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Abstract: In order to study the multiple restricted factors and parameters of the eddy current loss of
generator end structures, both the multi-layer perceptron (MLP) and support vector regression (SVR)
are used to study and predict the mechanism of the synergistic effect of metal shield conductivity,
relative permeability of clamping plates and structural characteristics of eddy current losses. Based
on the eddy current losses of generator end structures under different metal shielding thicknesses and
electromagnetic properties, the calculation accuracy of the MLP and SVR is compared. The prediction
method gives an effective means for the complex design of the end region of the generator, which
reduces the effort of the designers. It also promotes the design efficiency of the electrical generator.

Keywords: turbo-generator; eddy current losses; data driven; support vector regression; multi-
layer perceptron

1. Introduction

Due to the special nature of the end structure of turbo-generators, the distribution
of magnetic flux leakage is complex. The distribution of eddy current loss is affected
by many factors, such as the size, shape and physical properties of the end structure.
The existing literature studies the influence of single factors on the electromagnetic loss
of generator end structures and draws some basic research conclusions. Since the eddy
current loss of generator end structures is affected by the conductivity, permeability and
thickness of the structure, the relationship between these factors and the eddy current loss
is difficult to display and record. Even if this corresponding function relationship makes
sense to a certain extent, it may be a hypothetical one as a result of the ignorance of certain
factors. The deviation analysis may be large and with a limited generalization ability of the
obtained results.

Recently, scholars and researchers have performed extensive investigations on mag-
netic fields and eddy current issues of electrical machines. S. Utegenova et al. analyzed the
magnetic issue of a wound-rotor motor by using an equivalent circuit method and intro-
ducing the principle of the magnetic equivalent circuit model [1]. J. Nam et al. proposed
a new closed-path magnetic system. A mapping method was proposed to utilize the FEM
and polynomial regression in order to analyze the magnetic field [2]. In [3], the impact of
the leading degree on the eddy losses was analyzed. J. J. Perez-Loya et al. calculated the
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generator loss with a parallel path of the stator. Considering the unbalanced magnetic pull,
both the currents of the damper bar and the circulating currents of stator winding were
researched [4]. S. Kahourzade et al. conducted an electromagnetic analysis for a tapered
axial flux PM machine. A new procedure of loss breakdown and efficiency estimation was
introduced by both the experiment and the FEM [5]. In [6], some laws were proposed for
using analytical methods to analyze eddy current losses of AC generators. J. L. Risti’c-
Djurovi’ et al. introduced a new method to add extra stator windings to enlarge the length
of the variation along a test volume direction [7]. In [8], the circulating currents of the
double-stator Roebel bars were calculated by using several models. The calculation results
and test data were compared, and the advantage of each model was discussed. J. Lee et al.
proposed a calculation method to include the additional losses, which is not considered
in many cases [9]. In [10], A. Tessarolo et al. conducted research on the eddy currents by
the time-harmonic FEA. In some methods, they are alternative. In [11], the influence of
the main deformation of the shape and size of the winding section of the circular solenoid
on the magnetic field’s distribution and uniformity was studied. Y. Kwon et al. used
two simplified nonlinear magnetic equivalent circuit models to analyze the magnetic field
capability caused by the change in design parameters of the new soft magnetic composite
prototype as compared with the basic model prototype [12]. In [13], a multi-objective
optimization design for a non-core PM synchronous motor was introduced. By solving two
Laplace equations, both the 3D performance analysis and the magnetic field distribution
were obtained under open circuit conditions. In [14], Vraisanen et al. proposed a time
harmonic model, which can be used to deal with multi-layer cylindrical rotors. In order to
consider the influence of the stator slot on eddy current loss, the calculation model was
linked to a finite element solution by covering the stator. M. Z. Youssef et al. introduced
a new electromagnetic analysis method by optimizing the cost of the electromagnetic
system based on mathematical analysis [15]. In [16], a numerical model of the magnetic
bearing was proposed. The 3D magnetic field’s distribution between the stator and the ro-
tor was calculated. In addition, the magnetic forces of the hybrid magnetic bearing system
were studied under different stator currents. P. Hekmati et al. established the magnetic
analytical models for different rotor structures of electrical machines. The electromagnetic
parameters of both stator and rotor sides were obtained [17]. G. G. Sotelo et al. suggested
a new design method for a motor. By changing the load condition, the proposed motor
can operate both under a synchronous state and a hysteresis state [18]. S. G. Min et al.
presented a novel analytical solution to obtain the best electromagnetic performances of
concentrated windings of the stator and of the permanent magnet machines [19]. J. Lee et al.
conducted an electromagnetic analysis for a PM sensor. Both the position and structure
of the PM Hall sensor were considered. The proposed magnetic equivalent circuit model
gained a fast calculation result [20]. P. R. Eckert et al. developed a model for obtaining the
flux distribution and the stator voltage. The method was validated by an experiment of an
actual prototype [21]. In [22], a support vector machine (SVM) was used to classify and
evaluate induction motor faults. The calculation results showed that, compared with the
other two machine learning algorithms, the SVM calculation results were more accurate.
The fuzzy C-Means machine learning algorithm was used to analyze the influence of the
flux sensor position on the automatic classification. The results proved the potential of the
method for its future incorporation into autonomous condition monitoring systems that
can be satisfactorily applied to determine the health of these machines [23]. In [24], the
linear prediction coefficients and mel frequency cepstral coefficients were extracted from
the machine sound to develop. Machine learning (ML) models were created to monitor
and identify the malfunctioning machines based on the operating sound. The experimental
results showed the performance of ML models for the machine sound recorded, with
different signal-to-noise ratio levels for normal and abnormal operations.

In this paper, a mathematical model of a 3D magnetic field in the complex end domain
of the generator end is established by a time-step FEM. A neural network and support
vector regression are used to study and predict the mechanism of the synergistic effect
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of the metal shield conductivity, relative permeability of clamping plates and structural
characteristics of the eddy current loss of end structures. The prediction accuracy of the
MLP and SVR are compared. This research provides an effective means for the complex
design of generator end regions, which reduces the effort of designers. In addition, it
promotes the design efficiency of the electrical generator.

2. 3D Electromagnetic Field Analysis

The stator end windings have an involute structure. There are many different metal
structures, such as a finger plate, copper screen and clamping plate. Table 1 gives the basic
parameters of this 330 MW hydrogen turbo-generator, which is used to calculate the flux of
the end domain.

Table 1. Basic parameters.

Parameters Values

Power 330 MW
Stator voltage 20 kV
Stator current 11.2 kA

Speed 3000 rpm
Rated efficiency 98.8%
Cooling medium Hydrogen

Figure 1 shows the end structure of a hydrogen-cooled turbo-generator prototype.
Based on the actual size of the generator end domain, a 3D electromagnetic field model
was established, which is shown in Figure 2. Because the generator pole number is small,
both the end winding span and the total end domain space are relatively large.

In order to truly reflect the actual results, the end domain of the 330 MW generator was
established based on the actual shape and dimensions of the prototype. The whole solution
domain Ω contains the eddy current domain V1 and the non-eddy current domain V2.

Figure 1. End structure of hydrogen-cooled turbo-generator prototype.

Figure 3 shows the solution domain of the 330 million W water–hydrogen–hydrogen-
cooling turbo-generator. The mathematical model contains vector potential T and the scalar
potential Ψ. The solution formulas are shown in (1)–(5) [25].{

∇× ρ∇× T−∇ρ∇·T + ∂µ(T−∇ψ)
∂t + ∂µHs

∂t = 0

∇·µ(T−∇ψ) = −∇·µHs
(1)

∇·µ∇ψ = ∇·µHs in V2 (2)
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where
Hs =

1
4π

∫
Ωs

Js × r
r3 dΩ (3)

Boundary conditions: 
∂ψ
∂n

∣∣∣
S1,S2

= 0

ψ|S3
= ψ0

(4)

The initial conditions: {
T|V1

= T0

ψ|Ω = ψ0
(5)

where Js is the source current density in the windings(in A/m2), µ is the permeability(in
H/m), ρ is the resistivity (in Ω·m), T0 is the electric vector potential at the initial time, ψ0
is the scalar magnetic potential at the initial time, t is the time(in s), and n is the normal
vector of the surface.
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Figure 2. Physical model of the 330 million W water–hydrogen–hydrogen-cooling generator.
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Figure 3. Solution region of the 3D transient electromagnetic field.

3. Electromagnetic Losses of Metal Parts
3.1. Electromagnetic Loss Calculation and Analysis

Figure 4 gives the distribution of the leakage flux field in the end domain of the turbo-
generator. This shows that the magnetic flux leakage passes around the armature windings.
The magnetic flux leakage is essentially parallel to the outer surface of the copper screen.
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Figure 5 shows the eddy current distribution in the copper screen. The yellow arrow
shows the path of the eddy current in the copper screen. The distribution of the eddy
current density indicates that the copper screen is essential for preventing the intrusion of
the end leakage flux into the clamping plate.
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Figure 6 gives the value of the magnetic flux density of the finger plates. The magnetic
flux density is high at the front of the finger plates. The value reduces from the front parts
to the back parts. In the end domain, the eddy current losses are not only impacted by the
radial component of the total flux; due to the complex structure, the axial component of
the flux also exists in this domain.
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The eddy current loss of metal structures is calculate by (6)

Pe =
1
Tc

∫
Tc

k

∑
i=1

J2
e ∆eσ−1

r dt (6)

where Pe is losses of the element (in W), Je is the eddy current density (in A/m2), ∆e is the
element volume (in m3), σr is the metal component conductivity (in S/m), Tc is the period
(in s), k is the total element number in volume, and e is the element number.

3.2. Verification for Electromagnetic Loss Calculation by Thermal Test

Using the results of the electromagnetic losses as heat sources, the temperature field of
the end domain can be calculated [26]. The fluid–solid coupled model is given in Figure 7.
Figure 8 gives the mesh results of the solution domain. The total number of mesh elements
is 7,932,399.
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Figure 9 gives the temperature of the copper screen. Table 2 shows the measured
values of the temperature. Figures 10 and 11 give the locations of the temperature sensors
and the copper screen used for the test.

Table 2. Test values.

Position M Position N Position P

Temperature (◦C) 74.3 63.6 56.9
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The end structures may not be absolutely symmetric, such as the distance between the
adjacent windings and the distance between the adjacent water pipes in the stator windings.
These factors could cause the velocity distribution of the cooling medium to be asymmetric.
The deformation of the end structures could also result in asymmetric distribution of loss.
The measured results are different values at different positions, which may be caused by
these asymmetric factors. For the simulation results, the highest temperature of the copper
screen is 60.2 ◦C. The average temperature of the copper screen is 57.3 ◦C.
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4. Prediction and Result Analysis Using Multi-Layer Perceptron
4.1. Prediction and Analysis Based on Multi-Layer Perceptron

In order to research the collaborative impact of multiple factors on the eddy current
losses of end structures, the back propagate neural network (BPNN) model is established
to study the known samples that are calculated by the FEM. The input nodes are the
multi-factors, which have the thickness of a metal screen, the conduction characteristics
of a metal screen and the permeability performance of a clamping plate. These factors
are the elements of the input vector of the BPNN model. The output vector is the total
eddy current of the end structures. The BPNN model is shown in Figure 12. To improve
the prediction accuracy of forecasting samples and the generalization ability of the BPNN
model, the middle hidden layer has multiple layers. In this paper, the hidden layer of the
BPNN model has three layers, which are 5, 6, and 5.

The input vector A = (ur, thk, sim), the output vector Y = (loss).

where ur is the relative permeability of the clamping plate, thk is the thickness of the copper
screen, sim is the conductivity of the metal screen, and loss is the total eddy current losses
of end structures.
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(1) In the process of information forward propagation, if a(1)i = xi is the input value
(activation value) of layer 1 neurons, the activation value of the next layer is [27]:


a(1)j = xi

a(l+1)
j = f

(
z(l+1)

j

)
z(l+1)

j =
n
∑

i=1
W(l)

ji a(l)i b(l)j

(7)

where xi is the input value of neuron i node data of the first layer of sample data; a(l)i

represents the output value of the i-th node of the l-th layer; and z(l)j represents the

activation value of node j of layer 1. W(l)
ji is the connection weight parameter between the

i-th node of layer l and the j-th node of layer l + 1; b(l)j is the intercept term of node j on

layer l + 1. f is the sigmoid activation function, and the expression is ϕ(x) = 1
1+e−x .

(2) Error back propagation process [28]

C(W, b) =
1
2 ∑

i∈outputs
‖yi − ai

2‖ (8)
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where yi is the true value of node i traffic of the sample data output layer; ai is the flow
output value of node i in the sample data output layer.

(3) Determination of optimization objectives

W (weight) and b (bias) minimize the loss function C(W,b), and the flow prediction
value output by the model will be closer to the real value. The iterative formula of W and b
is as follows [29]: 

W(l)
ji = W(l)

ji − α
∂C(W,b)

∂W(l)
ji

b(l)j = b(l)j − α
∂C(W,b)

∂b(l)j

(9)

where α is the learning rate, and the value range is (0, 1).

4.2. Deviation Analysis and Generalization Ability Based on Multi-Layer Perceptron Prediction

Table 3 shows the training sample sets of the total eddy current losses of end structures.
Before predicting the eddy current losses of test sample sets, data training and learning
should be conducted for the training sample sets.

Table 3. The training sample sets of eddy current losses.

Sample Relative
Permeability Thickness (mm) Conductivity (S/m) Eddy Current

Loss (kW)

1 1 12 46,082,949 25.42
2 10 12 46,082,949 24.40
3 20 12 46,082,949 24.01
4 30 12 46,082,949 23.95
5 40 12 46,082,949 24.01
6 50 12 46,082,949 24.09
7 1 12 46,082,949 25.42
8 1 14 46,082,949 22.80
9 1 16 46,082,949 22.12
10 1 18 46,082,949 21.24
11 1 20 46,082,949 20.90
12 1 22 46,082,949 20.33
13 1 12 6,418,485 53.79
14 40 12 6,418,485 37.86
15 100 12 6,418,485 26.22

The highly precise learning results are gained through the training samples of the eddy
current loss of each structure based on the BPNN with a middle layer of the 5–6–5 type, as
shown above. Figure 13 gives the learning results of the eddy current losses of each of the
structures based on the BPNN with a middle layer of the 5–6–5 type. From Figure 13, we
learn that the variation trend of the FEM and MLP is the same, and the eddy current loss is
the largest around the seventh sampling point.

Table 4 gives a comparison between the predicted results of the test sample and the
calculated results by the finite element method. It is shown that even if the electrical
conductivity of metal aluminum material is not provided in the training sample, the MLP
predicts that the loss value of the end structure parts is close to the calculated values by the
finite element method when the end of generator is shielded by metal aluminum.



Energies 2021, 14, 5908 10 of 14Energies 2021, 14, x FOR PEER REVIEW 10 of 15 
 

 

 
Figure 13. Learning results based on MLP. 

Table 4 gives a comparison between the predicted results of the test sample and the 
calculated results by the finite element method. It is shown that even if the electrical con-
ductivity of metal aluminum material is not provided in the training sample, the MLP 
predicts that the loss value of the end structure parts is close to the calculated values by 
the finite element method when the end of generator is shielded by metal aluminum. 

Table 4. Predicted eddy current losses of the test sample set (Kw). 

Relative Permeability 
Thickness 

(mm) Conductivity (S/m) 
Losses 

FEM MLP 
1 12 28,589,902 32.57 32.77 
1 20 28,589,902 28.02 27.99 
2 12 46,082,949 25.06 25.07 
4 12 46,082,949 24.99 24.93 
8 12 46,082,949 24.57 24.67 

When the hidden layers are changed to two layers, the predicted result of (32.77, 
27.99, 25.07, 24.93, 24.67) is changed to (33.81, 30.00, 25.22, 25.02, 24.67). It shows that, for 
the prediction loss results of the end structure parts of a turbo-generator by the BPNN, 
the deviation between the eddy current loss of end structure parts by the MLP and its 
calculated results by the finite element method decreases with the increase in hidden lay-
ers of the neural network. 

5. Prediction and Results Analysis by SVR 
5.1. Mathematical Principle of Support Vector Regression 

Support vector regression (SVR) belongs to the category of statistics, and the idea is 
to use classification as the leading factor. SVR has the characteristics of low risk, which 
avoid the defects of blind training, over-learning and entering the minimum region of 
traditional prediction methods. SVR is suitable for the data mining of small sample sets, 
and its generalization ability is strong. SVR is often the first choice in order to study small 
sample data. This data-mining model maps high-dimensional space to low-dimensional 
space by selecting the kernel function, which makes the problem less complex. During 
this period, it does not increase the difficulty of calculation and effectively avoids the issue 
of dimension. Therefore, SVR is widely used in predicting engineering problems [30–35]. 

Let the sample set be { }{ }( , ) | ; 1, 1 , 1,...,n
i i i ix y x R y i I∈ ∈ − + = , and find an optimal hy-

perplane that has two types of points labeled +1 and −1 that are not only separated but 
also have the largest separation interval. 

Linear separation can be achieved in n-dimensional Euclidean space; that is, there is 
a hyperplane that divides the sample set on both sides according to the labels −1 and +1. 
Since the mathematical expression of the hyperplane in n-dimensional Euclidean space is 

Figure 13. Learning results based on MLP.

Table 4. Predicted eddy current losses of the test sample set (Kw).

Relative
Permeability Thickness (mm) Conductivity

(S/m)

Losses

FEM MLP

1 12 28,589,902 32.57 32.77
1 20 28,589,902 28.02 27.99
2 12 46,082,949 25.06 25.07
4 12 46,082,949 24.99 24.93
8 12 46,082,949 24.57 24.67

When the hidden layers are changed to two layers, the predicted result of (32.77,
27.99, 25.07, 24.93, 24.67) is changed to (33.81, 30.00, 25.22, 25.02, 24.67). It shows that, for
the prediction loss results of the end structure parts of a turbo-generator by the BPNN,
the deviation between the eddy current loss of end structure parts by the MLP and its
calculated results by the finite element method decreases with the increase in hidden layers
of the neural network.

5. Prediction and Results Analysis by SVR
5.1. Mathematical Principle of Support Vector Regression

Support vector regression (SVR) belongs to the category of statistics, and the idea is
to use classification as the leading factor. SVR has the characteristics of low risk, which
avoid the defects of blind training, over-learning and entering the minimum region of
traditional prediction methods. SVR is suitable for the data mining of small sample sets,
and its generalization ability is strong. SVR is often the first choice in order to study small
sample data. This data-mining model maps high-dimensional space to low-dimensional
space by selecting the kernel function, which makes the problem less complex. During this
period, it does not increase the difficulty of calculation and effectively avoids the issue of
dimension. Therefore, SVR is widely used in predicting engineering problems [30–35].

Let the sample set be {(xi, yi)|xi ∈ Rn; yi ∈ {−1,+1}, i = 1, . . . , I}, and find an opti-
mal hyperplane that has two types of points labeled +1 and −1 that are not only separated
but also have the largest separation interval.

Linear separation can be achieved in n-dimensional Euclidean space; that is, there is
a hyperplane that divides the sample set on both sides according to the labels −1 and +1.
Since the mathematical expression of the hyperplane in n-dimensional Euclidean space
is a linear equation < w, x > +b = 0, this means that among them, w is a coefficient
vector, x is a n-dimensional variable, < w, x > is an inner product, and b is a constant. The
distance from point xi to hyperplane L in space is denoted as d(xi, L) = |<w,xi>+b|

||w|| . For
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maximization, d(xi, H) is equivalent to 1
2

∣∣∣∣∣∣w∣∣∣∣∣∣2 minimum. Next, we obtain an extreme
value problem under the following constraints.{

min 1
2

∣∣∣∣∣∣w∣∣∣∣∣∣2
yi(< w, xi > +b) ≥ 1, i = 1, 2, . . . , I

(10)

By introducing Lagrange multiplier α = (α1, α2, . . . , αI), we can solve the equation
about the parameter by (11).

Q(α) =
I

∑
i=1

αi −
1
2

I

∑
i,j=1

αiαjyiyj < xi, xj > (11)

The above formula is called the Lagrange dual function, and its constraint is expressed
as (12).

I

∑
i,j=1

αiyi = 0, αi ≥ 0, i = 1, 2, . . . , I (12)

Under this constraint, if α makes Q(α) reach the maximum value, there are many αi
whose values are 0. However, the sample xi corresponds to αi, which is not 0 and is the
support vector.

When linear separation cannot be achieved in the input space, it is assumed that non-
linear mapping φ is found. It can map the sample set that is expressed as {(xi, yi)|xi ∈ Rn;
yi ∈ {−1,+1}, i = 1, . . . , I} into the high-dimensional feature space H.

Presently, we consider the linear classification of the set {(φ(xi), yi)|xi ∈ Rn;
yi ∈ {−1,+1}, i = 1, . . . , I} in H by constructing a hyperplane in H. Its weight co-
efficient w satisfies similar extreme value problems. Since exceptions are allowed in some
areas, slack terms can be introduced, that is, rewritten as: min 1

2 ||w||
2+C

L
∑

i=1
ξi

yi(< w, xi > +b) ≥ 1− ξi, ξi ≥ 0, i = 1, 2, . . . , I
(13)

A classification problem is an extreme case, but it is very useful. Let { xi| xi ∈ Rn,
i = 1, . . . , I} be a finite observation point in space Rn. Find the smallest sphere containing
these points with a as the center and R as the radius. Therefore, a classification is the best
method for finding the minimum envelope surface of a compound component. Exactly
as above, let φ be the embedded mapping derived from a kernel function K(x, s) from
the input space to the feature space, and finally we understand the quadratic program-
ming problem. {

minα
1
2 α′Dα + c′α

y′α = 0, 0 ≤ α = (α1, . . . αI)
T ≤ A = (C, . . . , C)T (14)

where y = (y1, . . . , yI)
T , c = (−1, . . . ,−1)T , and D = (K(xi, xj)yiyj)1≤i,j≤I are matrixes.

K(x, s) is a kernel function. Then,

f (x) = K(x, x)− 2
L

∑
i=1

αiK(x, xi) +
L

∑
j=1

L

∑
i=1

αiαjK(xi, xj) (15)

where all points satisfy the relationship with f (x) ≤ R2. The parameter C controls the
number of points that fall outside the ball. The interval of change is 1/L < C < 1.
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5.2. Prediction of Eddy Current Loss Based on SVR

According to the prediction principle of SVR, the mathematical prediction model
of the eddy current loss of generator end structures with multiple factors, such as metal
shielding thickness, metal shielding conductivity and relative permeability of clamping
plates, is constructed. The training sample set above is studied again, and the test sample
set is predicted. Figure 14 shows the learning result of the eddy current losses of turbo-
generators based on SVR. From Figure 14 displaying the learning results of eddy current
loss based on SVR, it can be observed that there are deviations in individual points of the
learning results, but the deviations in the overall learning results are small.
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Table 5 gives the prediction results of the loss of generator end structures in the
test samples based on SVR. It is not difficult to see that the eddy current loss has a high
prediction accuracy and strong generalization ability based on SVR. The deviation of
learning results of individual elements in the training set does not affect the accurate
prediction of eddy current loss of the test samples from SVR.

Table 5. Predictive eddy current losses in the test sample based on SVR.

Relative
Permeability Thickness (mm) Conductivity

(S/m)

Losses (kW)

FEM SVR

1 12 28,589,902 32.57 31.72
1 20 28,589,902 28.02 27.20
2 12 46,082,949 25.06 25.32
4 12 46,082,949 24.99 25.22
8 12 46,082,949 24.57 25.03

6. Conclusions

In this paper, in order to study the multiple restricted factors of the eddy current loss
of generator end structures, a mathematical model of the 3D electromagnetic field in the
complex end domain is established by the time-step FEM. Both the neural network and the
support vector regression are used to study and predict the mechanism of the synergistic
effect of metal shield conductivity, relative permeability of clamping plates and structural
characteristics on the eddy current loss of end structures. The different prediction types are
compared, and the accuracy of the prediction of loss results is studied.

(1) The learning results and predicted eddy current loss of the test samples fit well
with the numerical calculation from the FEM. This shows that even if the electrical
conductivity of metal aluminum material is not provided in the training sample, the
MLP can predict that the loss value of end structure parts is close to the calculated
values by the finite element method when the end of the generator is shielded by metal
aluminum. When the relative permeability is 1, the conductivity is 28,589,902 S/m,
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and the thickness increases from 12 to 20 mm, the eddy current loss obtained by the
FEM is reduced by 14%, and the eddy current loss obtained by the MLP is reduced
by 14.6%. When the relative permeability increases from 2 to 4, the conductivity is
46,082,949 S/m and the thickness is 12 mm, the eddy current loss obtained by the
FEM is reduced from 25.06 to 24.99 kW, and the eddy current loss obtained by the
MLP is reduced from 25.07 to 24.93 kW. When the relative permeability increases
from 4 to 8, the conductivity is 46,082,949 S/m and the thickness is 12 mm, the eddy
current loss results obtained by the FEM and MLP are also reduced.

(2) For the prediction results of the eddy current loss of end structure parts of the turbo-
generator by the BPNN, the deviation between the eddy current loss of end structure
parts by the MLP and the eddy current loss gained by the FEM decreases with the
increase in hidden layers of the neural network.

(3) From the results of the eddy current loss learning based on SVR, there are deviations
in individual points of the learning results, but the deviations in the overall learning
results are small. Eddy current loss has a high prediction accuracy and strong general-
ization ability based on SVR. The deviation of learning results of individual elements
in the training sets does not affect the accurate prediction results of the eddy current
loss of the test samples based on SVR.

This method gives an effective means for the complex design of the end region of the
generator, which reduces the effort of designers. It also promotes the design efficiency of
the electrical generator.

In future studies, a large data sample for a three-dimensional mathematical model
of the end transient electromagnetic field of a turbine generator will be constructed, and
the effect of the end magnetic leakage on the loss of the structural parts will be studied
separately in combination with deep learning. In addition, big data samples with more
influencing factors will be constructed, and models with more layers will be applied to
further improve the accuracy of the prediction model.
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