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Abstract: The thirst of the Earth for energy is lurching towards catastrophe in an era of increasing
water shortage where most of the power plants are hydroelectric. The hydro-based power systems
are facing challenges in determining day-ahead generation schedules of cascaded hydropower plants.
The objective of the current study is to find a speedy and practical method for predicting and
classifying the future schedules of hydropower plants in order to increase the overall efficiency of
energy by utilizing the water of cascaded hydropower plants. This study is significant for water
resource planners in the planning and management of reservoirs for generating energy. The proposed
method consists of data mining techniques and approaches. The energy production relationship
is first determined for upstream and downstream hydropower plants by using multiple linear
regression. Then, a cluster analysis is used to find typical generation curves with the help of historical
data. The decision tree algorithm C4.5, Iterative Dichotomiser 3-IV, improved C4.5 and Chi-Squared
Automatic Interaction Detection are adopted to quickly predict generation schedules, and detailed
comparison among different algorithms are made. The decision tree algorithms are solved using
SIPINA software. Results show that the C4.5 algorithm is more feasible for rapidly generating the
schedules of cascaded hydropower plants. This decision tree algorithm is helpful for the researchers
to make fast decisions in order to enhance the energy production of cascaded hydropower plants.
The major elements of this paper are challenges and solution of head sensitive hydropower plants,
using the decision-making algorithms for producing the generation schedules, and comparing the
generation from the proposed method with actual energy production.

Keywords: short-term scheduling; cascaded hydropower plants; data mining techniques; energy
production; generation schedules

1. Introduction

Among other renewable energy resources, such as wind, solar, etc., hydropower
is the vital source of producing electricity around the globe. It reduces the emission
of greenhouse gases which is one of the main aspects of global warming. In order to
minimize the effect of greenhouse gases, the electrical power industry is playing its role
by exploiting renewable and clean energy as compared to fossil fuel. Hydro-based power
systems are the main sources that contributed towards sustainable energy [1–4]. Precipi-
tation, melting snow and streams are the main supply of inflow for hydropower plants.
Further, for short-term hydro scheduling, inflow forecasting is used to identify predictions
while stream flow forecasting is helpful for calculating the long-term hydrological cycle,
such as evaporation, temperature and precipitation. Flow of the river is considered as
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the primary source for making the decision related to an ecosystem that is helpful for
sustainable hydropower [5,6]. Scheduling of hydropower plants is a difficult task because
of variation in the peak demand as human activities follow regular seasonal and yearly
periods [7]. The power generation from a hydropower reservoir depends on different
parameters, such as yearly discharge, water head, load rate, etc. Good planning and slight
computational improvement can give more energy with the same quantity of water [8].
The aim of hydro scheduling is to generate the maximum energy by using the available
water. During the past few decades, many studies have been performed on short-term
hydro scheduling [9]. Short-term hydro scheduling mainly refers to the determination of
the hourly schedules for the hydro plants to satisfy the forecasted demand as well as the
technical constraints [10]. It is mathematically classified as non-convex, non-linear and
large-scale discrete problem. The scheduling problem is referred to as the unit commit-
ment problem [11]. Moreover, in short-term hydro scheduling, the hours ahead to day
ahead time horizon are followed. In power system operations, one of the key issues is unit
commitment. There are several problems faced by the electrical power industry which in-
clude environmental problems, unit commitment and variation of consumer demand [12].
As hydropower is the viable source of renewable energy, therefore, feasible generation of
hydro units has an important role in electricity market. In the electrical power industry,
the most significant and critical issue is unit commitment [9]. The main purpose of unit
commitment is to realize which generating units are needed to be switched on or off
over a given time period subject to given spinning reserve and load forecast constraints
for maximum efficiency. Unit commitment is a complex, mixed-integer, non-linear pro-
gramming problem [13–16]. The objective behind solving unit commitment problem is
to balance production with demand while optimizing costs and resources. Thus, the
problem of unit commitment needs to be solved in a way that it satisfies the production
demand with minimum cost and water resources. The main research questions are as
follows: (1) How more electricity can be produced in the water scarcity era? (2) What is
the accuracy of decision tree algorithms in forecasting hydro power generation for shorter
periods? (3) What is the practicability of data mining algorithms as compared to other
mathematical models?

Electric power generation is beneficial for welfare, sustainable development and
human life. The prosperity of areas depends on the access of its people to electricity.
In today’s world, around 20% of the population is still living in the dark; they still have
no access to computers, refrigeration, lighting and running water. The objective is not
only increasing the production of energy but is also focused on increasing renewable
energy. The activities of humans are responsible for greenhouse emissions, which in turn
changes the climatic configurations of the earth. In greenhouse gas emissions, carbon
dioxide is the key issue that contributes around 76% of these gases. The largest sources of
producing carbon dioxide are oil, coal and natural gases, which are used for producing
electricity. In order to eliminate the effect of greenhouse gases, the world should focus
on renewable energy sources [17,18]. The power generation of a hydropower reservoir
depends on different parameters such as inflow, annual discharge and water head, load
rate, etc. The inflow parameter is determined by the weather forecast for hydropower
generation [19]. Moreover, hydropower is a potential source of energy for Himalayan
region countries but Pakistan and Nepal struggle to fulfill the demand of electricity. The
demand of energy is increasing 11–13% each year in Pakistan [20]. Hydropower is one of
the important pillars of energy in China [21]. In the last two years, 4.1 GW hydropower
energy was added in Europe [22]. A systematic life approach was conducted to quantify
the hazardous emissions in alpine and non-alpine regions of Europe; it also promotes the
use of hydropower as a clean energy resource [23]. Depending on the characteristic of
data availability, power system and computational assets, different methods and tech-
niques are used for generating optimal energy. In order to deal with the deregulation
environment of the power industry, non-linear programming is used [24,25]. The key
point is to maximize the water storage level and revenue. The problem is named as
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quadratic programming as it consists of quadratic function and the problem is normal-
ized by linear and non-linear constraints. The cascaded reservoir with head sensitive is
considered. Moreover, the Portuguese cascaded hydro-based systems are taken as a case
study. In the dynamic programming, a recursive relationship is followed by Bellman’s
Principle. The work of dynamic programming is to find the optimal policy of each state.
Moreover, the feasible solution is found by using the backward procedure; this process
is carried out stage to stage till it reaches an initial stage [26–28]. In real world problems,
complex mathematical measures are taken in mixed integer linear programming (MILP)
mechanism. The MILP model is only applied to some unit turbines due to its limited
implementation [29,30]. The commitment schedules are found by using the Lagrange
relaxation solution technique which is subject to all capacity and reserve constraints in
order to fulfill the purpose; the Lagrange multipliers are found, which are useful in finding
the optimal solution. The technique uses the economic dispatch measurements in order to
satisfy the condition of demand with reserve constraints of a single unit [31]. Furthermore,
unit commitment is divided into two groups—one is stochastic unit commitment and
the other one is deterministic unit commitment. A large number of studies are carried
out on the deterministic unit commitment problem, but numerous research studies also
emphasize stochastic unit commitment which explains the formulation and methodology
of the stochastic unit commitment problem. In stochastic unit commitment, the main
problem is uncertainty. In the order to solve the unit commitment problem, several studies
in the literature discussed scenario-based stochastic programming with different methods
such as progressive hedging [32,33], dual decomposition [34], benders decomposition [35],
spatial decomposition [36], cutting plane [37], dynamic formulation [38] and heuristic
methods [39–42]. Moreover, data mining is used to obtain the useful data from large data
sets gathered from various sites [43]. The objective of this method is to determine the infor-
mation that is unknown in the historical data set [44]. Different methods such as Bayesian
network [45], artificial neural network [46], clustering [47], classification, regression [48],
genetic algorithm [48] and decision trees are used to extract the information from large
data sets [43]. Clustering and decision trees are the simplest and most successful methods
among all aforementioned methods [49,50]. Clustering is used to recognize a similar group
of objects. Samples that belong to the same cluster have similar properties while those
having dissimilar behavior fall into another cluster group. Furthermore, different types of
clustering methods are used for different data sets such as partitioning methods, model-
based methods, grid-based methods, density-based methods, etc. [43]. The decision tree is
one of the most successful data mining techniques used for forecasting and classification
of the data set [51]. It follows the greedy approach, as it is a supervised learning algorithm.
The decision tree represents the data in a way that is easily understandable. The decision
tree is feasible in a way that it can handle a large set of data and tackles both numerical
and categorical variables [52–56]. The decision tree consists of a variety of algorithms
such as C4.5, Iterative Dichotomiser 3 (ID3), Chi-Squared Automatic Interaction Detection
(CHAID), Classification and Regression Tree (CART), etc., and each algorithm is based on
a specific mechanism. Therefore, it is necessary to evaluate the performance of different
decision tree algorithms for hydro scheduling in order to get the efficient and optimized
results of energy generation.

The conducted study validates that data mining techniques are best for solving the
hydro scheduling problem in the short-term horizon specific for Tianshengqiao cascaded
hydropower plant. The current work also intends to be the pioneer study in introducing
new research endeavors that comprise the use of data driven modeling in Tianshengqiao
cascaded hydropower systems. It also reveals that the decision tree algorithm C4.5 is good
in making quick decisions for schedules. The obtained result shows that the decision tree
algorithm C4.5 has a minimum percentage of error. Thus, this algorithm can be securely
used by engineers in the future for the hydrothermal scheduling problem of cascaded
hydropower plants.
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The main objectives of the current work are to: (1) find the feasible generation schedule
for short-term hydro scheduling of cascaded hydropower plant, (2) examine the electricity
demand in the summer and winter season and make optimal generation schedules, (3) make
full use of storage and regulation of the main reservoir in order to increase overall efficiency
of water utilization of cascaded hydropower plants, and as well the proposed methods can
immediately determine the generation schedules of the cascaded hydropower plants, and
(4) train different attributes, such as reservoir daily discharge, energy production, water
level of reservoir and class, such as generation schedules, collectively to obtain a decision-
making library for generating scheduling of cascaded hydropower plants. Several studies
have been carried out in the past for scheduling of cascaded hydropower plants with one
reservoir [57]. Moreover, it is hard to find the optimal solution for the real-world problem
because of different constraints and conditions of optimization. Therefore, it is important
to find a quick generation schedule of cascaded hydropower plants for effective utilization
of water resources, which is the key objective of this study. The layout of this research
work comprises four sections. Section 2 comprises the study area and methodology which
include the study area, methodology and data set of the data mining algorithms for both
the winter and summer season. Section 3 outlines the results and their analysis. Section 4
is the discussion part, which depicts the comparison of data mining algorithms with the
previous optimization techniques. Section 5 explains the conclusions.

2. Study Area and Methodology
2.1. Study Area

In China, during the 1980s, the annual average increase in power generation was by
7.5% and in the next five years the annual average rate improved to 8.5% [58]. In April 1991,
the “10-year plan for National Economic and Social Development” and “Eighth 5-Year
Plan” were set, which increased the power generation by 5.6% on an annual average from
1991 to 1995; then, 6.3% from 1996 to 2000 [58]. The demand of power was increased in
the Guangdong province because this province consists of two coastal cities as well as
three economic zones, namely, Zhuhai, Shanton and Shenzhen. In the 1980s, the power
generation demand was increased by 12% on a yearly basis and an additional increase
was predicted with the commercial growth. Conversely, the supply of power was limited,
and there was alarm that in the dry season, the power shortages might occur due to
the shortage of water. The sources of generating power in the province were either by
coal thermal power generation or by hydropower generation. The coal thermal power
generation contributed 83% in power generation, while hydropower generation was only
16% at that time. However, the coal resources needed to be reserved because 73% of the coal
was delivered to the other provinces. In order to replace the power generated by coal with
hydroelectric power generation and make full use of the abundant water of the southern
region, the Chinese government developed the “Hongshui River Comprehensive Use Plan”
for the growth of the Hongshui river. In this plan, ten power stations were constructed
with a total capacity of 11,120 MW. The objective of this project was to maintain power
generation at the other hydropower stations that were at the lower side of the Hongshui
river. Thus, Tianshengqiao plant 2 was constructed at the uppermost side of the river to
maintain power generation and to secure a power supply source outside of the Guangdong
province. Tianshengqiao hydropower plant 1 consists of a concrete-faced rock fill dam
(1140 m long crest and 178 m in height), an emptying tunnel, a large chute spillway, a power
generation and powerhouse. On the left bank, the powerhouse is located and has four
tunnels and four turbines, and the total installed capacity is 1200 MW. Water released
from the dam’s reservoir also fed Tianshengqiao 2 dam, which is located on downstream.
The dam then diverts water to the actual power station and produces 1320 MW [59]. The
satellite view of Tianshengqiao hydropower plant is shown in Figure 1.
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Figure 1. Satellite image of the Tianshengqiao cascaded hydropower plants (by Google maps).

2.2. Methodology

The operation of a hydropower system is a typical engineering challenge. For cas-
caded hydropower plants, the workability of the feasible solutions is more essential than
optimality in mathematics; therefore, for making the viable generation schedules, practica-
bility of solution is very important. Furthermore, mathematical modelling is not able to
satisfy the complex conditions and constraints, which results in lowering the feasibility
of the model. Therefore, it is important to find quick and feasible generation schedules
by using the data mining decision tree algorithms. Decision tree algorithms require less
effort for data preparation, and they are good for predicting the continuous values. It gives
quick generation values as scaling of data is not required in decision tree algorithms. The
limitation of this work is that small fluctuation in data may alter the feasible decision
tree structure which is not suitable for long-term hydro scheduling because of the large
number of variables. It also does not satisfy the security and environmental constraints.
The multiple regression analysis is used to find the energy production. The generation
curves are determined by K-mean cluster analysis. For short-term generation scheduling
of cascade hydropower plants, the decision trees, such as C4.5, improved C4.5, ID3-IV
and CHAID algorithms, are used. The algorithms are solved in the data mining tool,
SIPINA. The comparison between different algorithms is also discussed in detail. The
overall framework of the methodology is shown in Figure 2.
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2.2.1. Proposed Equations for Energy Production

The following steps are followed for multiple regression analysis and K-mean clus-
ter analysis:

Energy production of upstream and downstream hydropower plant is determined.
Water level, discharge and power generation in each hour are used to find the energy
production of the upstream and downstream hydropower plants, and multiple regression
analysis is used which results in Equation (1).

y = G0+G1∗Zup + G3 ∗N (1)

where y is the water discharge, Zup is the water level and N is the power generation of
each hour.

2.2.2. K-Mean Cluster Analysis

The cluster analysis method is used to find the typical generation curves. The K-mean
clustering algorithm is used to cluster the generation curve. Firstly, the daily historical
data of 24 h for two years are taken and then the generation curves are obtained by using
Equations (2) and (3).

Xt = Pt/Pmax (2)

X = (X1,X2 , X3 . . . Xn) (3)

where Xt is the eigenvector vector of the generation curve in time t; Pt is the power value
of the generation curve in time t; Pmax is the maximum generation of the hydropower plant
within one day; X gives a set of observations spanning up to “n” observations.

In the next step, the “k” number of generation curves is selected randomly. Each
sample shows the initial cluster center and remaining samples of the generation curve are
assigned to the most similar cluster based on its distance to each cluster center. Therefore,
for each cluster, a new center is required to recalculate. For this, an iteration is required
until a square error criterion function shown in Equation (4) converges:

W =
k

∑
i=1

∑
akεCi

(ak − bi)
2 (4)
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where W is the sum of the square errors of all generation curves in the historical data set;
ak is the generation curve of a group of cluster vectors; bi represents a cluster vector, which
is the center of cluster Ci.

2.2.3. C4.5 Algorithm

The first step is to find a set of sample “F”. The entire sample set consists of water
discharge, initial water level, inflow, demand, and energy production.

Then, take the generation schedule as a category attribute, and count the typical
generation schedules that include various types of generation schedules and calculate the
information expectation of samples using Equation (5).

In f o(F) = −
n

∑
i=1

qilog2(qi) (5)

Whereas n is the total number of generation schedules; qi is the rate of samples with
a generation schedule number and i is the number of samples.

In the next step, the information gain rate of non-category attributes is calculated. If a
non-category attribute B has the values y, correspondingly, the unit generation schedules
are divided into “y” categories. The information expectation and gain of attribute B for
each non-category attribute are calculated by using Equations (6) and (7), respectively.
Equations (8) and (9) are used for the information gain rate of attribute B.

Sample information expectation of attribute B:

In f oB(F) =
y

∑
k=1

|Fk|
|F| × In f o(F) (6)

Information gain of attribute B:

Gain (B) = In f o(F) − In f oB(F) (7)

Information gain rate of attribute B:

Split In f o(B) = −
y

∑
k=1

|Fk|
|F| × log2

(
|Fk|
|F|

)
(8)

Gain Ratio(B) =
Gain (B)

SplitIn f o(B)
(9)

Whereas, F is the sample set; Fk is the number of samples of the kth element included
in attribute B.

2.2.4. Chi-Squared Automatic Interaction Detection (CHAID) Algorithm

CHAID can be used for prediction as well as classification, and for detection of interac-
tion between variables [60]. CHAID can only work with categorical data. This algorithm
uses the Chi-Squared test between response or target variable (dependent) and input vari-
ables (independent). Based on the result of the Chi–Square test, it chooses the best splitting
variable from the input variables. There are three steps of this algorithm, i.e., merging,
splitting and stopping.

• Merging

1. The merging finds the best split predictor. The non-significant categories are
merged for every predictor variable “S”. If “S” is used to split the node, every
final category of “S” will give one child node as outcome. The adjusted value of
p is calculated in the merging step that is further used in splitting.

2. If X has only one category, then the process should be stopped, and the p-value
needs to be adjusted as 1.
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3. If X has two categories, then go to step vii; otherwise, determine the pair of S
that is the most similar. The most similar pair is the pair that gives the largest
value with respect to dependent variable W.

4. If the largest p-value of the pair is greater than alpha-level merge, which specifies
the user, then this pair is substituted in a single compound l and the new set of S
category is formed. If its p-value is not greater than the alpha-level merge, then
merge any category with a smaller number of observations with the most similar
category that is measured based on the largest p-value and follow step vi.

5. If the compound category consists of three or more original categories based on
the smallest p-value within the compound category, then find the best binary split.

6. If the best binary split is not obtained, then again go to step ii.
7. Merge the category with the smaller number of observations with the most

similar category, which is measured on the basis of the largest p-value.
8. Finally, use Bonferroni adjustments to compute the adjusted p-value.

• Splitting

The merging step contains the best split for each predictor. The predictor is chosen in
the splitting step for selecting the best split node. From the merging step, the p-value
is obtained, and this value is then compared with each predictor. Further, the predictor
with the smaller p-value is selected. If the adjusted p-value is less than or equal to the
user-specified alpha-level, then split the node; if not, then do not split the node and
this node is considered as a terminal node.

• Stopping

1. In the stopping step, there are some rules that check if the tree growing process
should be stopped or not according to the following rules:

2. In the node, if all the values of the dependent variables are the same, then it will
not split.

3. If the values of each predictor are the same, then the node will not split.
4. If the depth of the current tree is more than the depth of the user-specified tree,

then the tree should stop growing.
5. If the size of the node is less than the user-specified minimum node size, then

the node will not split.
6. If the number of the child node is 1, then also the node will not split.

2.2.5. ID3-IV Algorithm

The splitting criterion of ID3-IV depends on the information gain process [61]. The
root node is the topmost decision node, which is also called the predictor. The split attribute
is the one that has the highest information gain. From training instances, the tree is created
by using information gain. The growing of the tree stops when the information gain is zero.

1. First, select the calculation of entropy attribute and target attribute.
2. Then, the attribute with the highest information gain is measured.
3. The node is created by using that attribute. The above steps are applied iteratively to

new branches of the tree and, after satisfying the stopping criterion, the growth of the
tree needs to be stopped.

2.2.6. Improved C4.5

The C4.5 algorithm is improved by using the principal component analysis technique.
The key idea behind principal component analysis is to choose the variables in the data
set for generating the C4.5 decision tree and, for each node, select several attributes. The
stepwise procedure of improved C4.5 is given below:

1. First, the initialization of the data sample set is required.
2. Then, the simplification of the data set’s principal component analysis is performed.
3. For each principal component, calculate the information gain rate.
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4. Splitting node is selected based on the largest information gain rate of the principal
component and generates the subset of the data.

5. Repeat step iii and step iv till all the components of the decision tree are utilized.
6. Pruning is carried out to generate the decision tree.

2.3. Data Set

Sample sets for decision tree algorithms of Tianshengqiao plant 1 for the winter season
are shown in Table 1. The table consists of different parameters such as water level, dis-
charge, energy production, inflow and generation schedule. The percentage (%) of energy
production is found by energy production (in MW) divided by load (in MW). The percent-
age (%) of energy production is found by energy production (in MW) divided by load (in
MW). In Table 1, it is observed that the percentage (%) of energy production varies from
78% to 208%, being the lowest at T15 and highest at T17. The average value is 125.88%
with a standard deviation of 26.03. The time frame of scheduling is 24 h (T1 to T24). Five
schedules are taken as class in the data set. In the winter season, the level of water is almost
constant, having a value of around 771 m. The discharge of water is low in the winter season
because a large part of the winter rainfall accumulates as snow and, thus, influences the
water level of the river in the summer season. During eleven (11) different hours in a day,
the discharge goes beyond 500 m3/s and does not move below 256 m3/s. The generation
schedules are classified because of energy production and discharge. Target schedules are
divided into 15 steps. It is shown in Table 1 that more energy production means mostly
more discharge. In Table 2, the sample set of Tianshengqiao plant 1 for the summer season
is presented. In Table 2, it is observed that the percentage (%) of energy production varies
from 86% to 127%, being the lowest at T10 and highest at T12. The average value is 101%
with a standard deviation of 7.54. Various category attributes such as discharge, water level,
energy production, inflow, load, and class generation schedule are presented in Table 2.
The data are collected for 24-hours’ time span. Six schedules are proposed for hydropower
generation scheduling. The discharge in summer is greater, having highest discharge of
nearly 1049m3/s. Similar to discharge, the load is also high during the summer season
because the gap between the outside and inside temperature is larger and air conditioner is
used to keep the temperature low for cooling purposes. Besides this, the inflow in summer
is greater as compared to that in the winter season. The generation schedules are made since
percentage of energy production is executed in twenty steps. The percentage of energy is
obtained by taking the load and energy production variables.

The sample set of Tianshengqiao plant 2 for the winter season is demonstrated in
Table 3. The table consists of different attributes, such as water level, discharge, energy pro-
duction, inflow, load and class, such as generation schedule. The time frame of scheduling
is 24 h; the total number of schedules is seven. In the winter season, the level of water is
almost constant, having a value of around 642 m. The inflow level and discharge of water
are low in the winter season because a large part of the winter rainfall gathers as snow
and the water influences the river in the summer season when released. The maximum
discharge is around 500 m3/s during different hours of the day and the minimum discharge
ranges around 300 m3/s. The ratio of energy production and maximum discharge is the
main parameter of the decision tree for making the generation schedule. The schedules are
predicted because of all the attributes in the winter season. It is shown in Table 3 that more
energy production resulted in more value of discharge. Table 4 illustrates the sample set of
Tianshengqiao plant 2 for the summer season with various category attributes. The number
of schedules is seven and the data are collected for a period of 24 hours. The discharge in
summer is greater, which ultimately increases the level of energy production. The load is
more in the summer season because everyone is using air conditioner for cooling purposes,
which ultimately increases the load on the power stations. The ratio of energy production
and maximum discharge plays an important role in generation scheduling.
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Table 1. Data set of Tianshengqiao plant 1 for the winter season.

Time
(h)

Inflow
(m3/s)

Discharge
(m3/s)

Load
(MW)

Water Level
(m)

Energy Production
(MW)

Percentage Energy
Production

Target
(Schedule)

T1 377 509 589 771.51 707 120 Schedule 6
T2 312 508 587 771.49 708 121 Schedule 6
T3 415 315 404 771.50 435 108 Schedule 4
T4 295 259 301 771.50 352 117 Schedule 3
T5 112 258 302 771.48 351 116 Schedule 3
T6 140 256 299 771.48 354 118 Schedule 3
T7 178 317 302 771.48 440 146 Schedule 4
T8 248 508 564 771.48 714 127 Schedule 6
T9 140 507 591 771.47 713 121 Schedule 6

T10 119 554 587 771.46 783 133 Schedule 7
T11 308 551 590 771.46 780 132 Schedule 7
T12 351 512 403 771.46 726 180 Schedule 6
T13 280 314 298 771.46 443 149 Schedule 4
T14 168 257 301 771.46 364 121 Schedule 3
T15 338 258 470 771.45 368 78 Schedule 3
T16 317 432 600 771.46 615 103 Schedule 5
T17 377 487 331 771.46 689 208 Schedule 6
T18 334 256 302 771.46 359 119 Schedule 3
T19 407 332 532 771.46 469 88 Schedule 4
T20 459 566 592 771.46 802 135 Schedule 7
T21 431 513 596 771.45 730 122 Schedule 6
T22 515 512 594 771.46 726 122 Schedule 6
T23 378 512 596 771.46 725 122 Schedule 6
T24 416 484 594 771.46 685 115 Schedule 6

Table 2. Data set of Tianshengqiao plant 1 for the summer season.

Time
(h)

Inflow
(m3/s)

Discharge
(m3/s)

Load
(MW)

Water Level
(m)

Energy Production
(MW)

Percentage Energy
Production

Target
(Schedule)

T1 750 777 733 746.92 777 106 Schedule 10
T2 833 748 727 746.91 744 102 Schedule 9
T3 743 528 539 746.91 524 97 Schedule 7
T4 698 530 497 746.90 522 105 Schedule 7
T5 835 530 499 746.90 522 105 Schedule 7
T6 561 530 500 746.92 530 106 Schedule 8
T7 475 530 505 746.91 526 104 Schedule 8
T8 439 531 578 746.89 518 90 Schedule 7
T9 509 679 730 746.89 667 91 Schedule 8

T10 559 828 951 746.89 816 86 Schedule 10
T11 417 1049 973 746.89 1037 107 Schedule 13
T12 488 957 736 746.86 932 127 Schedule 12
T13 576 784 743 746.85 755 102 Schedule 10
T14 573 783 740 746.84 750 101 Schedule 10
T15 544 782 740 746.83 745 101 Schedule 9
T16 445 783 741 746.82 741 100 Schedule 9
T17 538 783 741 746.80 733 99 Schedule 9
T18 737 783 742 746.80 733 99 Schedule 9
T19 737 783 746 746.84 750 101 Schedule 10
T20 647 790 749 746.83 753 101 Schedule 10
T21 740 790 749 746.80 741 99 Schedule 9
T22 878 790 749 746.81 745 99 Schedule 9
T23 879 791 749 746.82 749 100 Schedule 10
T24 647 760 749 746.82 718 96 Schedule 9
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Table 3. Data set of Tianshengqiao plant 2 for the winter season.

Time
(h)

Inflow
(m3/s)

Discharge
(m3/s)

Load
(MW)

Water Level
(m)

Energy Production
(MW)

Percentage Energy
Production

Target
(Schedule)

T1 252 151 220 642.42 251 114 Schedule 3
T2 174 162 221 642.82 255 115 Schedule 3
T3 67 73 92 642.86 95 103 Schedule 1
T4 67 58 64 642.84 69 108 Schedule 1
T5 67 55 64 642.87 62 97 Schedule 1
T6 67 64 64 642.91 77 120 Schedule 1
T7 67 126 115 642.92 187 163 Schedule 2
T8 222 305 466 642.72 514 110 Schedule 6
T9 497 378 650 642.44 655 101 Schedule 7

T10 508 416 652 642.84 708 109 Schedule 8
T11 509 402 650 643.14 672 103 Schedule 8
T12 512 405 651 643.48 665 102 Schedule 7
T13 303 447 647 643.82 727 112 Schedule 8
T14 260 396 648 643.36 653 101 Schedule 7
T15 260 390 657 642.92 659 100 Schedule 7
T16 257 385 659 642.48 666 101 Schedule 7
T17 491 387 659 642.05 685 104 Schedule 8
T18 510 411 661 642.40 715 108 Schedule 8
T19 514 412 662 642.73 705 106 Schedule 8
T20 414 441 660 643.07 744 113 Schedule 8
T21 253 395 658 642.98 665 101 Schedule 7
T22 252 401 657 642.50 694 106 Schedule 8
T23 252 312 581 642.00 553 95 Schedule 6
T24 252 200 251 641.79 361 144 Schedule 4

Table 4. Data set of Tianshengqiao plant 2 for the summer season.

Time
(h)

Inflow
(m3/s)

Discharge
(m3/s)

Load
(MW)

Water Level
(m)

Energy Production
(MW)

Percentage Energy
Production

Target
(Schedule)

T1 573 479 865 639.91 812 94 Schedule 8
T2 323 296 488 640.26 507 104 Schedule 5
T3 293 263 439 640.36 453 103 Schedule 4
T4 293 258 439 640.47 444 101 Schedule 4
T5 293 260 439 640.60 448 102 Schedule 4
T6 292 262 439 640.72 452 103 Schedule 4
T7 292 259 440 640.83 447 110 Schedule 4
T8 292 281 440 640.95 484 120 Schedule 5
T9 526 474 673 640.99 806 100 Schedule 8

T10 773 626 1060 641.17 1059 104 Schedule 10
T11 797 677 1103 641.68 1146 109 Schedule 11
T12 776 713 1104 642.09 1206 98 Schedule 11
T13 512 500 872 642.30 852 107 Schedule 8
T14 287 414 662 642.34 708 98 Schedule 7
T15 289 381 663 641.91 653 94 Schedule 6
T16 431 365 663 641.59 625 102 Schedule 6
T17 449 394 664 641.82 674 101 Schedule 6
T18 449 392 665 642.01 671 102 Schedule 6
T19 450 391 666 642.20 669 102 Schedule 6
T20 461 393 667 642.40 673 102 Schedule 6
T21 469 394 665 642.63 676 102 Schedule 6
T22 466 392 661 642.88 673 102 Schedule 6
T23 466 391 658 643.12 670 101 Schedule 6
T24 469 385 660 643.36 661 100 Schedule 6
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3. Results and Analysis
3.1. K-Mean Cluster Analysis and Typical Generation Profiles

The cluster analysis of Tianshengqiao plant 1 for the winter season and the summer
season is shown in Figure 3a. The results show that the demand in the summer season was
higher than that of the winter season as is evident from Figure 3a. In addition, the demand,
with respect to time, varies continuously after every two to three hours in the winter season
while the demand with respect to time was almost constant except for peak hours in the
summer season. The low electricity demand was observed due to less use of electricity
in the winter season. On the other hand, the excessive use of electricity in the summer
season was the basis for higher electricity demand. Moreover, during the winter season,
the maximum demand was 600 MW and the minimum was 300 MW. In contrast, for the
summer season, the demand of electricity was more because more electricity was used for
cooling purposes in the summer season, and, during the peak hours, it reached almost to
1000 MW. Typical generation curves are shown in Figure 3b. The cluster analysis curve
of Tianshengqiao plant 2 for the winter and summer seasons is shown in Figure 4a and
typical generation curves are shown in Figure 4b, respectively. The outcome of the analysis
showed that the electricity demand was greater in the summer season as compared to
that in the winter season. The demand of electricity almost remains continual for both
the summer and winter seasons. Additionally, the load of electricity in winter is nearly
700 MW as compared to that in the summer season, which is almost 1300 MW. In the
summer season, temperature and severe heat events increase, so the trend of consuming
energy changes from fuel oil, natural gas to the use of hydropower and become more
dominant for production of electricity because of more availability of water.

3.2. C4.5 Outcomes

Figure 5 shows a decision tree generated by using the algorithm C4.5. The tree has
seven nodes, four leaves and a maximum depth of 3. The node of each tree represents
the analysis of each class. Moreover, it also shows the number of collected samples and
percentage of confidence. The features and threshold values are also shown in the decision
tree. Threshold values are used for the separation between two classes, and features
are responsible for determining the best values. The generation schedule is illustrated
in the tree. The rule of the tree describes that if the discharge is <532 m3/s, the most
suitable schedule 6 is selected having the confidence index of 100%. When the discharge
is ≥532 m3/s, then the decision tree with confidence index of 100% suggests schedule 7.
The quality of the rule is influenced by the percentage of its confidence index. Moreover,
schedule 4 and schedule 5 are suitable when discharge is ≥286. Schedule 7 is suggested
when the value of discharge is ≥532m3/s. Figure S1 shows a decision tree developed
by using the algorithm C4.5 for the summer season of Tianshengqiao plant 1. The node
of each tree shows the class. Moreover, it also presents the number of collected samples
and percentage of confidence. The features and threshold values are also displayed in the
decision tree. The objective of the threshold values is used for the separation between two
classes, and the features are responsible for determining the best values. The generation
schedule is illustrated in the tree. If the value of discharge is <768 m3/s, water level is
<746 m and inflow is <551 m3/s, then schedule 9 is selected, having a 100% confidence
index. Moreover, other schedules are ignored for this rule because of the null value
of their confidence indices. Furthermore, the best rule for schedule 7 is when level of
inflow is ≥629m3/s; if the discharge is ≥892 m3/s, then schedule 12 and schedule 13
are recommended. Figure S2 shows a decision tree generated using C4.5 algorithms for
Tianshengqiao plant 2 during the winter season. The generation schedule for a 24 h time
period is illustrated. The tree has nine nodes, five leaves and a maximum depth of 4.
Moreover, it also indicates the number of collected samples and percentage of confidence.
The features and threshold values are also revealed in the decision tree. Further, threshold
values are used for the separation between two classes, and features are responsible for
determining the best values. The best rule for schedule 3 is proposed when discharge
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<181 m3/s; schedule 1 and schedule 2 are suggested when inflow is <120.5 m3/s based
on their confidence indices. When the level of discharge is <398 m3/s, then schedule 7 is
recommended, and schedule 6 is suitable when the inflow is ≥120.5 m3/s. The decision
tree obtained by the algorithm C4.5 for Tianshengqiao 2 of summer season is presented in
Figure 6. The 24-h generation schedule is illustrated in the decision tree. The tree has nine
nodes, five leaves and a maximum depth of 4. In the decision tree, the node of each tree
represents the analysis of each class. Furthermore, it also shows the number of collected
samples and percentage of confidence, features and threshold. Threshold values are used
for the separation between two classes and features are responsible for determining the
best values. According to the rule, when the inflow ≥673 m3/s, then schedule 11 is most
suitable with the confidence index of 67%. When the discharge is <404 m3/s, then the
decision tree obtaining confidence index of 100% suggests schedule 6. The quality of the
rule is influenced by the percentage of its confidence index. When the discharge <330 m3/s,
then schedule 4 is suggested. When the inflow is <673 m, schedule 8 can be adopted,
having a 75% confidence index.
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3.3. CHAID Findings

The decision tree established by the CHAID algorithm for Tianshengqiao 1 of the
winter season is demonstrated in Figure S3. Five schedules are determined for a period of
24 h. From 2 a.m. to 8 a.m., and in night hours, schedule 6 is desirable to consider with a
100% confidence index. In addition, schedule 4 is the best suited from 7 a.m. to 11 a.m. and
some hours of the afternoon, having a confidence index of 50%. Schedule 3 is suitable in
the early morning hours, schedule 5 is ignored because of its low confidence index. In the
decision tree, attribute time presents the threshold values. The decision tree generated by
the CHAID algorithm for Tianshengqiao 1 of the summer season is shown (refer Figure 7).
The tree presents different timings suitable for six schedules. In the morning until 9 a.m.,
schedule 10 is considered as a suitable schedule and the same schedule is appropriate for
the 19th and 20th hours of the night. For 2 a.m., in the afternoon hours and two night
hours, schedule 9, having a 100% confidence index, needs to be followed. Furthermore,
schedule 7 is the best-suited schedule from the 3rd hour to the 11th hour with a confidence
index of 44%. Schedule 12 and schedule 13 have low confidence indices so they can be
ignored during the peak load hours. Figure 8 exhibits the decision tree developed by the
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CHAID algorithm for Tianshengqiao 2 for the winter season. Four schedules are shaped
based on the data set.
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The period covers 24 h. When the flow is <160 m3/s, schedule 1 with a 100% confi-
dence index is appropriate; schedule 7, having a confidence index of 100%, can be consid-
ered as optimal when the inflow is ≥160 m3/s. Furthermore, schedule 8 is feasible in the
evening time. The decision tree generated by the CHAID algorithm for the Tianshengqiao
2 plant in the summer season is presented (see Figure S4). The schedules are determined
for 24 h and seven schedules can be followed in the morning, afternoon, evening and night.
Schedule 6 is suitable for the evening and in the nighttime; schedule 4 is recommended for
the morning. Furthermore, schedule 8, schedule 5, schedule 11, and schedule 7 are ignored
due to low confidence indices.

3.4. ID3-IV Results

Figure 9 shows that during the winter season schedule 6 is best suited to follow
with a confidence index of 100% when the value of discharge is <532m3/s; schedule 7 is
suggested when the discharge is ≥ 532 m3/s. When the discharge value is <458, schedule
4 is suitable, while the rest of the schedules can be ignored when the load is higher due to
low percentage of confidence index. The decision tree of the Tianshengqiao 1 plant for the
summer season generated by ID3 is presented in Figure S5. The figure clearly shows the
daily schedules for power generation. When the discharge is ≥892 m3/s, schedule 13 and
schedule 12 are appropriate to select. The rest of the schedules should not be considered
according to the rule of discharge. When the value of discharge is <713.5 m3/s, schedule 7
is selected with a 57% confidence index. Schedule 10 and schedule 9 are suitable when
discharge is ≥713 m3/s. S6 illustrates the decision tree of Tianshengqiao 2 plant for the
winter season developed by ID3. The daily schedule of units for power generation is
indicated. When the discharge is <398 m3/s, then schedule 2, schedule 4, schedule 6, and
schedule 3 are carefully chosen as per demand. The rest of the schedules for the previous
rule can be overlooked because of their nil value. When the value of discharge is <398m3/s,
then schedule 7 is followed. Schedule 8 is suitable when discharge is ≥398m3/s.
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The decision tree of Tianshengqiao plant 2 for the summer season gives information
about the generation schedule of 24 h, as shown in Figure 10. The best rule for schedule 4
is suitable when discharge is <272 m3/s; schedule 5 is appropriate when the discharge is
≥272 m3/s. Schedule 6 is well fitted when the discharge is ≥404 m3/s, and schedule 5 is
appropriate when the discharge is ≥272 m3/s. Schedule 6 is well fitted when the discharge
is ≥404 m3/s. Schedule 7, schedule 11 and schedule 10 are ignored, having low confidence.
Different rules are suitable for different schedules according to the desirable requirement.
It is not necessary that for one rule (discharge <272 m3/s) all the schedules are recommended.
Therefore, according to the required condition, the different schedules are considered,
as schedule 4 with a 77% confidence index can be used and schedule 5, having a 29%
confidence index, can be ignored at the same time as per the load requirement.
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3.5. Improved C4.5

Figure S7 represents the decision tree generated by improved C4.5 algorithms for
Tianshengqiao plant 1 of the winter season. It indicates five schedules that are suitable
for each hour in 24 h. When the value of discharge is ≥287 m3/s, then schedule 6 with
confidence index 33%, schedule 4 with confidence index 33% and schedule 7 are the most
applicable. When the discharge is <287.5, schedule 3 is more likely to be followed; those of
the other schedules can be ignored because of zero percentage of confidence index. The
decision tree established by improved C4.5 algorithms for Tianshengqiao plant 1 of the
summer season is demonstrated in Figure 11. It is noted that the six schedules are suitable
for each hour in the 24 h period. When the inflow is ≥629.m3/s, then schedule 7, with a
confidence index of 100%, is appropriate, and schedule 8, with a confidence index of 75%,
is appropriate when the value of inflow is <629.5 m3/s. When the discharge is <713.5 m3/s,
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schedule 7 and schedule 8 are more likely to be considered. The best rule for schedule 10 is
recommended when water level is ≥746 m3/s. The schedules that have zero percent of
confidence index should be ignored.
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Tianshengqiao plant 2 of the winter season. Seven schedules are made for satisfying
the load during the 24 h period as shown in Figure 12. When the level of discharge is
≥98.5 m3/s with an 88% confidence index, then schedule 8 is suggested. Schedule 1 is
suitable inflow <120.5 m3/s with an 80% confidence index. The best rule for schedule 7 is
recommended when the value of discharge is <398.5 m3/s. The decision tree generated by
the improved C4.5 algorithms of Tianshengqiao plant 2 for the summer season is shown
(refer Figure S8). Seven schedules are established for satisfying the demand during the
time period of 24 h. The tree consists of nine nodes, which represent the decision rules
(value of discharge and inflow), confidence index and threshold values. When the inflow is
<673 m3/s, then schedule 8 is suitable, having a 100% confidence index. The quality of the
rule is determined by the percentage of the confidence index. Furthermore, the best time to
follow schedule 4 is acquired when the threshold value of the load is <439.5 MW.
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3.6. Generation Profile of Tianshengqiao Cascaded Hydropower Plants

The winter season and summer season generation profiles for Tianshengqiao plant 1
are illustrated in Figure 13a,b. The obtained result indicates that the predicted and actual
generations of electricity in the summer season are higher than those of the winter season,
as is evident from these figures. The proposed method provides more power generation in
summer because the availability of water is greater in summer; it also showed the difference
between the actual production and the predicted generation by using the proposed method.
In the summer season, the snow and ice that are formed during winter melt off and produce
more water, that in return is responsible for more power generation. Additionally, the
power generated during peak hours in the winter season is 700 MW, which was less
than the power generated during the summer season, i.e., 800 MW. The Tianshengqiao
plant 2 generation profile is shown in Figure 14 for both the winter and summer season.
The generation profile exhibits that the proposed method provides more generation than
demand, as shown in Figure 14a,b. The power generated from the proposed method
was more in the summer than winters. It also depicts the difference between the actual
production and the predicted generation from the proposed method. During the winter, the
precipitation is in the form of snow, which melts during the summer season. Additionally,
the power generated during peak hours in the summer season is greater (1100 MW) as
compared to that of power generated in the winter season (750 MW).
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3.7. Comparison of Different Algorithms

The comparison of various parameters for different algorithms is presented in Table 5.
The obtained results show the performance ability of decision tree algorithms. According
to the outcomes, different parameters, such as node, leaves, maximum depth, execution
time, and error rate, are calculated using SIPINA. Four algorithms of the decision tree are
employed on the data sets of Tianshengqiao plant 1 and Tianshengqiao plant 2 for both
the winter and summer season. In the winter season, the decision tree of the improved
algorithm has a maximum rate of percentage error of 30% with three nodes, two leaves
and maximum depth of two that makes it unsuitable. Furthermore, the CHAID algorithm
is also not feasible for making schedules for hydro generation because of its 16% error rate.
Limitations of the CHAID algorithm are that it can only work with categorical variables
and cannot handle pruning methods and cross validation. The CHAID algorithm only
accepts the ordinal and nominal categorical predictors. If the predictors are continuous,
then they are converted first in ordinal predictors. The C4.5 and ID3-IV show the optimal
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solution with error rates of 4% and 5%, respectively, for the winter season. The execution
time of C4.5 is less as compared to ID3-IV; so C4.5 is well suited for Tianshengqiao plant
1 for the winter season. The results of C4.5, ID3-IV and the results for the Tianshengqiao
plant 1 summer season show that the improved C4.5, ID3-IV and CHAID fail to give an
optimal solution because of maximum error rate. During the winter season, the data set
of Tianshengqiao plant 2 is better classified by CHAID and C4.5 with a 16% error rate.
Nevertheless, the results of the improved C4.5 and ID3-IV are not acceptable with 25% and
30% error rates. The algorithm with a poor rate of error is ID3-IV, with a 30% error. For
the summer season data set, C4.5 is the most feasible algorithm for making schedules on
a daily basis; while ID3-IV also performed well for this data set. The execution times of
all four algorithms differ for both plants and seasons, as is also shown (see Table 5). The
number of attributes is the same for all the algorithms.
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Table 5. Comparison between decision tree algorithms.

Tianshengqiao Plant 1 (Winter Season) Tianshengqiao Plant 1 (Summer Season)

Decision Tree Algorithms Nodes Leaves Max Depth Attributes Error Rate Execution
Time Nodes Leaves Max Depth Attributes Error Rate Execution

Time

C4.5 7 4 3 8 4% 93 ms 13 7 6 8 8.3% 188 ms
Improved C4.5 3 2 2 8 30% 109 ms 9 5 4 8 20% 109 ms

ID3 5 3 3 8 5% 110 ms 5 3 3 8 40% 125 ms
CHAID 4 3 2 8 16% 93 ms 4 3 2 8 20% 125 ms

Tianshengqiao Plant 2 (Winter Season) Tianshengqiao Plant 2 (Summer Season)

Decision Tree Algorithms Nodes Leaves Max Depth Attributes Error Rate Execution
Time Nodes Leaves Max Depth Attributes Error Rate Execution

Time

C4.5 9 5 4 8 16% 94 ms 9 5 4 8 8% 110 ms
Improved C4.5 7 4 3 8 25% 125 ms 9 5 4 8 12% 187 ms

ID3 5 3 3 8 30% 110 ms 7 4 3 8 16% 110 ms
CHAID 4 3 2 7 4.1% 93 ms 4 3 2 8 25% 110 ms

Note: ms denotes milli second.
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4. Discussion

In the past, work has been carried out in solving the hydro scheduling problem while
considering different constraints. The algorithms and models are different, even if they
lie within the same category. Wang, Shahidehpour, Kirschen, Mokhtari and Irisarri [62],
Frangioni, Gentile and Lacalandra [63], Orero and Irving [64], Beltran and Heredia [65],
Virmani, Adrian and Mukherjee [66] and Gröwe-Kuska, Kiwiel, Nowak, Römisch and
Wegner [67] used augmented Lagrange relaxation, sequential Lagrange and MILP, La-
grange relaxation decomposition and genetic algorithm, augmented Lagrange relaxation,
decomposition techniques (block coordinate descent and auxiliary problem principle),
Lagrange relaxation, stochastic Lagrange relaxation methods, respectively. The purpose
of the non-linear method is to examine the small change in head, discharge and water
storage. Catalão et al. [68] proposed the non-linear method for resolving the issue of
hydrogenation scheduling; the results showed that this method gave an optimal solution
in less time. Patra et al. [69] used the dynamic programming method and the results
obtained are efficient during peak hours. Esmaeily et al. [70] presented the MILP in order
to solve the unit commitment problem; results showed that the speed of execution is fast.
In solving the real world’s problems, the Augmented Lagrange Relaxation is robust, fast
and efficient. The augmented Lagrange relaxation and decomposition techniques (auxiliary
problem principle and block coordinate descent) are implemented as a global optimizer.
Wong [71] implemented this technique and the results obtained were found satisfactory.
Zheng et al. [11] used benders decomposition and found that the results obtained were
good but the convergence was not faster. Classification techniques, such as decision trees,
showed that without doing the complex mathematical formulations, the decision tree can
be used for making quick decisions by taking the useful information from the large data
sets. Different decision tree algorithms, such as C4.5, ID3-IV, etc., deal with continuous and
discrete variables and are good in solving the poor practicable outcomes of the different
operations. From the above discussion, it is found that classification techniques, such as de-
cision tree algorithms, can be used to find quick decisions for short-term hydro scheduling
of cascaded hydropower plant. It is also feasible to find speedy unit generation sched-
ules. Decision tree algorithm C4.5 is the remedy for all troubles, allowing one to choose
proper decisions for schedules, with the target being maximal hydro-energy production.
More often for energy plants, the aim is related to the economic value of electric energy
production because the price of electric energy depends on the electric energy demand
especially. The cascaded hydropower plant is a water reservoir and increases and decreases
the electric energy production in a short time, aligning the maximal and minimal electric
energy demand. Therefore, in this study, different data mining algorithms are compared
and discussed for short-term hydro-scheduling.

5. Conclusions

In this study, hydropower is considered as a clean source of renewable energy, and, in
order to generate more energy, the data mining algorithms and techniques such as clustering,
regression and decision tree algorithms are used to explore more valuable information from
the available data of the power system. The data set is collected for both winter and summer
seasons; the generation obtained from the decision tree algorithms are then determined,
resulting in the best algorithms that show fast generation schedules being found. The current
work evaluates the procedure of four decision tree algorithms, namely, C4.5, improved C4.5,
ID3-IV and CHAID for finding the quick decisions of hydro scheduling. The error rate of all
four algorithms is computed. The main conclusions are as follows:

1. The values of energy production are found by using the multiple regression analysis
for both winter and summer seasons of the Tianshengqiao cascaded hydropower
plant. The energy production increases with increase in discharge.

2. The K-mean cluster analysis technique is used for the generation curves based on
historical data, and the cluster analysis identified the most similar generation curves
for each season of each hydropower plant.
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3. The case study of the Tianshengqiao cascaded hydropower plants is considered, which
is on the mainstream of Hongshui River. Data sets are established for both winter and
summer seasons for upstream and downstream power stations. The data sets consist
of water level, load, discharge, inflow, energy production and the generation schedules
of each hour.

4. The results obtained from the ID3-IV algorithm showed the best performance on the
data set of Tianshengqiao 1 (winter season) because of the good number of splits, but
for the other three types of data sets, the power of prediction is weaker because of its
high percentage error.

5. The CHAID algorithm depicts overall reasonable classification except for the winter
season of Tianshengqiao plant 2 with 4.1% error rate.

6. The results exhibited by improved C4.5 are not satisfactory for three cases; however,
it precisely predicts the outcome of the summer season of Tianshengqiao plant 2 with
12% error.

Based on this research, among all the algorithms, C4.5 is the best suited for making
quick and optimal decisions for the hydro generation scheduling problem because it has
a low error rate; also, its tree is more compact and well-classified, and its number of splits
and execution time are in acceptable range.

It is suggested that number of measured points along with multiple input parameters
must be increased for more precise and accurate results in the future. There is also a need to
include constraints such as spinning reserve, security constraints, etc. The problem of the
cascaded hydropower plant should be solved by using approximate dynamic programming
compared with data mining algorithms outcomes. The results of the study can be cross
checked and validated for long-term hydro scheduling and hydrothermal scheduling.

Supplementary Materials: The following data are available online at https://www.mdpi.com/1996
-1073/14/2/298/s1, Figure S1: Decision tree of Tianshengqiao plant 1 generated for C4.5 summer
season, Figure S2: Decision tree of Tianshengqiao plant 2 generated for C4.5 winter season. Figure S3:
Decision tree generated by CHAID of Tianshengqiao plant 1 for winter season. Figure S4: Decision
tree generated by CHAID of Tianshengqiao plant 2 for summer season. Figure S5: Decision tree by
using ID3 algorithm Tianshengqiao plant 1 for winter season. Figure S6: Decision tree by using ID3
algorithm Tianshengqiao plant 2 for summer season. Figure S7: Decision tree by using improved
C4.5 Tianshengqiao plant 1 for winter season. Figure S8: Decision tree by using improved C4.5
Tianshengqiao plant 2 for summer season.
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Abbreviations

ID3 Iterative Dichotomiser 3
CHAID Chi-Squared Automatic Interaction Detection
CART Classification and Regression Tree
Zup Water level
N Power generation
Xt Eigenvector vector of generation curve in time t
Pt Power value of generation curve in time t
Pmax Maximum generation of hydropower plant within one day
X Set of observations spanning up to “n” observations
W Sum of square errors of all generation curves in historical data set
ak Generation curve of a group of cluster vectors
bi A cluster vector, which is the center of cluster Ci
qi Rate of samples with generation schedule number and i is the number of samples
F Samples
Fk Number of samples of kth element included in attribute B
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