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Abstract: This paper proposes a procedure for the accurate modelling of the ring induction motors
(RIMs), based on the Monte Carlo (MC) method and the relations presented in the relevant metrology
guidelines. Modelling was carried out based on the measured data for the torque-slip characteristic
(TSC) and using the equivalent circuit for the RIM. The parameters included an extended Kloss
equation (EKE) and the associated uncertainties were determined using the MC method. The
polynomial procedure was applied as a numerical tool to complement the MC method to determine
the power losses in the stator iron and the relevant uncertainty. This is in line with international
standards for the theory of uncertainty application in the field of engineering. The novelty of this
paper refers to the accurate modelling of the RIMs obtained by determining the corresponding
uncertainties. The procedure presented in this paper was developed based on the assumption
that the parameters of the equivalent circuit are independent of the temperature, influence of core
saturation, and the phenomenon of current displacement. Our procedure can be successfully used
for both the theoretical calculations related to the modelling of the RIMs, and in practical applications
involving detailed measurements and the corresponding uncertainties. The use of the MC method
allowed for significant improvement in the modelling results, in terms of both the TSC and EKE.

Keywords: modelling of ring induction motors; Monte Carlo method; accurate modelling

1. Introduction

The ring induction motors are a group of electrical machines mainly used in electric
drives with heavy starting. The electrical power of these machines varies over a wide
range, from a fraction of a kilowatt to several megawatts, which allows for an extensive
range of applications [1]. They are characterised by a simple structure, which implies
low construction costs, easy operation and maintenance, and high levels of operational
reliability [2].

One of the most important curves used to describe the RIMs is the torque-slip char-
acteristic, which represents the relationship between the electromagnetic moment and
the slip [3,4]. This is determined by the constant value of the stator supply voltage and
the variable rotational speed of the motor, which is related to the slip by a simple and
well-known formula. It is most often described using a simplified Kloss equation [3],
which approximates the corresponding measured points with a high uncertainty value,
however, most often in the case of very low-power machines [5]. An extended version of
this equation [6–8], denoted here as EKE, was therefore developed based on the theory
and practice of electric machines, for which much lower values of the approximation
uncertainty of the mechanical characteristic of the motor can be obtained. This equation is
necessary for the analytical determination of machine acceleration times [9], an analysis of
the transient regimes [10], frequency control of inductive electric drives under conditions
of overload [11], and for the testing of electric motors, for example in Tesla vehicles [12].
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Using a simplified and extended version of the Kloss equation, the value of maximum
(critical) motor torque and the corresponding value of maximum (critical) slip can be deter-
mined [13]. For when the slip is equal to one, the value of the starting torque of the motor
can be determined. Knowledge of the critical and starting torques is extremely important
from the point of view of evaluating the mechanical properties of the RIM [14]. The first
type of torque allows us to determine the possibility of short-term motor overload [15],
while the second one represents the possibility of starting a drive system including both a
motor and a generator [16].

All of the procedures for determining the TSC involve the accurate measurements
of the corresponding points [17], and then their approximation with a minimum value
of uncertainty [18–20]. The accurate determination of the maximum torque and slip is
only possible by applying this approach to modelling. When the mathematical formula
representing the measured points of the TSC is known, the satisfactory approximation re-
sults and the associated uncertainties can be obtained by applying the MC method [21–23].
This method should involve a pseudorandom number generator with a uniform distribu-
tion [24,25]. However, it is only possible to determine the maximum values of the torque
and slip by applying the MC method. A third parameter related to the EKE also needs
to be determined. This can be obtained by performing indirect calculations based on the
equivalent circuit of the RIM [26–28] and by using the additional numerical method to
obtain values of the power losses in the stator iron. Additionally, it should be emphasized
that the MC method has so far been applied to the modelling of the RIMs, by analysis
of their thermal behaviour and the detection of corresponding faults, based on the stator
current measurements [29,30].

In Section 2 of this paper, we present a detailed discussion of the issues related to the
determination of the equivalent circuit parameters corresponding to the RIM, based on
measurements of the motor idle and short-circuit states. The use of polynomial approxima-
tion [31–33] to determine the power losses are also proposed as the additional numerical
method. Section 3 describes the use of the MC method to model the RIM by using the TSC,
while Section 4 presents an example of the use of MC-based modelling and the verification
of the corresponding results.

The solution presented in this paper represents a new approach to modelling the
RIM based on the measurement points of the TSC and the EKE. This is obtained by an
application of the MC method and the polynomial approximation which allows us to
determine the values of the maximum moment and slip with the associated uncertainties.
Therefore, it is an example of accurate modelling of the RIM which is worked out according
to the guidelines in [18,21] and can be applied in the field of the precise elaboration of
measurement results. The lack of uncertainty analysis in the modelling of the RIMs can be
considered a weakness of the research so far in the field of electrical motors.

The proposed method can be used for accurate modelling and appropriate control
over the mechanical properties of the RIMs in order to ensure the correct operation of both
single motors and complex electrical drive systems.

2. Theoretical Basis for the Accurate Modelling of the RIM

The EKE is defined by the following formula:

T =
Tmax(2 + β·smax)
s

smax
+ smax

s + β·smax
, (1)

where T, Tmax, s, and smax are the motor torque, maximum torque, slip, and maximum slip,
respectively. The coefficient β is expressed as follows:

β = 2
RsCs

RrKV2 , (2)
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where Rs, Rr , and KV denote the stator resistance, rotor resistance, and voltage ratio,
respectively [6–8]. The voltage ratio is calculated by the formula:

KV =
1
2

(
Vs1

Vrm
+

Vsm

Vrm

)
, (3)

where Vs1 is the stator supply volge, which is lower than the rated voltage Vsn, while Vrm is
the maximum voltage produced between any two rotor phases, and Vsm is the maximum
voltage produced between any two stator phases when the rotor is supplied by the voltage
Vrm [27]. The coefficient Cs is defined by:

Cs =
Xmg

Xσs + Xmg
, (4)

where Xmg and Xσs denote the magnetisation reactance and the stator phase leakage
reactance, respectively, and are calculated using the following formulae:

Xmg =
VSn

Img
(5)

and
Xσs = (VSn − KV ·Vrm)/Is0, (6)

where Img is the magnetisation current, Is0 is the stator current under idle conditions, and
Vrm is the voltage induced in the rotor [6–8]. Figure 1 shows a circuit model of the RIM,
which is valid when the measurements are made in the idle state.

Figure 1. Circuit model of the RIM in the idle state.

The magnetisation current is

Img =
√

Is02 − IFe
2, (7)

where IFe denotes the current corresponding to the power losses in the stator iron, and is
calculated using the simple formula:

IFe =
Vsn

RFe
. (8)

Here, RFe denotes the resistance of the iron, and is defined by the following equation:

RFe =
3Vsn

2

∆PFe
, (9)

while ∆PFe denotes the power losses in the stator iron.
The complete equivalent circuit of the RIM is shown in Figure 2, where R′r and X′σr

denote the rotor phase resistance and the reactance transformed to the stator side.
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Figure 2. Complete equivalent circuit of the RIM.

The quantities RFe, IFe, Xmg, and Img, given in Equations (5), (7)–(9) are calculated
based on the complete phase equivalent diagram (the left side of Figure 2), omitting the
voltages related to the stator resistance and the stator winding leakage reactance.

The values of the parameters R′r and X′σr can be determined based on the circuit
model of the RIM in the short-circuit state, as shown in Figure 3, where Vsk denotes the
current in this state.

Figure 3. Circuit model of the RIM in the short-circuit state.

The transverse branch of the circuit model shown in Figure 2 is omitted in Figure 3,
due to the significant value of its impedance compared to the impedance of the longitudinal
branch. The short-circuit current Isk is also assumed to be equal to the rated stator current
Isn [6–8].

Based on the circuit model shown in Figure 3, we have:

Rk = Rs + R′r = Rs + RrKV
2 (10)

and

Xk = X′σr + CsXσs = X′σr +
XmgXσs

Xmg + Xσs
(11)

while
X′σr = XσsKV

2. (12)

Based on Ohm’s law, we obtain:

Zk =
Vsk
Isn

, (13)

and applying the impedance triangle gives

Rk =
√

Zk
2 − Xk

2. (14)

By transforming Equation (10), we obtain the rotor resistance

Rr = (Rk − Rs)/KV
2 (15)
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We can express the coefficient β in terms of the measured values of the parameters of
the RIM. We can obtain this relation by substituting Equations (3)–(13) into Equation (2) to
give [1,6–8]:

β =
2Rs(

γ2γ3
γ4

+ 1
)[√(

Vsk
Isn

)2
−
(

γ1
2γ3

8·Is0
+ Vsn·γ3

γ4+γ2γ3

)2
− Rs

] (16)

where the auxiliary parameters are

γ1 = VS1
Vrm

+ Vsm
Vrm

, γ2 =

√
Is02 −

(
∆PFe
3Vsn

)2
,

γ3 = 2Vsn − γ1Vrm, γ4 = 2Vsn Is0.
(17)

The uncertainties associated with the quantities given in Equations (3)–(16) can be
calculated using the formula:

u(x) =

√√√√∑J
j=1

[
∂x
xj

u
(
xj
)]2

, (18)

where x denotes the quantity under consideration, and J is the number of indirect quantities
necessary to determine the value of x. The relative uncertainty associated with the quantity
x is defined by the equation:

δ(x) = u(x)/x. (19)

For both analogue and digital measuring instruments, the uncertainty u(x) is deter-
mined by the formula:

u(x) = ∆(x)/
√

3 , (20)

where ∆(x) is the absolute error, while the value of the denominator results from the
probability density function of a uniform distribution, which is valid for both analogue
and digital instruments.

For analogue instruments, the error is determined on the basis of the static accuracy
class κ, according to the equation:

∆a(x) =
κYm

100%
(21)

where Ym denotes the measurement range for the quantity to be measured. For digital
instruments, the following formula is usually applied:

∆d(x) = aY + cYm , (22)

where Y denotes the value of the quantity to be measured, and a and c are constant param-
eters that are typical for the particular instrument and are included in the corresponding
datasheet.

The power losses in the stator iron ∆PFe are determined using a graphical method for
the rated stator voltage Vsn, as shown in Figure 4.

The quantity P0 is the active power consumed by the motor during idling, and is equal
to the sum of the losses in the stator iron ∆PFe, and the mechanical power losses ∆Pm.

Based on the measured points for the active power P0, it is easy to determine the linear
characteristic P0 = f

(
Vs

2) and the associated uncertainty. This can be done by applying
the polynomial method, using the formula:

P0

(
Vs

2
)
= a0 + a1·Vs

2 + ε, (23)

where a0 and a1 are the polynomial coefficients, and ε denotes the error of approximation.
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Figure 4. Graphical method for determining the power losses ∆PFe.

Estimates ã of the polynomial coefficients are obtained using the following matrix
equation:

~
A =

(
ΦTΦ

)−1
ΦTΛ, (24)

where

Φ =

 1
(
Vs

2)
0

...
...

1
(
Vs

2)
N

,

Λ =
[

ε0 ε1 . . . εN
]T ,

(25)

and N denotes the number of measured points for the characteristic P0 = f
(
Vs

2).
The uncertainty of approximation is denoted as the error ε, and is given by the

following formula:

u
(

P0

(
Vs

2
))

=

√√√√√(
Φ

~
A−Λ

)T(
Φ

~
A−Λ

)
N − 3

(26)

The standard uncertainty associated with the coefficients a0 and a1 is

u(ai) = u
(

P0

(
Vs

2
))√

Θi,i, (27)

where
Θ =

(
ΦTΦ

)−1
, (28)

and i = 0, 1, 2 [29–31].
The relative uncertainties associated with the coefficients a0 and a1 are calculated as

follows:

δ(ai) =
u(ai)

ai
100%. (29)

The values of the power losses in the stator iron ∆PFe and the associated uncertainty
u(∆PFe) are calculated using the expressions:

∆PFe = P0

(
Vsn

2
)
− P0(0) (30)

and
u(∆PFe) = u(a0) + u(a1)P0

(
Vsn

2
)

. (31)

The corresponding relative uncertainty is:

δ(PFe) =
u(∆PFe)

∆PFe
100%. (32)
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The procedure for determining the values of the parameters included in Equation (1)
and the corresponding uncertainties is discussed in detail in the section below.

3. Monte-Carlo-Based Modelling of the RIM

We now present the example of the application of the MC method in the accurate
modelling of the RIM, which involves determining the corresponding parameters of the
EKE and the associated uncertainties. This procedure is based on an intuitive method of
determining the parameters Tmaxi and smaxi for the possible ranges of variability of the
parameters Tmax and smax, which are included in the EKE [21–24]. Figure 5 shows the
typical TSC which describes the RIM for its motor work and covers the stable range of this
characteristic. Figure 5 also shows examples of the variability ranges of the parameters
Tmax and smax.

Figure 5. The typical TSC for the motor work of the RIM.

The index ‘i’ denotes the intuitive values of both parameters, while the indexes ‘h’
and ‘l’ represent the high and low assumed values of these parameters. The high and low
values are assumed in advance to ensure that the estimated values of the parameters Tmax
and smax are within these selected ranges. A suitable selection of these ranges constitutes
the first step in this method.

The parameter β and the associated uncertainty u(β) are determined based on the
procedure discussed in Section 2. The low and high values, βl and βh, are determined
as follows:

βl = β− u(β), βh = β + u(β). (33)

The second step in our MC-based procedure involves the choice of the type of pseudo-
random number generator. Taking into account the analogous probability of the occurrence
of the optimal value of the estimates T̃max, s̃max, and β̃ for any value from the above in-
tervals, we are justified in choosing the pseudorandom number generator with a uniform
distribution. The above estimates should accurately map the parameters Tmax, smax, and β,
which requires an approximation of the TSC with minimal uncertainty.

In the third step, we determine the number of MC trials. According to the recom-
mendations given in the guide [20], the optimal number of trials should be greater than
104/(1− v), where v denotes the coverage probability.

In the fourth step, the following matrix is determined

Ψ =

 T(s0)0 . . . T(s0)M−1
...

. . .
...

T(sN−1)0 . . . T(sN−1)M−1

, (34)

based on Equation (1), where N and M denote the number of measured points for the
TSC and the number of MC trials, respectively [22–25]. The matrix Ψ is determined
by substituting the values of the parameters Tmax

m, smax
m, and βm into Equation (1), as
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obtained for a sequence of MC trials m = 0, 1, . . . , M− 1. The value of each slip sn is
substituted into Equation (1) for each MC trial m, where n = 0, 1, . . . , N − 1. In the fifth
step, the matrix of approximation errors for the measured points of the TSC is determined
as follows:

∆e =

 T̃(s0)0 . . . T̃(s0)M−1
...

. . .
...

T̃(sN−1)0 . . . T̃(sN−1)M−1

, (35)

where T̃(sn)m = T(sn)m − T(sn). The next rows of the matrix ∆e correspond to the
approximation uncertainties obtained for each value of the slip sn.

The sixth step in our MC-based modelling process involves the determination of
the vector

∆c = ∑n(∆e)
2, (36)

in which each element is the sum of the squared errors calculated for each column of the
matrix ∆e [22–25].

In the next step, the minimum value
(
∆c

min) of the vector ∆c and the corresponding
number of trials

(
mmin) are determined. The parameters Tmax

opt, smax
opt, and βopt corre-

sponding to the value ∆c
min are assumed to represent the optimal solution to the MC-based

model. These parameters correspond to the estimates T̃max, s̃max, and β̃ as defined above.
We then determined the uncertainty associated with the MC method using the follow-

ing formula:

u(MC) =

√
1

M(M− 1) ∑M−1
m=0

[
∆cm −

¯
∆c

]2

, (37)

where
¯
∆c =

1
M

(
∑M−1

m=0 ∆cm

)
. (38)

The last step in our MC-based procedure involves the determination of the uncertain-
ties associated with the parameters Tmax, smax, and β using the formula:

u(x) =

√
1

M(M− 1) ∑M−1
m=0 [xm − x]2 , (39)

where
x =

1
M ∑M−1

m=0 xm. (40)

The last two formulae are valid for all the parameters in the MC model.

4. Example Application and Verification of Results

Let us present below the experimental results referring to the modelling of the real RIM
with the following rated data: Pn = 3.3 kW (rated power), Vsn = 400 V (rated stator volt-
age), Isn = 9.5 A (rated stator current), fn = 50 Hz (rated frequency), nn = 940 rpm/min
(rated rotational speed), ∆/y (winging connections), cos ϕn = 0.89 (rated power factor),
and ηn = 0.87 (rated efficiency). Single-phase resistances for the stator and rotor are 2.9 Ω
and 0.1 Ω, respectively.

Table 1 shows the measured results for the magnetisation characteristic obtained in
the idle state. The value of the current Is0, obtained for the rated voltage Vsn, was measured
with a digital instrument, and is equal to 5.60 A. The uncertainty associated with this
current was calculated using Equations (20) and (22), and is equal to 0.22 A.

Figure 6 shows the results obtained for the power loss in the stator iron ∆PFe using the
method shown in Figure 4 and Equations (23)–(30). The value of this power loss is 155.8 W,
and the linear equation that approximates the measurement points is

P0

(
Vs

2
)
= a0 + a1·Vs

2 = 41.5 + 9.74·10−4·Vs
2. (41)
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The uncertainty associated with this approximation is u
[
P0
(
Vs

2)] = 3.52 W.

Table 1. Measured results for the magnetisation characteristic in the idle state.

No. 1 2 3 4 5 6 7
Vs [V] 160 180 200 220 240 260 280
P0 [W] 70 70 81 85 95 110 120

No. 8 9 10 11 12 13
Vs [V] 300 320 340 360 380 400
P0 [W] 130 147 150 165 180 200

Figure 6. Results for the power loss in the stator iron ∆PFe.

The uncertainties associated with the parameters in the linear equation are u(a0) = 2.17
and u(a1) = 2.31·10−5, while the corresponding relative uncertainties are δ(a0) = 5.24%
and δ(a1) = 2.38%.

The uncertainty and relative uncertainty associated with the power losses, obtained
using Equations (31) and (32), respectively, are u(∆PFe) =2.18 W and δ(PFe) = 1.40%. The
measured results for the short-circuit state of the RIM are shown in Table 2. These results
enabled us to determine the parameters included in the circuit model shown in Figure 3,
using Equations (10)–(14).

Table 2. Measurement results for the short-circuit state.

Vsk [V] Isn [A]

168 9.5

The values of the voltages Vsn, Vs1, and Vsm were determined using analogue volt-
meters with an accuracy and measurement range of 0.5% and 400 V, respectively. The values
of the quantities KV, RFe, IFe, Img, Xmg, Xσs, and Cs, calculated using Equations (3)–(9),
are 4.167 V/V, 3.08 kΩ, 0.13 A, 5.59 A, 71.45 Ω, 2.23 Ω and 0.971, respectively. The cor-
responding uncertainties u(KV), u(RFe), u(IFe), u

(
Img
)
, u(Xmg), u(Xσs) and u(Cs) are

0.001 V/V, 55 Ω, 0.020 A, 0.22 A, 14.23 Ω, 0.22 Ω and 0.0070, respectively.
Table 2 shows the measured results obtained for the short-circuit state. Based on

these measurements, we can calculate the values of the parameters Rk, Xk, and Zk using
Equations (11), (13) and (14), respectively; we can then determine the corresponding
uncertainties using Equations (18)–(22). These measurements were made using a voltmeter
and ammeter with accuracy and measurement ranges of 0.50%, 200 V and 0.50%, 10 A,
respectively.

The values of the parameters Rk, Xk, and Zk and the associated uncertainties u(Rk),
u(Xk) and u(Zk) are 36.90 Ω, 40.92 Ω, 17.68 Ω, 1.62 Ω, 2.36 Ω and 1.08 Ω, respectively.

Based on the above parameters, the coefficient β and the associated uncertainty u(β)
were calculated using Equations (16) and (18) as 0.152 and 0.141, respectively. The value
of the relative uncertainty δ(β) is 92.8%. The high value of this uncertainty was due to
the significant complexity of Equation (16), which depends on eight indirectly measured
quantities.
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Table 3 shows the measured results for the torque-slip characteristic of the RIM.

Table 3. Measured points for the torque-slip characteristic of the RIM.

No. 1 2 3 4 5 6 7 8 9 10 11
s 0.004 0.018 0.036 0.054 0.074 0.095 0.128 0.154 0.181 0.213 0.253
T

[Nm] 0.00 2.55 3.63 4.41 5.00 5.59 6.18 6.47 6.75 6.83 6.67

No. 12 13 14 15 16 17 18 19 20 21
s 0.312 0.379 0.445 0.510 0.567 0.681 0.760 0.833 0.893 0.961
T

[Nm] 6.38 6.08 5.69 5.30 5.00 4.41 4.02 3.92 3.83 3.42

The values of the parameters Tmaxi and smaxi were determined intuitively, as shown
in Figure 5, as 7.00 Nm and 0.200, respectively. The values of the parameters Tmaxl, Tmaxh,
smaxl, and smaxh were assumed in advance around the above parameters. These values
define the draw ranges for the parameters Tmax and smax. The draw range for the coefficient
β is determined based on the associated uncertainty u(β) by Equation (33), as follows:

βl = 0.152− 0.141 = 0.011 and βh = 0.152 + 0.141 = 0.293.

A total of 2× 105 MC trials were carried out using the pseudo-random number gener-
ator with a uniform distribution. Equations (34)–(40) were applied to the execution of the
relevant numerical calculations using the MathCad 15 program, and the total computation
time was 3 h and 24 min. The calculations were performed on a PC with the following
parameters: Inter® Core™, Duo CPU E8400, processor ×64, 3.00 GHz, 4.00 GB RAM.

The minimum value ∆c
min for the vector ∆c and the corresponding number of trials

mmin were 3.581 and 95360, respectively. The values of the parameters Tmax
opt, smax

opt,
and βopt corresponding to quantity ∆c

min are 7.3861 Nm, 0.19721, and 0.28927, respec-
tively. The uncertainty u(MC) associated with the MC method is 0.032. The uncertain-
ties u(Tmax), u(smax), and u(β), associated with the parameters Tmax, smax, and β are
7·10−4 Nm, 1.3·10−4 and 1.82·10−4, respectively.

The relative uncertainty δ(β) associated with the coefficient β is u(β)/β =0.07%.
Based on these results, it should be noted that the value of the uncertainty δ(β) was
reduced from 92.8% (obtained from analytical calculations) to 0.07% (obtained using our
MC-based procedure).

Figure 7 shows the results from our MC-based model of the RIM for the example of
the TSC characteristic and using the EKE.

Figure 7. Results from our MC-based model of the RIM.

Figure 8 shows the distribution of the approximation uncertainty u(T) for the particu-
lar values of the slip s.
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Figure 8. Distribution of the approximation uncertainty for the TSC characteristic.

The highest value of the approximation uncertainty was obtained for the slip s within
the maximum slip value smax, as well as for the slip s with a value of about 0.85.

We now verify the implementation of our MC-based procedure by examining the
influence of the number of MC trials on the value of the uncertainty u(MC). The results for
the values of the parameters included in the EKE are given in Table 4.

Table 4. Results from our Monte Carlo procedure.

No. MC Trials 103 2× 103 104 2× 104 105 2× 105

u(MC) 0.4291 0.3214 0.1463 0.1038 0.0464 0.0327
T [Nm] 7.3313 7.3479 7.4250 7.3624 7.3800 7.3861

s 0.20024 0.19865 0.19741 0.19827 0.19748 0.19721
β 0.25231 0.27863 0.29152 0.28259 0.28993 0.28927

It can be seen from Table 4 that the values for the uncertainty u(MC) decrease as the
number of MC trials increases. The values of the EKE parameters obtained for 2× 105 MC
trials (the lowest number of MC trials recommended by the corresponding guide), were
assumed to represent the optimal solution to the modelling task for this example.

The results obtained in the section above show that the application of the MC method
and the polynomial procedure in particular allows for a significant increase in the accuracy
of the RIM modelling compared to other methods, which do not include analysis of the
modelling uncertainty.

5. Conclusions

This paper presents a procedure that allows us to assess the accuracy of modelling
of the RIMs on the example of the RSC and EKE, by applying the MC method. Based
on the numerical simulations and calculations performed for an example of the RIM, it
has shown that the effect of the uncertainty on the results of measurements is significant.
The proposed method is based on the corresponding guidelines for the implementation
of accurate measurements, and can significantly reduce the values of the uncertainties
associated with the parameters in the ECE. For example, for the coefficient β, the application
of our MC-based numerical modelling procedure reduced the value of corresponding
uncertainty from 92.8% (analytical calculations) to 0.07% (MC-based procedure). It should
also be emphasised that a further increase in the modelling uncertainty of both the TSC
and the other parameters in the equivalent circuit of the RIM can be obtained by using
more accurate measuring instruments, and by applying modern measurement techniques
based on specialised computer software such as LabVIEW.

The solutions presented in this paper can be used in other applications in the field of
electric machines and electric drives, for example in the precise determination of the char-
acteristics of all types of motors, or for the development of accurate measurement reports.
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