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Abstract: This paper presents the design of a hybrid excited flux switching Vernier machine. This
machine is designed to serve in renewable energy conversion applications, such as a wind turbine
generator, or tidal turbine generator. After introducing this original structure, a design based on finite
element models is conducted. The specifications correspond to relatively low power direct drive
wind or tidal turbine applications. The rated power is set to 10 kW, with a rated speed of 300 rpm.
Mainly the electromagnetic design is presented. Aspects related to the realization of a prototype are
also presented, and an experimental study is included.
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1. Introduction

Problems linked to the use of fossil fuels are pushing our societies to find viable and
sustainable alternatives for their replacement. The use of nuclear energy, even if it emits less
polluting greenhouse gases, does not cause fewer problems. Indeed, radioactive wastes,
the products of nuclear power plants, have a lifespan that exceeds several generations, the
management of which is problematic.

In this context, renewable energies constitute a viable and lasting solution, since their
potential is enormous, and they do not emit greenhouse gases. The French Environment
and Energy Management Agency (Ademe), aims that France should produce, by 2050, 100%
of its electrical energy from renewable energies at acceptable economic costs [1]. Among the
different renewable energy sources, marine renewable energies (MRE), i.e., offshore wind,
wave energy (wave power) and tidal turbines, are those that offer the least intermittency
problems [2]. Tidal turbines, for example, harness the energy of oceanic marine currents
which are continuous over time, or that of tidal currents which are relatively predictable [2].
France has a strong development potential for MRE, given the natural assets of its territory
(11 million km2 of water under its jurisdiction) [3]. This known resource, estimated between
2 and 3 GW, is mainly concentrated off the coasts of Normandy, Brittany and Pays de la
Loire [3].

In this paper, the electromagnetic design of a hybrid excited flux switching syn-
chronous machine with a Vernier effect is presented [4]. Its structure is inspired by works
carried out on flux switching machines which include hybrid excitation [5–7], and those
including the Vernier effect [8,9]. A similar structure was the subject of a Chinese patent [4].
Such structures can be qualified as original, and are not well studied. Furthermore, the
structure studied in this research also includes damper windings used for the mitigation of
voltage induced in the wound field excitation windings [10–14]. This structure can be used
as a generator (alternator) in low-speed applications such as direct drive wind turbines or
tidal turbines. After a presentation of the structure of this machine, sizing based on finite
element method models is proposed. The sizing is carried out on the basis of specifications

Energies 2021, 14, 6060. https://doi.org/10.3390/en14196060 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5176-9934
https://orcid.org/0000-0001-7360-8533
https://doi.org/10.3390/en14196060
https://doi.org/10.3390/en14196060
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14196060
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14196060?type=check_update&version=1


Energies 2021, 14, 6060 2 of 23

for a direct drive wind turbine of 10 kW, rotating at a speed of 300 rpm [15]. Some elements
concerning the realization of a prototype are also presented.

Vernier effect machines [16,17] are well suited to low speed, high torque applications,
which is characteristic of renewable energy applications. Furthermore, flux-switching
machines have structures where all the sources of magnetic fields can be placed in a fixed
part. This allows efficient cooling, and therefore better performance stability. In addition,
the use of double excitation reduces the need for high-performance rare earth magnets,
the extraction of which is extremely polluting, while allowing better controllability of
performance. It is also possible to replace high-performance magnets with ceramic magnets
(ferrite magnets).

The use of hybrid-excited machines in renewable energy applications, and more specif-
ically wind power, has been the subject of several studies over the past two decades [18–27].
In reference [21], the author shows that double-excited machines can be an economically
attractive solution compared to conventional machines with permanent magnets based on
rare earths.

2. Structure and Electromagnetic Design of Studied Machine

Table 1 lists some elements of the specifications on which the design of the studied
structure is based. These are specifications used at GREAH laboratory as a reference
for comparing several prototypes [15,28]. Figure 1 shows the structure of the studied
machine. It is a flux-switched hybrid-excited synchronous machine, also including the
Vernier effect [4–9]. While sharing similarities with the structure presented in [4], the
number of stator modules and rotor teeth are different.

Table 1. Prototype’s general characteristics.

Quantity Value

Nominal power (kW) 10
Nominal rotation speed (rpm) 300
External radius (mm) 200
Active length (mm) 120
Air-gap thickness (mm) 1
PM characteristics (Br (T), µr) 1.25, 1
Number of turns of armature windings 9
Number of turns of excitation coil 31
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Figure 1. Studied machine structure: (a) 3D view; (b) face view showing the magnetic field sources.
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The dimensions were obtained by applying homothetic rules from the cited works.
Figure 2 shows detailed dimensions of the stator and rotor. It is a three-phase machine,
having 12 stator modules, each including a permanent magnet, a slot for the armature
windings, and a slot for the excitation winding. The rotor is completely passive, and has
38 teeth. By having an even number of rotor teeth, the unbalanced magnetic force is null if
the rotor is well centered.
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The numbers of turns for the two types of windings, armature and excitation, are given
in Table 1. The number of turns of the armature windings is calculated to be consistent
with the voltage levels of GREAH laboratory installations (three-phase 230 V/400 V grid).
In order to efficiently remove losses from the stator, water cooling is adopted. The water
jacket is made of nonmagnetic material to avoid further short-circuiting the permanent
magnets flux and therefore reduce the armature magnetic flux linkage.

Figure 3 shows the armature windings and the excitation winding distributions. The
armature windings are composed of concentrated coils. This helps to reduce the end
windings’ lengths. There is no overlap between the windings of the three phases. However,
there is an overlap between the armature windings and the field excitation winding.
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Figure 3. Armature and excitation field windings distributions.

One of the issues related to the presence of excitation windings in flux switching
machines is the induced voltage that may be experienced by these windings [10–14]. To
address this issue, a solution developed at SATIE laboratory was adopted [29]. It consists
of adding damping windings (DW) along the two other windings sets, i.e., armature and
wound field excitation windings. This solution consists in having, along with the excitation
coils, coils wound the same way as the excitation coils, and short circuited. Doing so, the
current induced in the short-circuited coil helps reduce the pulsating flux responsible for
the induced voltage pulsation. More details are provided in the sections dedicated to the
prototype construction and experimental study.

3. Performance Analysis

The 2D finite element method (FEM) was used for the study of machine performance.
Figure 4 shows the meshed studied domain. The ratio between the air-gap radius and the
active length is consistent with the use of a 2D FEM approach.

Taking into account the geometrical and physical symmetries, it is sufficient to model
half of the machine (Figure 4a). Figure 4b shows a zoom in on the region of the air gap,
which should be given special attention. The elements size discretization imposed to the
points and the lines belonging to the air-gap region was set to 1/6 mm. This discretization
was imposed to have a sufficient number of elements to get useful information when
computing the cogging torque, or the torque ripples. Indeed, the period of cogging torque
is equal to

αmec. = 360◦/LCM(12, 38) ≈ 1.579◦, (1)

which corresponds to a distance of approximately 3.31 mm at the rotor outer radius.
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The machine’s external environment was modeled using a device called an “infi-
nite box” [30]. The mesh consists of 69,626 surface elements of the second order, with
139,495 nodes. Details about the mesh are given in Figure 5. The calculations are mainly
carried out in magneto-static mode with the vector potential as unknown. For the compu-
tation of permanent magnets eddy current loss, the magneto-dynamic mode was adopted.
Magnetic saturation was considered in this study. Figure 6 shows the B(H) curve of the
material used for the ferromagnetic parts. Circuit coupling was adopted to model the
armature windings and the excitation winding, and was also adopted when computing the
permanent magnets eddy current loss. This coupling was configured to ensure that a null
net total current flows in each permanent-magnet surface [31].

Figure 7 compares the EMFs of the structure in its pure wound-field (WF) version
(the permanent magnets are replaced by the air) and hybrid-excited (HE) version for
Jexc = 5 A/mm2 (current density of the excitation current). The hybrid excitation allows an
increase in excitation flux linkage of 35% compared to the wound-field excitation version.
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The period, in mechanical angles, of the FEMs is equal to:

θmec. = 360◦/38 ≈ 9.4737◦, (2)

where the number 38 corresponding to the number of rotor teeth and constitutes the
number of pairs of poles (p = 38). The waveforms of FEMs are very close to a sinusoid,
with a fairly low harmonic content.

Figure 8 shows the EMF waveforms for different values of the excitation current
and compares their harmonic contents. As before, the EMF waveforms are very close
to sinusoid. It can be seen that adding excitation flux is more efficient than reducing it.
Figure 9 shows the cogging torque waveforms of different values of excitation current.
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Figure 10 shows the variation of the load torque for two values of the excitation current
density Jexc = 0 and 5 A/mm2. The RMS value of armature current density was set to
5 A/mm2. The load torque was estimated for an armature current in phase with the EMF
in each phase (ψ = 0◦). The fill factor for the armature windings and the excitation coils
was identical, and equal to 40%. Figure 11 shows variation of the load torque with the
angle ψ. These computations were done for an RMS value of armature current density
JArm. = 5 A/mm2, and Jexc = 5 A/mm2. The machine behaves as a nonsalient synchronous
machine. Figure 12a shows the torque waveforms for different values of the RMS value of
armature current density JArm., for Jexc = 5 A/mm2. The armature current is in phase with
the EMF in each phase (ψ = 0◦), for these computations. Figure 12b shows the variation of
the mean value of the torque with the armature current density RMS value.
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The nominal torque for a nominal power of 10 kW at a nominal rotation speed of
300 rpm was equal to ≈318 N.m. This value was reached for an armature current density
RMS value of nearly 5 A/mm2 when Jexc = 5 A/mm2.

Figure 13 shows the torque ripple ratio for the different values of the armature current
corresponding to the torque waveforms shown in Figure 12a. This ratio is computed as

TRr =
Tmax − Tmin

Taverage
(3)

The torque ripple ratio was less than 12% for the analyzed waveforms. For Jexc = 5 A/mm2

and JArm. = 5 A/mm2, this ratio was equal to 7.3%. It is possible to reduce it by optimizing
the dimensions of the machine. It would also be possible to look for the best combination
(Jexc, JArm.) to reduce it while keeping the torque at its nominal value.
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Figure 14 shows the magnetic state of the structure for a given position for Jexc =
5 A/mm2 and JArm. = 5 A/mm2; the armature current being in phase with the EMF in each
phase. As can be seen, some areas of the machine are well saturated, and it is in the stator
and rotor teeth that this is more particularly pronounced.
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Figure 15 shows the phase voltage (Figure 15a) and the armature current (Figure 15b)
for a given phase when Jexc = 5 A/mm2 and JArm. = 5 A/mm2, the armature current being
in phase with the EMF in each phase (ψ = 0◦).
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It can be seen from the curves in Figure 15 that the power factor for this operation
is relatively low (FP ≈ 0.147). This is a characteristic of Vernier machines. It should be
noticed that such low values have been reported by the authors of reference [6] for a hybrid
excited flux switching machine not including the Vernier effect.

Figure 16 shows the harmonic content of the phase voltage (Figure 15a). The magnetic
armature reaction is very important as compared to the excitation flux linkage, and its
harmonic content is relatively rich.
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Figure 16. Harmonic content of the phase voltage.

Considering the low value of the power factor for this operating point, an alternative
combination (Jexc, JArm.) was sought making it possible to respond to the nominal torque while
improving the PF. Figure 17 shows the torque for Jexc = 10 A/mm2 and JArm. = 2.75 A/mm2,
the armature current being in phase with the EMF in each phase. This allows the magnetic
armature reaction to be reduced, thus increasing the PF. The power factor FP for this
operation was 0.254.
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Figure 17. Load torque for Jexc = 10 A/mm2, JArm. = 2.75 A/mm2 and ψ = 0◦.

Table 2 shows the loss balance for the two studied operations, for which the armature
current is in phase with the EMF in each phase (ψ = 0◦): Operation 1 (F1) (Jexc = 5 A/mm2,
JArm. = 5 A/mm2), Operation 2 (F2) (Jexc = 10 A/mm2, JArm. = 2.75 A/mm2). Joule losses
were estimated without taking the end-windings into account. Iron losses were estimated
by the “Loss Surface” method available in Flux2D software [32].

Eddy current losses in permanent magnets are estimated considering that they are
not segmented. Their segmentation in the radial and axial directions allows a significant
reduction of these losses [33,34]. The significant difference in these losses for the two
operations is related to the state of magnetic saturation, which is more heterogeneously
distributed in the areas near the permanent magnets in the case of the first operation (F1). It
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should be noted that the iron losses in the rotor were respectively 114.62 W and 89.72 W for
the two operations F1 and F2, respectively. The main iron losses component corresponded
to the stator iron losses.

Table 2. Losses balance.

Operation F1 F2

Armature windings Joule loss (W) 480 145
Excitation coil Joule loss (W) 165 659
Iron loss (W) 843 664
PM eddy current loss (W) 1261 41
Total loss (PLoss) (W)/Efficiency η (%) 2749/73 1509/85

The efficiency η was estimated considering that the machine was operating in genera-
tor mode (alternator) using following formula

η =
T · Ω − PLoss

T · Ω
, (4)

with (T·Ω) is the provided mechanical power and PLoss the total loss.
It is important to retain from this performance analysis study, the additional degree of

freedom offered by the use of hybrid excitation. The hybrid excitation allows controlling
the air-gap magnetic field, and the selection of an adequate (Jexc, JArm.) combination to
improve the efficiency and/or the power factor.

4. Prototype Construction

Figure 18 shows two CAD views of the prototype and its test bench. The test bench in-
cludes, in addition to the prototype, a drive or load machine with its power electronics [35].
The drive or load machine is an asynchronous machine associated with a mechanical
gearbox for adjusting the rotation speed. This machine operates at higher speeds compared
to the prototype.
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Figure 18. CAD views of the realized prototype (Courtesy of AE-Group, The Netherlands): (a) 3D
cutaway view of the prototype; (b) prototype test bench.

As our laboratory floor could not support a load greater than 500 kg/m2, the bench
included a base specifically designed to widen its seat in order to reduce the load per
square meter.



Energies 2021, 14, 6060 14 of 23

Figure 19 illustrates the stator construction. Figure 19a shows the lamination sheets
stack used for the construction of the stator. Figure 19b,c shows the laminations stack in-
stalled in the EDM machine (wire cutting), during and after cutting of the stator. Figure 19d
shows the final stator laminated core.
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Figure 19. Stator construction (Courtesy of AE-Group, The Netherlands): (a) laminations sheets
stack; (b) laminations stack during machining; (c) laminations stack after machining; (d) final stator
laminated core.
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Figure 20 shows the jig constructed to produce the armature coils. Figure 21 shows
the construction of the base specifically designed to support the prototype test bench.
A torque meter is inserted between the two machines (Figure 18b) [36]. An estimate of the
mass of the prototype, from the CAD software, indicated a mass of 285 kg for the active
parts. Taking into account the load limit that can be supported by the soil of the GREAH
laboratory (<500 kg/m2), the base was designed to widen the base of the experimental
bench (Figures 18b and 21).
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Figure 21. Production of the test bench base (Courtesy of AE-Group, The Netherlands).

Figure 22 shows technical drawings of the water-cooling system specifically designed
for the prototype. It consists of a water jacket which surrounds the stator. A closed
loop system is provided for the water supply to this system. This water cooling allows
better performance stability. It also allows boosting the performance of the prototype without
deterioration risk. The prototype is also equipped with a number of thermocouples distributed
in several regions of the stator (armature windings, excitation winding, and permanent
magnets). The temperature measurements help to assess the efficiency of the cooling
system and diagnose the thermal state of the prototype. They also allow development of a
fine thermal model.

Figure 23 shows the prototype back side with stator windings and coil connections
clearly visible. A zoom-in on this figure shows the thermocouples terminals.



Energies 2021, 14, 6060 16 of 23
Energies 2021, 14, x FOR PEER REVIEW 16 of 23 
 

 

  
(a) 

 
(b) 

Figure 22. Water cooling system of the prototype (Courtesy of AE-Group, The Netherlands): (a) 
technical views of the water jacket; (b) view of the prototype with the water inlet and outlet pipes. 

 
Figure 23. Prototype back side with stator windings and coil connections [29] (Courtesy of 
AE-Group, The Netherlands). 

Figure 22. Water cooling system of the prototype (Courtesy of AE-Group, The Netherlands): (a) tech-
nical views of the water jacket; (b) view of the prototype with the water inlet and outlet pipes.

Energies 2021, 14, x FOR PEER REVIEW 16 of 23 
 

 

  
(a) 

 
(b) 

Figure 22. Water cooling system of the prototype (Courtesy of AE-Group, The Netherlands): (a) 
technical views of the water jacket; (b) view of the prototype with the water inlet and outlet pipes. 

 
Figure 23. Prototype back side with stator windings and coil connections [29] (Courtesy of 
AE-Group, The Netherlands). 

Figure 23. Prototype back side with stator windings and coil connections [29] (Courtesy of AE-Group,
The Netherlands).



Energies 2021, 14, 6060 17 of 23

Figure 24 shows the prototype installed on its test bench before shipping (Figure 24a)
and installed at its final location with a fully operational cooling system (Figure 24b). The
cooling system operates in a closed loop like that used in motor vehicles. The radiator
allowing heat exchange is clearly visible in Figure 24b. The installation doesn’t include a
fan, which can be added to improve the cooling efficiency. The coupling between the two
machines is also visible in the fully installed test bench (Figure 24b), while it wasn’t present
in the test bench before shipping (Figure 24a).
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5. Experimental Study

Table 3 shows the prototype’s general characteristics and the measured resistances of
the different windings and coils. The acronym DW stands for the damping winding used
to reduce the voltage that may be induced in the wound field excitation coils [10–14,29].

The experimental study presented in this research was limited to operations under
open-circuit conditions. The air-gap magnetic flux controllability was assessed, and the
use of damping windings as a means for mitigating the field windings-induced voltage
was confirmed. All measurements were done at a speed of 342 rpm.
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Table 3. Constructed prototype’s general characteristics.

Quantity Value Quantity Value

Nominal power (kW) 10 Mass of the stator iron core (kg) 76.5
Nominal speed (rpm) 300 Mass of the rotor iron core (kg) 73.5
External radius (mm) 200 Mass of the copper (Kg) 128
Rotor outer radius (mm) 120 Armature windings (AW) number of turns 9
Active length (mm) 120 Excitation coil (EC) number of turns 31
Air-gap thickness (mm) 1 Damping winding (DW) number of turns 4
Number of rotor teeth 38 AW resistance (at room temperature) (Ω) 0.1
PM type NdFeB EC resistance (at room temperature) (Ω) 1.1
Mass of the PM (kg) 6.5 DW resistance (at room temperature) (Ω) 0.25

Flux controllability is very important for the operation of synchronous machines in gen-
eral, and even more important for hybrid excited synchronous machines specifically [37–44].

Figure 25a shows phase voltage waveforms for three values of the excitation current
Iexc = −15 A, 0 A, and +15 A. The phase voltage amplitude varied with the excitation
current, and, most importantly, the waveforms were close to perfect sinusoidal waveforms,
as for waveforms obtained from the finite element computations. Figure 25b compares the
harmonic content of the three waveforms.
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Figure 26 compares the phase voltage waveform obtained from the finite element
computations (FE) and that measured (Meas.) for a null excitation current Iexc = 0 A.
A fairly good agreement was obtained.
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Figure 26. Comparison of FE computed and measured phase voltage waveforms for Iexc = 0 A.

Figure 27a shows the variation of phase voltage RMS value with the excitation current
Iexc. It can be seen that the magnetic flux control was very effective. The air-gap flux
changed with a variation of +300%, when the air gap flux was enhanced, and −50% when it
was weakened with respect to the null excitation current (Iexc = 0 A). Figure 27b compares
the variations of phase voltage RMS values with the excitation current obtained from finite
element (FE) computations and experimental measurements (Meas.). Again, a fairly good
agreement was achieved.

Compared to results presented in [29], the excitation current values imposed for
enhancing the air-gap magnetic flux were pushed further. The installation of the water-
cooling system reduced the risk of overheating. It should be noticed that for a value of
Iexc = 35 A, the Joule loss of the excitation coils was 1347.5 W (>1 kW) if the resistance was
constant; this value will increase with the temperature increase.

In order to assess the efficacy of the damper windings for the mitigation of the field
windings-induced voltage, a measurement coil was wound exactly the same way as the
excitation coils and the damper windings. Figure 28 compares the voltage induced in
this measurements coil when the damper windings were open, and when they were short
circuited. It can be seen that when short-circuited, the damper windings helped reduce the
induced voltage.

Figure 29 shows induced voltage waveforms in the measurement coil for a null
excitation current (Iexc = 0 A) when the damper windings are open and short-circuited.
If the reduction of induced voltage using the damper windings is not sufficient, other
solutions, such as rotor skewing, could be adopted [11].

It should be noticed that, while the field windings induced voltage was clearly miti-
gated by short-circuiting of the damper windings, the phase EMF was not affected by the
damper windings being open or short-circuited.

This experimental study confirmed expected features observed from finite element
computations for operations under open-circuit conditions. The experimental study is still
ongoing. A torque meter [36] will be inserted between the two machines in the test bench
to perform an experimental study of the machine under load conditions. Thermocouples
placed in different locations of the prototype have not been exploited yet. Temperature
measurements will help establish a thermal model of the prototype.
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(a) measured curve; (b) comparison of finite element curve (FE) and measured curve (Meas.).
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6. Conclusions

This research involved the design and production of an original generator for marine
renewable energy conversion.

The generator combines interesting features, such as the use of hybrid excitation, the
flux switching principle and the Vernier effect. A design analysis study confirmed the low
power factor which is a characteristic of Vernier machines. However, it was found that
hybrid excitation through the magnetic flux control can increase the power factor.

For renewable energy conversion systems, even if power factor improvement is
interesting, it should be noticed that the primary energy source is free, and from this point
of view performance of the power factor or efficiency is not as important as it could be in
the case for applications such as electrical vehicles.

The experimental study of the constructed prototype showed that good flux controlla-
bility by the use of hybrid excitation. An adopted solution for the reduction of EC-induced
voltage was assessed.

The experimental study is still ongoing; in particular a study under load conditions
will be conducted, and the results will be provided in a future paper.
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