a distributed energy source system. The case study comprised an energy system in-
stalled in an eco-campus in Japan, and included several different sources (photovoltaic,
fuel cell, and gas engine). The minimization of two objective functions, i.e., energy cost
and CO2 emissions, was achieved by means of a compromise programming method. The
results showed that the increase in the degree of satisfaction of economic objectives led
to increased CO2 emissions. To take into account the complex relationship among energy
systems in MESs, Ruusu et al. [9] described a new energy management system for a variety
of energy flexibility conversion technologies and storage options in buildings by means of
a nonlinear optimization-based model predictive control (MPC) method.

District heating and cooling systems are relevant resources in efficient multi-energy
systems, and their integration with respect to building energy demand has received a great
deal of attention. For instance, Aoun et al. [10] presented a MILP-based (mixed-integer lin-
ear programming) model predictive control in order to satisfy thermal demand in buildings
connected to a district heating system. In particular, they investigated the exploitation of
the thermal mass embedded in the building envelope to optimally schedule space heating
loads on the basis of weather conditions and energy cost variations. Luc et al. [11] also
exploited the thermal mass of the buildings for the purpose of heat storage and evaluated
the flexible operation potential of a small district with buildings connected to a district
heating network. Introducing different load shifting scenarios based on thermal demand
data and heat production cost in the Greater Copenhagen district heating system, they
obtained a potential load shifting of between 41% and 51% in all of the considered scenarios.
Even Foteinaki et al. [12] investigated the potential for the flexible operation of low-energy
residential buildings in district heating systems. They demonstrated that, using the thermal
mass of the building as a storage medium, the pre-heating strategy was highly effective for
load shifting and peak load reduction (energy use was reduced in all scenarios by between
40% and 87%). An analysis of the literature confirms the relevant role that the flexibility
provided by thermostatically controlled loads can have in the optimal management of
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MESs. Furthermore, among the other resources of an MES, district cooling systems are very
promising systems for increasing the energy efficiency of the cooling sector [13], but there
are still few works considering their integration with building loads and their optimization,
with much more emphasis having been given to district heating systems [14]. Cooling
loads and thermal comfort in summer have their own specific characterizations that are
distinct from the winter season; therefore, an ad hoc analysis is needed. For example,
Zabala et al. [15] presented the case of a district cooling with absorption machines, whose
production was controlled through a model predictive control. In the present paper, the
integration of district cooling systems with building energy demand is also investigated,
but in contrast with previous works, the district cooling system is considered to be supplied
using waste energy. This scenario is derived from the exploitation of cooling power from a
particular energy recovery process that has already been presented in a previous work [16],
where the evaporation of liquefied natural gas in a fuel station was able to provide cold
energy to a small residential district cooling network. Therefore, the cooling power pro-
vided to the DC follows a given load curve and cannot be optimized, as in the literature
works described above. Moreover, the objective of this work is focused at the building
level, where the available cold energy is deployed at best in combination with the other
energy sources composing the multi-energy system. The analysis aims to highlight the
importance of the activation of building energy flexibility provided by thermostatically
controlled loads (TCL), e.g., air conditioners and space cooling/heating systems. Such
flexible energy loads are assumed in this analysis to be additional virtual energy resources
in the optimal management of a building multi-energy system that also integrates a district
cooling network.

When an MES is integrated into a building, an advanced control method is necessary
to optimize the operational energy performance in a timely fashion. Thus, an MPC is con-
sidered for the analyzed case. Indeed, MPCs represent one of the most explored paradigms
in the academic literature for realizing intelligent energy management in buildings [17],
due to its capability of combining the principles of feedback control and numerical opti-
mization [18]. The potential of such control to provide demand-side flexibility in buildings
with multi-carrier energy systems has been discussed by Zong et al. [19]. They highlight
that an MPC-based BEMS (Building Energy Management System) controller is an efficient
and feasible approach for managing the portfolio of energy usage in buildings. An MPC
uses a dynamic model to predict the system response in order to select the best sequence
of control actions, taking into account both predictions of future disturbances and system
constraints [20]. For short-term predictions, three categories of building energy models
are available: white box, grey box and black box [21]. There are several contributions in
the literature regarding the performance evaluation of the different building modeling
approaches to be used in an MPC. Among others, Mugnini et al. [22] summarized the
advantages and disadvantages of a data-driven model based on an artificial neural net-
work (ANN) and a physical-based model based on a thermal network of resistances and
capacitances to predict the building thermal demand in an operative MPC designed to
minimize the total cost by using TLC flexibility. In a simplified case study, they highlighted
the improved performance of the physical-based model in the exploitation of the energy
flexibility derived from thermostatically controlled loads.

This paper presents, through the analysis of a case study, the manner in which the
energy flexibility of TCL can be exploited to optimally manage a multi-energy system
including district cooling. The manuscript is structured as follows: in Section 2, the
generalized methodology for implementing an MPC in order to integrate different energy
sources (including a district cooling) in an MES in a building is presented. Section 3
describes the case study, and in Section 4 the optimal control is applied to the case study.
The results for the different objective functions are discussed in Section 5, while Section 6
provides the main conclusions of the study.
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2. Methodology

In this paper, a multi-energy system in a building is introduced as a case study. The
concept of the application is represented in Figure 1: different energy sources (including
flexibility from TCLs) are managed in real time, on the basis of their availability, by the
controller in order to meet the building energy demand according to the minimization of a
specific objective function (OF).
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The mathematical problem is formulated in generalized terms and its effectiveness is
tested in a case study. The evaluation of the optimal control of the MES is realized from two
points of view. First, its operation in terms of seasonal energy performance is compared to
the case with a traditional rule-based control. Second, the control robustness is evaluated
by analyzing different interactions of the energy sources when different objective functions
are pursued and control setting parameters (e.g., prediction horizon) are varied. Moreover,
a focus on the impact of an optimized user on other buildings sharing the same energy
sources (e.g., DC) is provided.

The case study consists of a single residential building whose cooling energy demand
can be satisfied with different energy sources: the connection to a DC network and a
variable-load air-to-water electrical heat pump (HP) that can be fed with either electricity
produced by photovoltaic (PV) modules or supplied by the electricity from the grid. Addi-
tionally, a certain degree of energy flexibility is provided by a wider variation of the indoor
air temperature setpoint of the thermostat. Variation of the cooling demand according to
the setpoint can be exploited by the control as an additional virtual energy source.

Three different objective functions are tested in the optimal control; these are con-
cerned with the minimization of: (i) the electricity taken from the grid, (ii) the overall
energy costs, and (iii) the total primary energy consumption. The aim is to highlight
how the specific objective function affects the exploitation of each energy source by the
controller, demonstrating the importance of the activation of the energy flexibility in such
advanced control of an MES.

In this section, a generalized MPC formulation is presented for exploiting an MES
including district cooling in buildings. An MPC can be defined as a control that is able to
update on-line the manipulated variables to satisfy multiple, changing performance criteria
in the face of changing plant characteristics [23]. It is composed of two parts: the system
response model and the optimizer. The system response model is used to predict the future
states of the system over a certain period of time (prediction horizon, PH) in the presence of
disturbances (uncontrolled inputs) and manipulated variables (controlled inputs). Starting
from the system response prediction, the optimizer generates control actions to minimize
a defined objective function within PH while respecting the system constraints [24]. The
MPC follows a receding horizon logic [20]: at each time step (k), only the first control action
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is applied, and the next predictions and control actions are recalculated while shifting the
prediction horizon forward.

When an MPC is used to control the HVAC of a building, the system model should be
able to predict the building energy demand while respecting the comfort constraints. To
do this, the MPC has to receive the predictions of the disturbances (such as the occupancy
profile or weather conditions) as inputs throughout the PH. Then, if an MES is available,
the control actions should lead to an optimal exploitation of each energy source according
to the goal to be reached. Therefore, the optimizer should determine whether each source
has to be used by the HVAC, while satisfying the energy requirements of the building.
Thus, the predictions of energy source availability profiles must also be provided as inputs
to the optimizer. In Figure 2, a scheme of the proposed MPC is presented, and the following
subsections provide a detailed description of its formulation.
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With this kind of control, a single building can satisfy its thermal requirements while
optimizing its energy performance. However, when energy sources that involve the
connection of different users (DC or DH) are used, there is no guarantee that, if all buildings
are optimized independently from each other, the performance of the overall system will
be optimized at the same time in the presence of constrained resources. In this sense, a
preliminary analysis of the problem can be provided by evaluating, in terms of comfort
violation, how users who are connected immediately after the controlled building will be
affected by its operation. More details are provided in Section 4, where the generalized
MPC formulation is applied to the case study. This section is divided into Section 2.1, where
the building model is described in detail, and Section 2.2, which contains the formulation
of the controller.

2.1. Building Model

To predict the thermal dynamics of the building, a lumped-parameter model based
on the thermal electricity analogy is used. It relies on the heat balance method [25], which
discretizes the building into thermal zones modeled using a network of nodes. The time
evolution (system state) of each node is described by a temperature (T) and the capability
of storing heat in the thermal mass is modeled with thermal capacitances (C) [26]. The
heat fluxes between nodes are described by thermal resistances (R), and heat gains (Ġ) are
directly applied to the thermal nodes. In this way, the building can be represented by an
equivalent circuit of thermal resistances and capacitances (RC network).

Assuming a one-dimensional heat transfer, the system dynamics is described by a
set of ordinary differential equations that can be represented as a classic linear state-space
model (SSM):

dX
dt

(t) = A · X(t) + B · U(t) (1)

Y(t) = C · X(t) + D · U(t) (2)
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where X(t) is the state-space vector, U(t) is the input vector, and Y(t) represents the output
vector. A, B, C and D are time-invariant real matrices depending on the parameters of the
system (C and R).

Based on the number of thermal nodes with which the circuit is built, different order
models can be obtained. However, to catch the short-term dynamics of the building, a
second-order model, at least, is required [27]. To capture the dynamics of the internal
air temperature, the air thermal capacity is distinguished from the total internal capacity,
obtaining a third-order model (Figure 3).
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The three thermal nodes (Te, Tair and Ti) represent the temperatures of the envelope
thermal mass, internal air, and internal thermal mass, respectively; consequently, Ce, Cair
and Ci represent their thermal capacitances. Four thermal resistances are used: Rv, Ree, Rei
and Ri. Rv models the resistance to the heat transfer between the outdoor temperature
(To) and Tair due to windows and natural ventilation, while Rei and Ree are the ther-
mal resistances between the building envelope thermal mass node (Te) and To and Tair,
respectively. Ri is the thermal resistance between the internal thermal mass node (Ti) and
Tair. The heat fluxes applied to the thermal nodes Ti and Tair are: the contribution provided
by the HVAC system (

.
Qz) and the heating gains (

.
G) divided by the internal (

.
Gint) and

the solar (
.

Gs) components. Except for
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.
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Qz contribution to Ti). Equations (3) and (4) represent the
evolution of the system shown in SSM representation: dTair

dt
dTe
dt

dTi
dt

 =

 −
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Kei
Ce

−Kee+Kei
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0
Ki
Ci

0 −Ki
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 Tair

Te
Ti

 +
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Cair

1
Cair
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Cair
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 (3)

[Tair] =
[

1 0 0
] Tair

Te
Ti

+
[

0 0 0 0
]


To.
Gint.
Gs.
Qz

 (4)

where K represents the thermal conductance, calculated as the inverse of the thermal
resistance (R).

To identify the parameters of the model (Cair, Ce, Ci, Rv, Ree, Rei, Ri), a white box
approach is used. In this way, they are deduced from the knowledge of the building’s
thermal and geometrical features. In particular, the stratigraphy of the envelope and the
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building materials should be known or hypothesized. With respect to the numerical value
of the thermal capacitances, Ce and Ci represent the thermal masses which communicates
with the external environment and internal environment, respectively. For each opaque
structure (s) of the building, a thermal capacity (Cs) is calculated as follows:

Cs = ∑lmax
l=lin

klAl (5)

where the index l represents a single material layer of the opaque structure s, lin refers to
the inner layer (facing the internal zone), and lmax is the thermal insulation layer position.
Al and kl are the area and the heat capacity per area of the element l, respectively.

The thermal capacity relative to the indoor air (Cair) is defined as:

Cair = Vairρaircair (6)

where Vair, ρair and cair are the volume, density and specific heat of the air, respectively.
Taking into account the thermal resistances, their numerical values are deduced on the

basis of the thermal features of the building envelope. Equation (7) reports the expressions
of Rv:

1
Rv

=

(
ACH
3600

)
Vairρaircair + UwAw (7)

where ACH represents the air change per hour, while Uw Aw is the product of the thermal
transmittance and the area of the windows.

Ree, Rei and Ri refer to the opaque structures (s) identified to evaluate Ce and Ci. Their
numerical values can be calculated by adding the internal (Rsi) and external (Rse) thermal
resistances for each surface s. In particular, as expressed in Equations (8) and (9) for a
surface s, Rsi contains the contribution of all layers facing the internal zone that precede
lmax, while Rse includes the remaining part of the external envelope (from lmax to lext).

Rsi = Rssi +

(
∑lmax

l=lin

dl
λl

)
/As (8)

Rse = Rsse +

(
∑lext

l=lmax

dl
λl

)
/As (9)

where Rssi and Rsse are the internal and external surface thermal resistances, dl and λl are
the thickness and the thermal conductivity of the layer l, while lext refers to the outer layer
(facing the outdoor environment). The specific values of the resistances Ree, Rei and Ri
can be obtained by adding the contributions of the different surfaces (s) comprising the
envelope and the internal thermal mass.

To validate the short-term predictive capability of the RC network, its operation
is compared to the results of a building model with the same thermal and geometrical
characteristics, developed in TRNSYS, which represents the “real” system in this analysis.
The performance is assessed by evaluating the root mean square error, RMSE, which is
defined as:

RMSE =

√√√√ 1
N

N

∑
k=1

(
TairRC−network,k − TairTRNSYS,k

)2
(10)

where N is the number of points considered, which corresponds to the model performance
evaluation period according to the timestep k.

2.2. MPC Formulation for the MES

The application of a MPC to the HVAC of a building involves the real-time resolution
of an optimization problem (OP), the classic control algorithm of which is based on a linear
or quadratic objective function (OF), subject to equality or inequality constraints [28]. Then,
the control acts to select the optimal sequence of manipulated variables over the PH by
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using predictions of building response (Section 2.1). Following the receding horizon logic,
the optimal variables are transferred to the HVAC as control actions. To be effective, the
MPC must be provided with the uncontrolled input profiles. Typically, they are represented
by the system state disturbances, which, in the case of buildings, are the inputs required
by the building model: the outdoor temperature (To), and the heat gains (

.
Gint and

.
Gs),

as shown in Equations (3) and (4). However, when the system operation involves the
exploitation of an MES, the forecasts of energy source availability have to be included in
the optimizer inputs (Figure 2). In this case, a distinction should be made between the
energy sources that depend on the actual system state and those that do not. As described
in Section 2.1, the system state is represented by the node temperatures (Tair, Ti and Te),
which are strongly linked to the thermal demand of the building (

.
Qz). Therefore,

.
Qz acts as

a controlled input for the building model, and therefore as a continuous decision variable
for the OP. In this context, the exploitation of an energy source can take place according to
two different logics. When source availability is defined by a given profile (uncontrollable
input), the system adapts its state to use a given source in the right measure. On the
contrary, if the availability of the source is potentially limitless and its employment is
strongly linked to the actual energy request of the building, this source has to be considered
to be a manipulated variable in the OP. The latter category is represented by the energy
sources taken from the grid (e.g., natural gas or electricity drawn from the grid). To
formulate the control in general terms, this distinction among energy sources needs to be
considered when defining the OP.

Let ES be the number of usable energy sources acting as uncontrolled inputs (index
e) and ∆k the control timestep;

.
Ee,k is the availability profile for each e at each timestep

k, while
.
EG,k is the energy source drawn from the grid (G). Associating a penalty factor

(PFe,k, PFG,k) to each energy source (
.
Ee,k and

.
EG,k), the OP can be formulated in general

terms (Equations (11) and (12)). By varying PF, the use of some sources rather than
others can be penalized or encouraged according to the intended purpose of the OP (e.g.,
minimizing the total costs or the primary energy consumption).

OF(
.

Qz, UF) = ∑PH
k=0 ∆k

[
PFG,k

( .
Qz,k

CFG,k
−∑ES

e=1
CFe,k

.
Ee,kUFe,k

CFG,k

)
+ ∑ES

e=1 PFe,k
.
Ee,kUFe,k

]
(11)

minimize OF(
.

Qz, UF) (12)

In Equation (11), CFe,k and CFG,k are the conversion factors of
.
Ee,k and

.
EG,k into thermal

energy. Therefore, CFe,k
.
Ee,k and CFG,k

.
EG,k represent the building thermal demand that can

be covered by each e or drawn by the grid G. Since e refers to an uncontrollable input, its
actual use is decided by a use factor (UFe,k), acting as a continuous decision variable that
can assume values between 0 and 1.

The OF defined in Equation (11) must be minimized while respecting some system
constraints. Firstly, the internal comfort of the occupants has to be satisfied for each time
k. This condition is represented by Equation (13), where Tmin and Tmax represent the
permitted comfort band that can be exploited by the controller.

Tmin ≤ Tair,k ≤ Tmax (13)

Equation (13) represents the link between the building model and the optimizer
(Figure 2). If discretized, in fact, Equation (1) can be rewritten as:

X(k + 1) = Ad X(k) + Bd U(k) (14)

In this way, the connection between Tair,k and the decision variable
.

Qz,k can be ex-
pressed in a linear way. Furthermore, the optimization constraints related to the HVAC
system must be defined. These concern the maximum capability (

.
Qmax) of the system
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involved (Equation (15)) and, if a withdrawal from the grid is envisaged, the constraint
expressed by Equation (16) has to be added in order to avoid unacceptable solutions when
the availability of the energy sources is too high (i.e., negative values of electricity drawn
for the grid). ∣∣∣ .

Qz,k

∣∣∣ ≤ .
Qmax (15)

.
EG,k ≥ 0 (16)

With this formulation, the OF, the decision variables, and the constraints are all
linear functions. Therefore, the optimization problem can be treated as a typical linear
programming (LP) problem, and the “dual-simplex” algorithm can be used in the controller.
It is important to note that, to ensure the linearity of the OP, the presented formulation
allows the involvement of a single energy source drawn from the grid. In fact, the latter
is interpreted by the controller as a supplementary energy source to be used when the
availability of other energy sources is not enough.

Once the optimization is solved, the MPC has to select the sequence of control actions
for the following timestep on the basis of the results of the optimizer. The control actions
are derived from the first value of the decision variable profiles in PH. The methodology
described in this section will be applied to the case study defined in Section 3.

3. Case Study

In this section, the selected case study is presented. The controlled system consists of a
single residential building modeled in TRNSYS. The analysis focuses on the cooling season;
therefore, an MES designed to cover the cooling demands of the building is considered.
This section is divided into: Section 3.1, where the thermal and geometrical features of the
controlled building are described and the numerical values of the RC network parameters
are provided; Section 3.2, in which the HVAC system is introduced; and Section 3.3, where
the model of a hypothetical neighboring building is described.

3.1. Controlled Building Model

The controlled building model is implemented in TRNSYS using Type 56. It is com-
posed of a single thermal zone, and its thermal and geometrical features are extrapolated
by Tabula Project [29]. A detached house (single family house, SFH), recently built (con-
struction age 2006 onward), is selected. All the external walls and the ceiling face outwards.
As suggested by [29], Table 1 reports the values chosen for the thermal transmittances
(U-values) of the building envelope.

Table 1. U-values (W m−2 K−1) and surface (m2) for each part of the building envelope. Developed
from [22].

Property External Walls Celing Floor Windows

U-values 0.34 W m−2 K−1 0.28 W m−2 K−1 0.33 W m−2 K−1 2.20 W m−2 K−1

Surface 223.3 m2 96.4 m2 96.4 m2 23.3 m2

The floor is placed directly on the ground, and an ACH equal to 0.2 hr−1 is selected
for natural ventilation. With respect to the internal gains, these are supplied by artificial
lighting and occupancy. An artificial light density of 5 W m−2 is assumed when the
total horizontal radiation is less than 120 W m−2, while an occupancy of four people is
hypothesized (heat gain of 120 W per person) [30].

The building is located in Rome, Italy (41◦55′ N, 12◦31′ E), and a typical meteorological
year [31] is adopted to derive the outdoor temperature and the solar radiation contribution.
In this way, the input vector (Equations (3) and (4)) for the building model in the MPC can
be obtained. Moreover, all the RC network parameters can be defined from knowledge
of the structure. A typical building envelope stratigraphy is considered, according to
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UNI-TR 11552:2014 [32]. Table 2 summarizes the parameters identified using the white
box approach.

Table 2. RC thermal network parameters.

Cair
(MJ K−1)

Ci
(MJ K−1)

Ce
(MJ K−1)

Rv
(KW−1)

Ri
(KW−1)

Rei
(KW−1)

Ree
(KW−1) fas faq fis fiq

0.74 44.1 69.5 0.0107 0.0018 0.0068 0.0026 0.5 0.8 0.5 0.2

By simulating an ideal cooling system using Type 56, which applies negative convec-
tive heat gains to the internal air nodes, an RMSE of 0.45 ◦C (lower than the thermostat
accuracy) is obtained for the whole cooling season by comparing the internal air tempera-
ture of the building with the value of the thermal zone temperature (Tair) in the RC network.
To test the thermal dynamics of the system when a larger comfort band is allowed for the
internal temperature, random daily setpoint profiles are used to calculate the RMSE.

3.2. HVAC System

The HVAC system is designed to meet the space cooling demand of the selected
building. The cooling power is supplied to the building thermal zone by fan coil units
(FCUs) modeled in TRNSYS using Type 996. The FCU works as an air-to-water heat
exchanger, in which the internal air is cooled by cold water acting as a heat transfer fluid.
The water circuit can be cooled using different energy sources: (i) cooling power coming
from a district cooling network (DC) or from a variable-load air-to-water heat pump (HP),
supplied by electricity that can be produced by either (ii) on-site photovoltaic (PV) modules
or (iii) drawn from the grid. In Figure 4, a schematic of the cooling system is depicted.
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Figure 4. Schematic of the cooling system.

Starting from the DC source, the connection of the user to the network is achieved
using a heat exchanger, as shown in Figure 4. The heat exchanger is modeled in TRNSYS
using Type 5 as a crossflow unit with both hot and cold sides unmixed. The cold side uses
glycolate water [33] as the heat transfer fluid (

.
mdc), while the hot fluid flowing in the FCU

is water (
.

mwater).
The cooling power availability profile is determined with reference to a possible cold

energy recovery application, in which a DC network can be used to dispose of cold energy
coming from a liquid-to-compressed natural gas (L-CNG) refueling plant vaporizer, as
discussed in detail in a previous work [16]. Figure 5 reports the daily availability profile of
the source.
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ture difference of 7 °C at the peak cooling power (6.3 kWth), with a minimum supply tem-

perature of −5 °C. Table 3 summarizes all the values selected for the cooling system sizing. 

Table 3. Design values for the cooling system sizing. 

Quantity  Water Glycolate Water 

Flow rate  0.30 kg s−1 0.24 kg s−1 

Supply temperature  7 °C −5 °C 

Temperature difference between supply and return  5 °C 7 °C 

The variable-load air-to-water heat pump (HP) is connected in series to the heat ex-

changer. The HP is modeled by interpolating the manufacturer’s data for a commercial 

unit (VITOCAL 200-S) [35], according to EN 14825 [36]. To vary the load of the HP, a 

compensation curve is adopted to set a water supply temperature that is dependent on 

the outside air temperature. The compensation curve is deducted from the load curve of 

the building (i.e., the curve representing the link between the energy demand for cooling 

Figure 5. Daily cooling power profile from DC (for the single building).

The peak cooling power (6.3 kWth from 6:00 p.m. to 7:00 p.m.) is comparable to the
designed peak cooling load of the building (6.5 kWth), obtained by applying the Carrier-
Pizzetti technical dynamic method [34]. Therefore, the water flowrate (

.
mwater) is calculated

to guarantee a difference between supply and delivery temperature of 5 ◦C. Under these
conditions, a designed water supply temperature of 7 ◦C is assumed. As far as the glycolate
water side is concerned, a constant flow rate (

.
mdc) is assumed, and the cooling power

availability profile (Figure 5) determines the inlet temperature into the heat exchanger. In
particular, the numerical value of

.
mdc is calculated by considering a temperature difference

of 7 ◦C at the peak cooling power (6.3 kWth), with a minimum supply temperature of
−5 ◦C. Table 3 summarizes all the values selected for the cooling system sizing.

Table 3. Design values for the cooling system sizing.

Quantity Water Glycolate Water

Flow rate 0.30 kg s−1 0.24 kg s−1

Supply temperature 7 ◦C −5 ◦C
Temperature difference between supply and return 5 ◦C 7 ◦C

The variable-load air-to-water heat pump (HP) is connected in series to the heat
exchanger. The HP is modeled by interpolating the manufacturer’s data for a commercial
unit (VITOCAL 200-S) [35], according to EN 14825 [36]. To vary the load of the HP, a
compensation curve is adopted to set a water supply temperature that is dependent on
the outside air temperature. The compensation curve is deducted from the load curve of
the building (i.e., the curve representing the link between the energy demand for cooling
and the outside air temperature). In the cooling season, it is difficult to identify this link
with a steady-state approach due to the time lag between the actual heat load and the
instantaneous heat input. Therefore, the load curve is obtained from the energy simulation
of the ideal building thermal demand, designed to maintain an indoor comfort temperature
of 25 ◦C. Assuming a maximum return temperature of 12 ◦C (Tret,design) for the water and
knowing the value of

.
mwater, the supply temperature (Tsup,cc) is calculated as a function of

the outdoor air temperature. The model 201.D04 [35] is selected for the HP (the performance
in cooling mode, according to EN 14511 [37] and evaluated at a water supply temperature
of 7 ◦C with an air temperature of 35 ◦C (A35/W7), is: rated cooling power of 3.9 kWth
and rated coefficient of performance of 2.4).

The HP can be powered either by the electricity from the grid or produced by photo-
voltaic (PV) modules installed on site. The PV plant is modeled in TRNSYS using Type
194 and is composed of three arrays. Each array includes 10 polycrystalline-silicon panels
connected in series with a nominal peak power of 250 We. The characteristics of the single
panel are derived from a commercial datasheet [38]. The expected electricity availability
from the panels is obtained by simulating the hourly electricity generation of the PV plant
for the whole cooling season (from June to September).

To evaluate the performance of the MPC in the optimal exploitation of the energy
sources, a classic rule-based control (RBC) is modeled as a reference operation. It acts
as a simple thermostatic control (TC): cooling power is required when the indoor zone
temperature exceeds a maximum setpoint temperature (25.5 ◦C), with a tolerance of 0.5 ◦C
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(26 ◦C). The cooling control is then turned off when the measured temperature falls below
the setpoint reduced by the tolerance (25 ◦C). The cooling thermostat is modeled in TRNSYS
using Type 1503. The TC acts on the FCU, and the energy sources exploitation occurs
sequentially according to the order provided in Figure 4. The cold thermal energy provided
by the DC is consumed first, and then, if this is insufficient to cover the demand, the HP is
activated. Unable to follow an optimized control logic, the HP uses the electricity produced
by the PV modules only if it is available at the considered time step, otherwise the HP
withdraws energy from the power grid.

3.3. Neighboring Buildings

When an energy source is shared by different buildings (e.g., DC or DH), variations in
its exploitation by one user can influence the other users. To assess the effect of the MPC
operation on other buildings connected to the DC, an additional building is modeled, as
depicted in Figure 6.
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The neighboring building is modeled using Type 88 as a single thermal zone with a
simple lumped capacitance structure with the same thermal and geometrical characteristics
as the controlled building (Section 3.2). Therefore, an overall building loss coefficient of
0.38 W m−2 K−1 and a total thermal capacitance of 55 MJ K−1 are assumed [39]. To avoid
the dependence on other sources, it is assumed that the cooling demand of the neighboring
building can be covered only using DC, the availability of which is doubled. The connection
between the two users is realized with a parallel layout and, since the two buildings are
equivalent, the numerical values of the flowrates

.
mdc and

.
mwater coincide.

4. Implementation of the MPC to the Case Study

As described in Section 3, three energy sources can be used to cover the cooling
demand of the building: (i) cold thermal energy from the DC network, (ii) electricity
produced by on-site PV modules to power the HP, and (iii) withdrawal of electricity from
the power grid. The first two sources act as uncontrollable inputs for the optimizer (ES is
equal to 2, according to Equation (11)). When referring to the individual energy sources,
each element e is identified with the specific subscript DC and PV; therefore,

.
EDC,k is the

cooling power availability of DC (kWth), while
.
EPV,k represents the available electricity

from PV at each timestep k (kWe). Since
.
EDC,k represents a thermal power, its conversion
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factor (CFDC,k) is set to be equal to 1 for each k, while for
.
EPV,k and

.
EG,k, the conversion

factor is represented by the HP expected coefficient of performance (COPexp,k):

CFPV,k = CFG,k = COPexp,k (17)

In order to maintain the linearity of the optimization problem, an approximation is
made for the assessment of the COP in the MPC optimizer. In fact, since the HP is modeled
as a variable-load air-to-water unit, its performance varies according to the outdoor air
temperature, the water supply temperature, and the capacity ratio. However, the two
latter quantities are closely related to the actual energy demand,

.
Qz,k, which is a decision

variable of the optimization problem. The inclusion of these expressions in the constraints
of the optimization problem would make it nonlinear. Therefore, as suggested by [40],
the COP is considered, with an acceptable error, to be a function of the expected value of
the water supply temperature (assumed equal to 9.5 ◦C). To avoid an overestimation of
HP performance in the control, a capacity ratio of 1 is assumed. In this way, the expected
coefficient of performance COPexp can be calculated a priori merely as a function of the
outdoor air temperature, which is an input of the MPC.

Assigning different values to the penalty factors (PF), different ways of exploiting the
available energy resources can be evaluated by the MPC. Three objective functions are used
for this purpose. These concern the minimization within the PH of (i) the electricity taken
from the grid, (ii) the energy cost, and (iii) the total primary energy consumption. The first
objective function aims to decrease the use of nonrenewable energy sources, the second
one targets an economic optimization for the final user, while the third one minimizes of
the overall primary energy use.

As far as the first objective function (i) is concerned, Equation (11) can be written for
the case study by assigning a value of 0 to PFDC,k and PFPV,k, and 1 to PFG,k:

OFG

( .
Qz, UF

)
= ∑PH

k=0 ∆k

[ .
Qz,k

COPexp,k
−

.
EDC,kUFDC,k

COPexp,k
−

.
EPV,kUFPV,k

]
(18)

Instead, if the total energy cost is to be minimized, the penalty factors represent the
costs per unit of energy consumption. In particular, PFDC,k is the cost per energy unit of the
cold thermal energy absorbed by the DC network (coth,DC), while PFPV,k and PFG,k refer
to the costs per energy unit of the electricity produced by PV (coel,PV) and supplied from
the grid (coel,G), respectively. Their numerical values are 0.20 EUR kWhe

−1 for coel,G [41],
0 EUR kWhe

−1 for coel,PV (on-site generation) and 0.035 EUR kWhth
−1 for coth,DC. With

regard to cth,DC, in the absence of real data, the following hypothesis is made: the cost of 1
kWhth from DC is 30% lower than the production of the same amount of energy using a
traditional heat pump (a rated COP of 4 is assumed). On the basis of these assumptions,
the objective function can be written as:

OFC

( .
Qz, UF

)
= ∑PH

k=0 ∆k

[
coel,G

( .
Qz,k

COPexp,k
−

.
EDC,kUFDC,k

COPexp,k
−

.
EPV,kUFPV,k

)
+ coth,DC

.
EDC,kUFDC,k

]
(19)

Finally, Equation (20) represents the third objective function: the minimization of the
total primary energy consumption. In this case, PF refers to the primary energy factor (p)
required to convert each energy source into primary energy. The corresponding numerical
values are extrapolated from [42] and are: 2.42 (pG) for the electricity taken from the grid, 1
(pPV) for the PV generation, and 0.5 (pDC) for the cold thermal energy from DC.

OFP

( .
Qz, UF

)
= ∑PH

k = 0 ∆k
[

pG

( .
Qz,k

COPexp,k
−

.
EDC,kUFDC,k

COPexp,k
−

.
EPV,kUFPV,k

)
+ pDC

.
EDC,kUFDC,k + pPV

.
EPV,kUFPV,k

]
(20)
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As described in Section 2.2, the constraints of the OP concern the internal comfort
(with Tmax and Tmin equal to 24 ◦C and 27 ◦C in Equation (13)), the maximum capability of
the cooling system (

.
Qmax assumed equal to 6.5 kWth in Equation (15)) and the condition

on the withdrawal from the grid expressed by Equation (16). For the case under study, the
latter can be expressed as:

∀k :

( .
Qz,k

COPexp,k
−

.
EDC,kUFDC,k

COPexp,k
−

.
EPV,kUFPV,k

)
≥ 0 (21)

The OP is solved with a MATLAB script, in which the whole MPC routine is writ-
ten. At each time step t (having a resolution of 15 min) of the controlled building, the
MATLAB engine is called using a dedicated Type 155. The measurement of the internal
air temperature at the previous (Tair,t−1) is then passed to the controller as the starting
condition for the MPC building model. Once the OP is solved, the controller determines
the control actions for the cooling system within the PH. These include: the control signal
for the DC pump (CTRLDC,t), the circuit flowrate (

.
mdc,t) modulated in relation to the UFDC,

the control signal for the HP (CTRLHP,t), and the HP water supply temperature (Tsup,t).
CTRLDC,t and CTRLHP,t are Boolean variables (a value of 1 indicates a switch is on, while 0
indicates a switch is off) with relation to the decision variables UFDC and UFPV. The water
supply temperature, on the other hand, is derived from the energy demand prediction

.
Qz.

In Figure 7, the scheme of the MPC routine applied to the case study is provided, while
Figure 8 shows the layout of the TRNSYS model. A detailed formulation of the algorithm
for selecting the control actions is reported in Appendix A, where the selection process in
the case of unfeasible OP is also shown.
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5. Results

Taking into account the whole cooling season (from June to September), Table 4 reports
the seasonal energy performance and cost when the rule-based control (RBC) is used to
cover the building cooling demand managing the multi-energy system (MES). Since the
control involves the sequential use of the MES (first DC, then PV, and finally G, Section 3.2),
a good use of the available resources (DC and PV) can be noted by observing the values
shown in Table 4. In fact, 46% of the total cooling demand is covered by the DC, while the
remaining 54% is provided by the HP. In particular, 64% of the HP electricity demand is
satisfied by PV generation, while the rest is supplied by the power grid (G).

Table 4. Energy and cost performance with the RBC for the whole cooling season.

Quantity Value

Total cooling demand (kWhth) 4263
Cooling demand covered by DC (kWhth) 1944
Cooling demand covered by HP (kWhth) 2319

Total electricity demand (kWhe) 665
Electricity demand covered by PV (kWhe) 426
Electricity demand covered by G (kWhe) 239

Total energy cost (EUR) 116
Total primary energy consumption (kWh) 1977

However, in this case, the choice of a specific energy source to cover the thermal
demand of the building depends exclusively on the instantaneous demand and on the
cooling system configuration. Moreover, no exploitation of the energy flexibility of the
building is allowed, since a simple thermostat is used as the control system.

When the MPC is implemented, the control logic acts to manage the MES to maximize
the energy performance of the building based on an objective function, regardless of the
position of each source in the cooling system, exploiting the energy flexibility provided by
the TCLs as additional resource.

In the following subsections, a detailed comparison in operational terms between
the two control logics is provided. In Sections 5.1–5.3, the operation of the MPC with the
three different OFs (OFG, OFC and OFP) is presented in comparison to the RBC. Results are
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firstly presented in a representative summer week (the third week of July), and these are
then extended to the whole season.

Then, in Section 5.4, the performances of the MPC with different OFs are compared for
the whole cooling season. In Section 5.5, the influence of control setting parameters (e.g.,
PH) is discussed and, to conclude, Section 5.6 presents a qualitative discussion regarding
the effects of single building optimization on neighboring buildings in the DC.

5.1. MPC with OFG

When the MPC minimizes the electricity withdrawal from the grid (OFG in Equa-
tion (18)), a penalty factor is applied only to the source G (PFG = 1), while the remaining
sources are not penalized (PFDC = PFPV = 0). In this way, the logic of the control has
no preference in terms of privileging the DC source rather PV. Thus, the same result in
terms of objective function (i.e., electricity supplied by the grid consumption) could be
obtained by different combinations of exploitation of the two free sources at times when
their availabilities far exceed the demand.

Focusing on a representative summer week, Figures 9 and 10 show the uncontrolled
exploitation of energy sources (DC and PV) in order to meet the energy demand of the build-
ing in the cases of both RBC (Figure 9) and MPC operation with a PH of 18 h (Figure 10).
Apparently, there is no significant difference between the two ways of exploiting the DC
and PV sources. In particular, it can be noted that a greater exploitation of DC is obtained
when using the RBC (80% of the total weekly cold energy availability, compared to 71% in
the case of the MPC, Figures 9a and 10a), while the opposite behavior is observed for PV
use (Figures 9b and 10b): 52% of the total weekly electricity production is consumed by the
HP in the case of MPC operation, while this value is 41% with the RBC.
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Figure 10. Energy sources used to cover the weekly cooling demand of the building compared to the availability profiles
with MPC (OFG, PH of 18 h): (a) DC; (b) PV.

However, looking at the electricity taken from the power grid (OF in the MPC), the
effectiveness of the MPC can be observed. Figure 11 compares, in the same week, the use
of the G source in RBC and MPC cases with OFG. The area highlighted represents the
time when the other energy sources (DC and PV) are available. Thanks to the activation
of the energy flexibility of TCLs, the MPC acts both to reduce the electricity consumption
in periods in which no other sources are available by lowering the total cooling demand
(and maintaining the maximum allowed setpoint, Figure 12) and to remove the electricity
peaks that occur during periods of sources availability (circled area in Figure 11). In the
representative week, in fact, the electricity consumption changes from 26.4 kWhe in the
case of RBC to 10 kWhe in the case of MPC (a reduction of 62%). In particular, to confirm
the effectiveness of the control, the electricity use in cases where DC and PV are available
reduced by 76% in the case of MPC operation (from 7.7 kWhe with RBC to 1.9 kWhe
with MPC).
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Figure 11. Electricity from the power grid (G) used to cover the weekly cooling demand of the
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Looking at Figure 12, the good performance of the control in predicting the real-time
internal air temperature value can also be noted. Comparing the actual value of Tair with
its prediction in the same timestep, an RMSE of 0.43 ◦C is calculated for the representative
week with a maximum overheating temperature of 27.4 ◦C.



Energies 2021, 14, 519 18 of 30

Energies 2021, 14, 519 18 of 31 
 

 

maintaining the maximum allowed setpoint, Figure 12) and to remove the electricity 

peaks that occur during periods of sources availability (circled area in Figure 11). In the 

representative week, in fact, the electricity consumption changes from 26.4 kWhe in the 

case of RBC to 10 kWhe in the case of MPC (a reduction of 62%). In particular, to confirm 

the effectiveness of the control, the electricity use in cases where DC and PV are available 

reduced by 76% in the case of MPC operation (from 7.7 kWhe with RBC to 1.9 kWhe with 

MPC). 

Looking at Figure 12, the good performance of the control in predicting the real-time 

internal air temperature value can also be noted. Comparing the actual value of 𝑇air with 

its prediction in the same timestep, an RMSE of 0.43 °C is calculated for the representative 

week with a maximum overheating temperature of 27.4 °C. 

 

Figure 11. Electricity from the power grid (G) used to cover the weekly cooling demand of the building. Comparison 

between RBC and MPC (OFG, PH of 18 h). 

 

Figure 12. Comparison between actual indoor air temperature (Tair) and its prediction in the MPC with OFG and PH of 18 

h. 

Generalizing the considerations made to the entire cooling season, a reduction of 53% 

of the consumption of the electricity from the grid (G) is obtained compared to the RBC. 

In particular, the electricity withdrawal in presence of DC and PV availability is reduced 

by 77% (from 68.7 kWhe to 16 kWhe). An RMSE of 0.33 °C is obtained, with a maximum 

indoor air temperature of 27.4 °C. 

5.2. MPC with OFC 

When the MPC is formulated with OFC, the total energy costs are minimized. In this 

case, a penalty is also assigned to the DC (𝑃𝐹DC = coth,DC, 𝑃𝐹G = coel,G, 𝑃𝐹PV = 0) and the 

use of the HP with electricity from PV is encouraged, as shown in Figure 13. The DC use 

is equal to 22% of the total energy availability, while 78% of the electricity produced by 

the PV is consumed by the HP. To avoid the use of other energy sources (DC and G), the 

virtual energy sources represented by the building energy flexibility is involved. Indeed, 

the MPC acts to maintain the highest comfort band when there is a lack of PV availability, 

and lowers temperature only when there is adequate PV availability (Figure 14, where the 

highlighted areas represent the periods of PV generation). In this way, the total cooling 

demand is reduced by 20% compared to the RBC operation. The operative RMSE in the 

week depicted in Figure 14 is 0.38 °C, with a maximum temperature of 27.6 °C being 

reached. 

Figure 12. Comparison between actual indoor air temperature (Tair) and its prediction in the MPC
with OFG and PH of 18 h.

Generalizing the considerations made to the entire cooling season, a reduction of 53%
of the consumption of the electricity from the grid (G) is obtained compared to the RBC.
In particular, the electricity withdrawal in presence of DC and PV availability is reduced
by 77% (from 68.7 kWhe to 16 kWhe). An RMSE of 0.33 ◦C is obtained, with a maximum
indoor air temperature of 27.4 ◦C.

5.2. MPC with OFC

When the MPC is formulated with OFC, the total energy costs are minimized. In this
case, a penalty is also assigned to the DC (PFDC = coth,DC, PFG = coel,G, PFPV = 0) and the
use of the HP with electricity from PV is encouraged, as shown in Figure 13. The DC use is
equal to 22% of the total energy availability, while 78% of the electricity produced by the
PV is consumed by the HP. To avoid the use of other energy sources (DC and G), the virtual
energy sources represented by the building energy flexibility is involved. Indeed, the MPC
acts to maintain the highest comfort band when there is a lack of PV availability, and lowers
temperature only when there is adequate PV availability (Figure 14, where the highlighted
areas represent the periods of PV generation). In this way, the total cooling demand is
reduced by 20% compared to the RBC operation. The operative RMSE in the week depicted
in Figure 14 is 0.38 ◦C, with a maximum temperature of 27.6 ◦C being reached.
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With reference to the use of the sources to meet the weekly cooling demand, the PV
exploitation increases by 107% with respect to the baseline, while the use of DC and G
sources decreases by 66% and 46%, respectively. The total weekly energy cost is reduced
by 61%. Figure 15 reports the cost composition in the representative week for the RBC
operation (Figure 15a) and for the MPC (Figure 15b).
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The behavior of the control is confirmed also in case of seasonal evaluation. In fact,
a cost reduction of 64% is obtained in reference to the RBC operation with an increase of
PV use of 102% (from 426 kWhe to 862 kWhe). The RMSE decreases to 0.33 ◦C, with a
maximum overheating temperature of 27.6 ◦C.

5.3. MPC with OFP

If the MPC acts to minimize the total primary energy consumption, no free sources
(PF = 0) are available and a penalty factor is assigned to all the energy sources (PFDC = pDC,
PFG = pG, PFPV = pPV). Figures 16 and 17 present the source exploitation (Figure 16a for
DC and Figure 16b for PV) and the internal temperature Tair in the case of MPC operation
with OFP for a representative week. Looking at Figure 17, it can be noted that in this
case the control tends to minimize the overall energy demand, keeping the indoor air
temperature close to the upper temperature limit imposed in the optimization problem.
The total demand is reduced by 28% compared to baseline, and an operative RMSE of
0.30 ◦C is calculated. In this case, the maximum temperature reached is 27.7 ◦C.

A weekly primary energy consumption reduction of about 34% is obtained compared
to the baseline (Figure 18 shows the use of energy sources converted into terms of primary
energy), and a reduction of the same order of magnitude also occurs in the case of seasonal
evaluation (30%, from 1977 kWh in the case of RBC to 1386 kWh in the case of MPC with OFP
and a PH of 18 h). The RMSE is 0.25 ◦C, and a maximum temperature of 27.8 ◦C is reached.
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5.4. Comparison of the MPCs

On the basis of the energy simulation of the entire cooling season, it is possible to
evaluate the different use of the available energy sources by the MPC according to the
tested objective functions (OFG, OFC and OFP). In Figure 19, the proportions of sources
required in order to meet the total seasonal demand are provided in comparison with the
RBC operation (Figure 19a). The seasonal simulations confirm the trends observed during
the reference week for the various controls.
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As expected, in fact, due to the system configuration (Figure 4), the highest consump-
tion of cooling from DC is realized by the RBC (46% of the cooling demand). A small
reduction of 8% in the DC use is obtained with the MPC operating with OFG (42% of
the cooling demand, Figure 19b), while in the case of OFC and OFP, the total demand
share covered falls by 75% and 60% (Figure 19c,d). With regard to the use of HP with
PV, there is an increase in the exploitation of the resource in all the tested controls. In
particular, the highest use is obtained with OFC (the share of total demand covered by
the PV increases from 35% to 78%—an increase of 122%; Figure 19a,c), while increases of
smaller amplitudes are obtained with OFG (an increase of 41% respect to RBC; Figure 19b)
and OFP (an increase of 81% with respect to RBC; Figure 19d). To confirm the effectiveness
of the control, the lowest share of demand covered by the grid is realized with OFG: the
demand share decreases by 54% with respect to RBC; meanwhile, in the cases of OFC and
OFP, the reductions are 43% and 4%, respectively.

In all the tested MPCs (OFG, OFC and OFP), the results show a high degree of ex-
ploitation of the energy flexibility provided by the TCLs. In particular, for OFC and OFP,
the minimization of the cooling demand (maintaining the temperature at a level as high
as possible) is evaluated by the MPC to be the best strategy for achieving the objective.
Instead, in the case of OFG, the dynamic variation of the indoor temperature is realized by
the control lowering the setpoint in moments with high availability of free sources (DC
and PV) and minimizing the demand at other times.

Figure 20 summarizes the results discussed so far, allowing a faster comparison
between ways of exploiting available energy sources (Figure 20a) when different objective
functions are pursued. Compared to the RBC operation, where there is no logic available for
choosing the use of one source rather than another, the MPC formulated for managing the
MES shows good operational performance in terms of optimized management of resources,
according to the OFs. The results show that the highest percentage reduction in the desired
optimized quantities is obtained with each specific OF implementation, confirming the
successful management of the available energy sources (Figure 20b).
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Figure 20. Comparisons among OFG, OFC and OFP in the MPC for the whole cooling season (PH = 18 h) in terms of
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Seasonal performances are shown in Figure 21, where a comparison is provided
between the implemented MPC (OFG, OFC and OFP) for a PH of 18 h and the RBC for the
whole cooling season with respect to total energy demand (Figure 21a), use of DC source
(Figure 21b), use of PV source (Figure 21c), use of electricity grid (Figure 21d), total energy
cost (Figure 21e) and primary energy consumption (Figure 21f).
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5.5. Influence of the Prediction Horizon

The results discussed so far have been obtained using the same prediction horizon
value (PH of 18 h). However, to test the robustness of the controller, the same seasonal
results are evaluated with different PH values. For the MPC with OFC and OFP, the results
seem to be influenced by the choice of the PH to a limited extent, showing percentage
variations of the specific optimized quantities of the same order of magnitude. In these
cases, in fact, the control acts to encourage the use of the energy flexibility (the reduction
of the total demand) in favor of the energy sources that possess a penalty factor in the
optimization problem (PV in OFP and DC in OFC and OFP). As discussed in the previous
sections, this behavior is especially evident in OFP, where the control maintains an indoor
temperature close to the upper comfort limit for the majority of the time (98% of the
simulation time). In this case, the control logic becomes less dependent on the availability
predictions, as a result of the PH used in the OP. In fact, in the case of cost minimization
(OFC), the total cost is 45.9 EUR (a reduction of 60% compared to RBC) for a PH of 6 h,
41.8 EUR for a PH of 12 h, and 41.7 EUR for a PH of 18 h (for the last two cases, there is
a reduction of 64% compared to RBC). The use of PV and DC sources with respect to the
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availability reserve is about 63% (PV) and 16% (DC) with a PH of 6 h, while for a PH of
12 and 18 h the values are 66% for PV and 15% for DC. In all three PH cases, the RMSE
remains in a range of 0.32–0.34 ◦C. With OFP, a percentage reduction of 30% is obtained
compared to the RBC in terms of seasonal primary energy consumption for a PH of 6, 12
and 18 h, and an RMSE of 0.25 ◦C is obtained in all cases.

However, a greater influence of PH is observed for OFG. In this case, the MPC is
free to use DC and PV sources in the same way to cover the thermal requirements. The
minimum value of electricity consumption from G is obtained with the highest PH (18 h):
a 53% reduction compared to RBC. This value becomes 38% in case of a PH of 6 h, and 49%
in the case of 12 h. However, values of RMSE in the range of 0.33–0.35 ◦C are obtained for
all the tested PHs.

5.6. Effects of Building Optimization on the Neighboring Building

Although the proposed MPC seems to be effective for the exploitation of available
sources, it is limited to the optimization of the performance of individual buildings. When,
as in the case study analyzed in this paper, one of the available energy sources is shared
with other users (e.g., DC), the differing exploitation of sources by the controlled building
may affect source availability for other connected users. Figure 22 highlights this behavior
by comparing the duration curves for the indoor air temperature of the aggregated building
when an adjacent user attached to the DC network (controlled building) is managed using
the reference RBC operation, without withdrawal from the network (OFF), or using the
MPC according to the OF (OFG, OFC and OFP) operations tested. Specifically, Figure 22a
represents the indoor temperature, while Figure 22b shows the engaged cooling power
from DC.
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Different translations of the indoor temperature duration curves (Figure 22a) can be
observed when the RBC operation of the controlled building is compared to the differing
operation on behalf of the user. The behavior observed in Figure 22a highlights that the
impact of different ways of exploiting shared energy sources by a single user on the energy
availability for other neighbors is not negligible and is difficult to predict when all the users
involved are individually optimized.

As shown in Figure 22b, the energy availability can change considerably depending
on the control mode used by other users in the DC network. Thus, it is possible to state
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that the use of an MPC to optimize the individual performance of buildings when an
MES is available is very effective; however, this does not necessarily correspond to an
optimized performance at an aggregated level. In fact, since the proposed control requires
the estimation of the availability profiles of energy resources (e.g.,

.
EDC,k) to plan the control

strategy, additional difficulties could occur in estimating the shared uncontrollable inputs
profiles for the MPC. The position of the user in the network and the prediction of the
actions of other connected users should also be considered when defining the control.

6. Conclusions

The objective of this paper was to evaluate the exploitation of the flexibility derived
from thermostatically controlled loads (TCLs) as an additional energy resource allowing
the optimal control of a multi-energy system (MES) building with district cooling. A
formulation of a model predictive controller (MPC) is proposed and applied to a simulated
case study in which the building’s MES comprises cooling power from a district cooling
(DC) network, electricity produced by on-site photovoltaic (PV) modules or supplied by
the grid.

Different objective functions are operatively tested in the MPC (minimization of use
of electricity from the grid (OFB), total cost (OFC) and total primary energy consumption
(OFP)) in order to evaluate the role of energy flexibility activation when compared to a
traditional rule-based thermostat control (RBC).

The results obtained for the case study can be summarized as follows.

• The predictive control manages the use of energy sources according to the OF formu-
lation: the control acts to maximize the use of free sources (penalty factor equal to 0 in
the OP, Equation (11)) and of energy flexibility to avoid the use of penalized sources.

• Results show good operational performance of the control in terms of seasonal opti-
mized quantities, according to the defined OFs. In particular, when the MPC acts to
minimize the use of electricity from the grid (OFG), a reduction in electricity supplied
from the grid of 53% is obtained in comparison to the baseline (with a prediction hori-
zon of 18 h). The electricity is instead reduced by 43% in the case of cost minimization
(OFC), and by 17% in the case of primary energy (OFP) minimization. When cost is
minimized, a maximum cost reduction (64%) with respect to the baseline is obtained
with OFC, while reductions of 33% and 47% are obtained, respectively, with OFG and
OFP. Finally, in the case of primary energy minimization, the percentage reductions
compared to the baseline are: 19% for OFG, 29% in case of OFC and 30% for OFP.

• The exploitation of the energy flexibility of TCLs is fundamental to allowing the
controller to apply the optimal control actions. Specifically, the operational strategies
obtained consist of increasing the demand (by lowering the indoor temperature) when
high availability of free sources is predicted (especially in OFG and to a degree in
OFC), and in decreasing the demand when there are no sources to be leveraged (as
in OFP).

• The influence of the prediction horizon on seasonal energy performance is very low
in the absence of free energy sources. Instead, when multiple free energy resources
are available (e.g., DC and PV when operating under the minimization of electricity
from grid objective function, OFG), the results show a consistent increase in terms of
optimized quantities with the highest prediction horizon tested (18 h).

The analyses carried out underline the importance of the activation of building energy
flexibility as an additional energy source in an MES with district cooling. Indeed, its
exploitation appears fundamental to making it possible for control to maximize energy
performance. It should also be noted that, even if the MPC shows good performance
for individual building optimization in the presence of an MES, this could lead to a
deterioration in performance for other users when there is a constrained shared source
(e.g., DC).
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Abbreviations

A State space model coefficient matrices for state vector
A Surface area (m2)
ACH Air changes for hours (hr−1)
ANN Artificial neural network
ARX AutoRegressive model with eXogenous inputs
B State space model coefficient matrices for input
BEMS Building energy management system
C State space model coefficient matrices for state vector
C Thermal capacitance (J K−1)
c Specific heat (J kg−1 K−1)
CF Conversion factor
CHP Combined heat and power
co Cost per energy consumption (EUR kWh−1)
COP Coefficient of performance
CTRL Control action
D State space model coefficient matrices for input
d Thickness (m)
DC District cooling
DH District heating
DSM Demand side management
.
E Energy source
EPDB Energy performance of buildings Directive
ES Energy source number
EU European Union
f Partition factor for the heat fluxes
FCU Fan coil unit
.

G Gains (W)
G Grid
HP Heat pump
HVAC Heating, ventilation and air conditioning
k Discrete timestep in the control (hours)
K Thermal conductance (W K−1)
k Heat capacity per area (J K−1 m−2)
l Layer in the building envelope
L-CNG Liquid to compressed natural gas
LP Linear programming
LSTM Long short-term memory model
.

m Flowrate (kg s−1)
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MES Multi-energy system
MPC Model predictive control
N Samples number
NARX Nonlinear AutoRegressive network with eXogenous inputs
NZEB Nearly zero energy building
OF Objective function
OP Optimization problem
p Primary energy conversion factor
PF Penalty factor
PH Prediction horizon
PV Photovoltaic panel
.

Q Heating/Cooling system thermal power (W)
R Thermal resistance (K W−1)
RBC Ruled-based control
RC Resistance-capacitance
RES Renewable energy source
RSME Root mean square error
SSM State space model
T Temperature (◦C)
t Simulation time step (hours)
TC Thermostatically control
TCL Thermostatically controlled load
TES Thermal energy storage
U Input vector
U Thermal transmittance (W m−2 K−1)
UF Use factor
V Volume (m3)
X State vector
Y Output vector
XGBoost Extreme gradient boost model
y Output variable
∆k Timestep (hours)
λ Thermal conductivity (W m−1 K−1)
ρ Density (kg m−3)
Subscripts
air Internal air
aq Air node HVAC contribution
as Air node solar contribution
C Cost
cc Compensation curve
d Discrete
dc Heat transfer fluid in district cooling pipes
DC District cooling
design Design
e Energy source acting as uncontrolled inputs
e Envelope thermal mass
ee External envelope thermal mass
ei Internal envelope thermal mass
el Electrical
exp Expected value
ext External
G Grid
HP Heat pump
i Internal mass
in Internal layer
int Internal
iq Internal mass node HVAC contribution
is Internal mass node solar contribution
j Sample
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k Discrete time step
l layer position
max Maximum value
min Minimum value
o Outdoor
OPT Optimization
P Primary energy
PV Photovoltaic
ret Return
s Solar
s Opaque structure facing outwards
se External thermal resistances for a surface
si Internal thermal resistances for a surface
sse External surface thermal resistances for a surface
ssi Internal surface thermal resistances for a surface
sup Supply
t Simulation time step
th Thermal
v Ventilation
w Windows
water Water
z Thermal zone

Appendix A

In this appendix, the implemented MPC algorithm is provided. At each timestep t of
the controlled building, the control evaluates the disturbance profiles (To,k,

.
Gint,k and

.
Gs,k)

for the time that starts at t (k equal to 0) and ends at t plus PH (k equal to PH). Then the
delayed value of the indoor temperature (Tair,t−1) is obtained from the controlled building
as a starting condition for the building model in the MPC. At each timestep t, the OP
is solved (Equations (11) and (12)) according to the selected OF, and the profiles of

.
Qz,k

UFDC,k and UFPV,k are obtained for each k in PH.
A first check is made on the convergence of the OP to a feasible solution with the

definition of a Boolean variable CTRLOPT. If this latter is equal to 1, a feasible solution has
been found, and the control actions are selected in the following way:
if CTRLOPT = 1:
Tsup,t = Tretdeign −

.
Qz,1/

( .
mwater · cwater

)
.

mdc,t =
.

mdc · UFDC,1
if UFDC,1 > 0:
CTRLDC,t = 1
else :
CTRLDC,t = 0
if UFPV,1 > 0 or (

.
Qz,1 −UFDC,1

.
EDC,1 −UFPV,1

.
EPV,1COPexp,1) > 0:

CTRLHP,t = 1
else :
CTRLHP,t = 0
Instead, if CTRLOPT is equal to 0, an infeasible solution has been found, and the control
actions are selected in this way:
if CTRLOPT = 0:
if Tair,t ≥ Tmax:
CTRLHP,t = 1
CTRLDC,t = 1
Tsup,t = Tsup,tcc

if Tair,t ≤ Tmin:
CTRLHP,t = 0
CTRLDC,t = 0
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The algorithm is recalculated at each timestep t, moving forward through the PH.
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