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Abstract: Nowadays, distribution network operators are urged by regulatory authorities to reduce the
load disruptions due to extreme weather events, i.e., to enhance network resilience: in particular, in
Italy they are required to present a yearly plan (called “resilience plans”) describing the interventions
aimed to improve network resilience. To this purpose, they need new methodologies and tools to
assess the network resilience and to quantify the benefits of countermeasures. This paper proposes
the application of a risk-based framework and tool to assess the impacts of extreme weather events
in T&D grids, which anticipate critical network situations in presence of incumbent weather threats.
To do this, the forecasting of weather events is combined with the component vulnerability models
in order to predict which components are more prone to fail. Based on this set of components,
the set of most risky contingencies is identified and their impacts on the distribution network in
terms of unsupplied load are quantified. The major advantage of the applied methodology is its
generality: in fact, it is applicable to both distribution and transmission systems as well as integrated
transmission and distribution (T&D) systems, considering the peculiarities of each type of grid,
in terms of operation, maintenance and component vulnerabilities. In particular, the application
refers to a distribution network connected to a portion of high voltage transmission system in a
mountainous zone, with focus on two major threats in the area, i.e., wet snow and fall of trees induced
by combined wind and snow. The methodology also quantifies the benefits brought to the system
resilience by countermeasures such as reconductoring, optimal reconfiguration or new right-of-way
maintenance procedures. Simulations demonstrate the ability of the methodology to support T&D
operators in an operational planning context in case of different incumbent threats.

Keywords: resilience; distribution network; wet snow; tree fall; vulnerability

1. Introduction

The increasing frequency of extreme weather events, affecting both distribution and
transmission networks, pushes distribution system operators (DSOs) and transmission sys-
tem operators (TSOs) to evaluate the impact of multiple dependent outages of components,
possibly leading to blackouts, and to deploy preventive or corrective countermeasures
aimed at absorbing the effects of such disruptive events and quick recovery, i.e., to in-
crease system resilience [1–6]. In this context, for instance, the current Italian regulation [4]
imposes operators to publish and update a plan for resilience enhancement on a yearly
basis. Even though significant steps have been made towards a systematic approach to
resilience assessment and management, the methodologies so far adopted in practice still
lack a sufficient generalization capability for an integrated assessment of grid resilience to a
comprehensive set of threats: in particular, the same kind of threat is analyzed by different
operators using different data and models, which may result in an unfair allocation of the
economic incentives supporting the implementation of the mitigation measures [5,6].
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Thus, the assessment of the effects of these extreme events on the grid and their mitiga-
tion call for an in-depth and harmonized analysis of the vulnerabilities of transmission and
distribution (T&D) components to natural threats, as well as of the capability of suitable
countermeasures to prevent the resulting -multiple dependent contingencies.

This objective is difficult also due to the fact that distinct analyses and distinct tools
are generally used to address transmission and distribution systems, hence the approaches
result in decoupling even though interactions can actually occur, e.g., the outage of high
vltage (HV) lines can cause the loss of supply of HV/medium voltage (MV) substations
with potential loss of supply to the customers at the distribution level. Reference [1]
proposes a tool to evaluate the benefits of resilience brought by the deployment of grid
hardening measures: they are typically focused on the transmission system and on one or
more specific threats, with ad hoc models for threats and component vulnerabilities. In [7],
the authors propose a methodology to study distribution network resilience to earthquakes
under two particular strategies: one that hardens substation infrastructures in order to
reduce their fragility levels, and the other one that uses additional network infrastructure
in the form of transfer cables to shift load between substations in case of major events.

This paper presents an application of a risk-based framework and tool [8,9] in order to
anticipate critical situations in the T&D system in the presence of incumbent weather threats.
The current literature on the topic, as in [1,7], focuses the study on one specific grid type
(transmission or distribution) and on a single threat (e.g., strong wind). The added value
of the application cases herein described consists of (1) highlighting the “comprehensive”
nature of the risk-based resilience assessment and enhancement problem of the relevant
adopted framework, (2) contributing to the verification of the tuning of the analytical model
of component vulnerabilities. With reference to point (1), the “comprehensive” nature of the
framework is clearly shown as respects: (a) a wide set of natural threats can be modelled,
including their combined effects on MV and HV grids in order to identify the most likely
component failures, (b) the response of the integrated T&D system to contingencies is
simulated, catching the potential mutual effects between MV and HV grids, (c) analytical
models for different countermeasures (reconductoring, optimal reconfiguration, etc.) are
adopted, which allows to quantify their benefits to system resilience thus to facilitate
cost–benefit analyses. With reference to point (2), the results of the application cases are
compared against the information coming from operators’ experience, in order to verify
the alignment between the analytical model outputs and the feedback from the field.

In order to highlight all these aspects, the application study analyses two different
threats (i.e., wet snow events with moderate wind, and tree falls due to strong wind), which
are applied to a grid model representing two MV feeders connected to a portion of the
Italian EHV transmission grid. The paper is organized as follows: Section 2 recalls the
basics and the formulation of the proposed comprehensive methodology for resilience
assessment and enhancement and describes the modeling adopted for two specific threats
taken as examples for the present paper, i.e., wet snowstorms and tree fall due to strong
wind, and the vulnerability models of T&D components to these threats. Section 3 presents
the T&D grid study cases. Section 4 discusses the results. In Section 5, some conclusions
are drawn.

2. A Reminder of RELIEF, the Methodology and the Tool for Resilience Assessment
and Enhancement

This section recalls the rationale and the main aspects related to the proposed risk-
based methodology for resilience assessment, as well as the architecture of the tool to
anticipate critical situations and evaluate the benefits of mitigation measures. Major details
can be found in [8].

2.1. The Rationale: CIGRE Definition of Resilience and the Bow Tie Model

The resilience assessment methodology is based on the following pillars:

• The CIGRE C4.47 definition of power system resilience [10];
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• The bow tie model described in [8] and aimed to conceptualize the connections
between threats, component vulnerabilities, and power system contingencies,;

• An extended concept of risk, clarified below.

The recent definition of power system resilience published by CIGRE WG C4.47
“Power System Resilience” [10] has proposed a distinction among the “resilience” property,
the application criteria and the system capabilities, i.e., the enabling factors to have a
resilient system.

The final definition of power system resilience proposed by CIGRE WG C4.47 and
published in [10] is reported below:

Power System Resilience is the ability to limit the extent, severity and duration of system
degradation following an extreme event.

Power system resilience is achieved through a set of key actionable measures to be taken
before, during and after extreme events, such as:

− anticipation,
− preparation,
− absorption,
− adaptation,
− rapid recovery and
− sustainment of critical system operation

including application of lessons learnt.
This definition is innovative with respect to most of the previous definitions from

the literature [11,12] because it is more accurate in defining the details of the action of the
disruptive event (characterized in terms of severity, extent and duration), and because it
operates a strict separation between resilience as a property and the key measures (shock
absorption, fast recovery, etc.) which allow to achieve it.

In particular, the way extreme events affect the system components and the grid
response to the contingencies triggered by the events themselves are clearly explained in
the bow tie model presented by the authors in [8]: natural and/or human-related threats
may lead to a contingency through a set of causes exploiting vulnerabilities, while the
contingency might lead to different impacts depending on the circumstances. The initial
impact may, in turn, affect other vulnerabilities, starting a cascading process that may
eventually result in a blackout.

2.2. The Risk-Based Modeling Approach

The overall process from threats to blackout is characterized by uncertainties, from
the forecasts of threats to the uncertainty in component vulnerabilities up to the possible
unexpected behaviour of power system protection, control, and defense systems’ response
to the contingencies. Risk can therefore represent a valuable concept to quantify the extent,
severity, and duration of system degradation.

In order to quantitatively assess the relationship between root causes (threats) and
power system disturbances (contingencies), an extended concept of risk is proposed: start-
ing from the classical concept of risk [13] as a triple (contingency, probability, impact), the
methodology defines the risk as a quadruple (threat, vulnerability, contingency, impact),
where the probability term is replaced by the probabilistic models associated with threats
and vulnerabilities. This means that, given a threat characterized in the most general terms
by the r-uple of stress variables S with values s = [s1 . . . sr], the failure probability of a com-
ponent in the time interval ∆t = t − t0 is expressed as a function of the average models (over
∆t) for the r-dimensional density function of stress variables S, p(∆t)

Thr
(
t0, s1 . . . sr, xj

)
, and

the conditional probability function of failure over ∆t, PV,j
(∆t)(t0, s1 . . . sr, xj

)
, respectively,

as in (1).

PF,j
(

xj, ∆t, t0
)
=
∫
S1

. . .
∫
Sr

PV,j
(∆t)(t0, s1 . . . sr, xj

)
· p(∆t)

Thr
(
t0, s1, . . . , sr, xj

)
ds1 . . . dsr (1)
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where xj is the location of component j subject to the r-ple of values [s1 . . . sr].
This extended risk definition allows to link probabilistic hazard assessment (PHA)

studies to security assessment (SA) analyses, focusing on the root causes of disturbances
and contributing to realize an integrated analysis framework and to complement conven-
tional security analyses based on N-1 criterion. More details are reported in [14].

The threats modeled in the methodology may range from natural disasters (ice and
snow storms, pollution, lightning, earthquakes, sabotage, earthquake-induced landslides,
floods, fires, tree contact, component aging) to deliberate acts of sabotage [8]. The proba-
bilistic models for threats over an operational planning time horizon (next 24–72 h) can
be derived from weather forecasting systems. The last term of (1) is calculated if one
knows the dependence of the stress variable pdf on location x (spatial dependence). Under
this aspect, the methodology is general and can include an accurate representation of the
geospatial distribution of the stress variables in case of available data from prediction
systems.

Any component is described in terms of a vulnerability function with respect to each
threat. The vulnerability models in (1) are analytical models which describe the interactions
between grid components and the stress variables characterizing each threat. These models
can also benefit from laboratory tests (e.g., characterization of mechanical fragility curves of
components). The major advantages of analytical models with respect to statistical models
widely used in the current literature [15] are:

• Analytical models describe the actual physical interaction between the component
and the environment; thus, they can also quantify the improvement in component
behaviour due to a reinforcement measure. Instead, statistical models based on past
fault events cannot quantify such improvement. This is an important aspect in order
to quantify the benefits of mitigation actions;

• Statistical models can be affected by errors in classifying the root cause of a fault,
especially when concurrent hazards are striking the components (e.g., wind, wet snow
in presence of interfering trees). In this case, classification errors may impair the
validity of the model.

Statistical models may still be the best option only when the causes of a threat are
not completely known or when a suitable analytical model to describe these causes is not
mature.

Each threat can cause the failure of one or more components, which in turn can
determine the intervention of primary and possibly backup protection systems. The
failures of components followed by the intervention of primary and/or backup protection
systems is called “contingency” henceforth. The set of contingencies to be analyzed in
depth is found through two main steps:

1. Identification of critical components using a cumulative sum screening technique
(i.e., critical components are the ones whose cumulative failure probability equals a
fraction δ of the cumulative failure probability of all components) [16];

2. Screening of the riskiest contingencies, exploiting fast impact assessment techniques
based on topological metrics [17].

An exhaustive set of single and multiple contingencies is generated by an enumeration
technique, starting from critical components [8]. In particular, the methodology accounts
for common mode and dependent events when analyzing multiple N-k (k > 1) contin-
gencies. Common mode events (e.g., outage of k branches subject to the same storm) are
studied considering the available geo-spatial model of the threat affecting the grid area
under investigation. Dependent events are (a) busbar contingencies (also accounting for
protection malfunctioning), (b) contingencies of multiple generating units within a single
power plant and (c) double circuit line outages.

Contingencies are subsequently screened on the basis of ex-ante risk indicators, ob-
tained by combining event probability with “fast” impact metrics, e.g., the number of
outage-affected components or topological metrics [17].
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2.3. Modeling the Response of Distribution Network and Transmission System

The response of the integrated T&D system to the retained contingencies is simulated
by means of a quasi-steady state simulator of cascading outages. Even though time domain
simulators are currently leaning in the context of cascading outage simulation, power
flow based simulators are still widely adopted in the literature to evaluate cascading
outages [18], especially for probabilistic risk-based analyses, because they represent a good
tradeoff between the complexity of the model (thus, the computational burden and the
interpretability of the results) and the accuracy of the results.

The cascading simulator accounts for the steady state response of major protection,
defence and control systems deployed in the networks. A strong point of the proposed
risk-based resilience assessment approach consists of the adoption of a unique simulator
to assess the response of both the transmission system and the connected distribution
networks (DNs).

These two types of grids are quite different from different points of view:

• Transmission systems are meshed while DNs are usually operated as radial systems;
• MV components may respond differently to the same threat with respect to HV

components: for example, a bare conductor overhead line (OHL) used both in HV
and MV applications is outaged when a tree falls on it, while an MV aerial cable can
continue operating.

To simulate the system response, the quasi-steady state simulator integrated in the
resilience assessment tool accounts for:

• Cascade line trippings due to the interventions of major protection systems (third
zone of distance relays or overcurrent protections) in transmission systems. Moreover,
the steady state responses of some relevant defense systems (such as manual load
shedding and under-frequency load shedding) are simulated [18]. The comparison
with dynamic simulations shows a good matching especially in the early stages of the
cascading (see [18]);

• The steady state responses of major control systems in transmission systems, such as
primary frequency and voltage regulation of generators;

• The switching of counterfeeds in DNs to restore customer supply after contingencies
in the DN, simulating the typical operational practice of DN operators;

• The possible reverse flows of active power from DN to transmission system due to
distributed generation (DG).

DG is currently modelled as fixed P and Q sources: thus, potential mitigation measures
such as intentional islanding are currently not modelled. To tackle component response to
threats, the present methodology is characterized by a vast library of vulnerability models
of both MV and HV components against the modelled threats, considering the design
peculiarities for each voltage level (e.g., the dimensions of line supports are chosen on the
basis of insulation requirements, the shield wires are usually absent in MV bare conductor
OHLs). These models are clearly specified for each threat: in the present paper, the focus is
on the vulnerability models of MV and HV lines against tree falls and direct actions of wet
snow and strong wind.

2.4. Data Input Modes for the Resilience Assessment Tool

The tool called RELIEF (REsiLIence mEasures for the grid) implements the risk-based
resilience assessment and enhancement analysis discussed in the previous section: the
workflow of RELIEF is described in [8]. The starting point for any tool which evaluates
power system resilience, such as RELIEF, consists of the data which characterize the threat
and the relevant component vulnerabilities: in fact, the availability of data to characterize
the probabilistic models is one of the main barriers to applying probabilistic techniques
in real-world power system operation [19]. Reliable data sources are required for proper
model tuning. In the case of short term analyses (operational planning), the geospatial
distribution of the stress variables (e.g., the mechanical tension on a conductor due to
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combined ice and wind load) which characterize each weather threat can be derived from
the geospatial distribution of the weather variables (temperature, wind speed, precipita-
tion rate, etc.) by means of causal physical models (e.g., the Makkonen model for snow
sleeve accretion [20]). The abovementioned weather variables are affected by forecast
uncertainties; thus, they are treated as stochastic variables.

The tool allows to characterize the probabilistic models of the threats via two modes:

• An engineering mode, where a standard geo-spatial model of the weather variables
is expressed via an analytical function characterized with few parameters which
define the intensity and the extension of the stress itself (e.g., wind peaks, maximum
precipitation rates, etc.) and which are subject to uncertainties. This mode is useful
in the context of a resilience oriented design of the network; it allows to perform
sensitivity analyses aimed at evaluating the component vulnerabilities and the system
response in case of threats with different features (intensity, location, extent) and in
the presence of different levels of deployment of countermeasures [9].
The final geospatial distribution of the stochastic stress variables is determined by
applying the uncertain parameters to the abovementioned standard model. More
details on the standard threat geospatial models adopted in the engineering mode can
be found in [21].

• An operational planning mode, where the weather variable geospatial distributions
come from a weather forecasting system.

In the operational planning mode, the tool integrates the k hour-ahead forecasts
provided by numerical weather prediction systems (e.g., high resolution NWP models,
the WRF-ARW and RAMS dynamic cores, and global model ECMWF, as adopted in [14])
to get an affordable probabilistic model of weather-based threats (in particular, wet snow
and strong wind events representing major sources of outages in specific zones of the
Italian grid).

Given the peculiarities which characterize each threat, the paper will focus on two
specific threats: the direct actions of combined wet snow and moderate wind, and the fall
of interfering vegetation on the lines induced by high wind speeds.

2.5. Wet Snow with Moderate Wind Speed: Modeling the Threat and T&D Component
Vulnerabilities

Under specific temperature conditions (0–2 ◦C), the snowflakes can partially melt
and settle on the conductor and join together not only by the mechanism of collision, but
also by the strong coalescence due to the presence of Liquid Water Content (LWC) in the
snowflakes that promotes the growth of sleeve typically cylindrical in shape around the
wire. The snow sleeves up to 15 cm in diameter can cause an extra load on conductors up to
8–10 kg/m, producing serious damage to OHLs. In some cases, the conductor undergoes
an extra load due to the intense wind blowing after the accretion event. The threat model
accounts for the wind speed and direction, the ambient temperature and the precipitation
rate. The methodology adopts the wet snow mass accretion model described by ISO [20].
The assumption of moderate wind speeds [22] is important to assure the simultaneity of
wet snow sleeve and wind induced actions: in fact, strong winds can cause removal of wet
snow from grid components. This threat affects transmission OHLs, distribution OHLs
and overhead cables.

The most vulnerable components to wet snow events are the OHLs with bare con-
ductors in MV and HV/EHV grids, and the aerial cables in MV networks. The present
methodology proposes a unique analytical model to describe the vulnerability of these
lines to wet snow, by adapting the model to the peculiarities of the design in the MV and
HV contexts.

The probabilistic vulnerability models for OHLs with bare conductors both in HV and
MV grids include the vulnerability of:

a. The phase conductors and the shielding wires (if present) which are affected by the
mechanical tension due to the combined ice-wind load;
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b. The tower support and cross-arms subject to combined force due to wind and ice
loads;

c. The tower foundations which can be subject to overturning or high compression
forces.

The insulator chains are another subcomponent of the line but they are not included
in the vulnerability model against wet snow events because their mechanical strength is
much higher than the one related to other subcomponents (such as cross-arms) which thus
determine the vulnerability of the whole line.

As for item (a), a mechanical fragility curve is evaluated for each phase conductor
and shielding wire. It consists of a lognormal distribution of mechanical tension with a
mean value equal to the expected tensile strength in kN for the conductor (e.g., in Italy,
170 kN for a 31.5 mm2 ACSR conductor used for phase conductors of HV lines, 45.4 kN for
a 150 mm2 ACSR conductor often used for MV OHLs) and a standard deviation equal to
2% of the expected value. The failure probability of individual line span is calculated by
combining the failure probability related to the phase conductors, the shielding wires and
the tower supports, cross-arms and foundations.

In distribution networks, OHL lines with bare conductors usually do not have shield-
ing wires. Moreover, the typical configuration for MV aerial cable lines consists of three
cables wrapped around a 9 mm diameter galvanized steel wire. The mechanical action on
cable lines is essentially carried out on the supporting wire, whose vulnerability is given by
a lognormal probability distribution with an expected value of 62 kN (for a 9 mm diameter
steel wire) and a 2% standard deviation.

The mechanical fragility for the supports of both HV and MV lines is characterized
starting from the available standard mechanical utilization curves as described in grid oper-
ators’ standardisation criteria for line design [22]. The developed vulnerability model [22]
is very general accounting for the combined effects of wind speeds and wet snow: in
particular, it can be applied for a wide range of wind speeds because it also models the
removal effect of strong wind speeds on a wet snow sleeve on the conductors.

The probability of failure of a 194 m-long line span characterized by a copper phase
conductor with a diameter of 14 mm and a rated tensile strength of 40.56 kN is reported
in Figure 1 as a function of the linear wet snow mass in kg/m and of wind speed in m/s.
This function shows the generality of the modeling approach in assessing the combined
actions of wet snow and wind on the grid infrastructure.

Figure 1. Vulnerability curves of the subcomponents for a line span, as a function of the linear wet
snow mass and wind speed [22].
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These vulnerability models characterize the mechanical response of both HV and MV
lines to combined actions of wind and wet snow.

The wet snow storms described in the present paper refer to the area highlighted by
the blue circle, characterized by moderate wind speeds (typically lower than 50 km/h) and
high wet snow loads. In fact, for high wind speeds, the removal effect is complete, and no
wet snow sleeve can accrete on conductors and shield wires.

2.6. Tree Fall: Modeling the Threat and T&D Component Vulnerabilities

Vegetation represents a significant cause of OHL failures in HV and MV grids [23]
and should be considered in resilience assessment analyses [15]. Tree-related failures may
be caused by (1) vertical contact due to tree growth, possibly combined with increased
line sag (responsible for only 2–15% of the total number of outages [24]), (2) fall of trees
or branches on poles or conductors, (3) lateral contact of branches with conductors due to
wind force, potentially involving trees from outside the right-of-way (ROW) of the lines.
These events typically occur during extreme weather events, whose frequency, extension,
and severity are generally increasing.

The main factors characterizing this threat are: tree linear coverage density (no. of
trees per km), tree species characteristics (trunk height, coniferous or broad leaf, maximum
breaking strength), soil features (humidity, etc.), possible diseases of the trees, weather
conditions (wind, snow, ice, etc.), orography (terrain slope).

In this regard, the availability of land cover data (CORINE database [25] in Europe)
may allow to characterize the tree contact threat.

The model of OHL vulnerability to tree contacts considers the interaction between
the geometry and the operating condition of the line (e.g., support height, span length,
flowing current), environmental factors (e.g., air temperature, wind speed, precipitation
rate), tree characteristics (e.g., its weight) and the spatial relationships between the tree and
the line [26,27].

This model described in [22] accounts for:

• Vertical contact due to trees in the ROW (this event is considered unlikely in the
Italian transmission and distribution systems as the operators fulfill the prescriptions
of Italian Standard CEI 11-4 [28]);

• Lateral contact due to fall of trees from outside the ROW;
• Lateral contact between the line catenary (inclined with respect to the vertical axis)

and the trees at the ROW boundaries (unlikely event, due to the strict prescriptions of
Std. CEI 11-4).

This model also includes the mutual effects between wet snow and strong wind,
e.g., the wet snow accumulation determines an increase in the line sag and in the vertical
component of the resulting force acting on the tree. Moreover, the snow accumulated on
tree branches reduces the streamlining of wind among tree branches, causing an increase
of the area exposed to wind action [22].

The model is qualitatively the same for MV and HV lines: the only quantitative
difference consists of the different dimensions of the line’s subcomponents (smaller in the
case of MV lines). The aerial cables deserve different considerations: in general, the fall
of a tree on them does not cause a fault due to the presence of the cable insulation. The
authors conservatively assume that the tree fall causes mechanical damage to the cable,
resulting in the cable itself becoming out of service.

More details on the vulnerability models of OHLs against interfering vegetation are
reported in [26].

2.7. Modeling of the Countermeasures against the Analyzed Threats on a DN

The second part of the CIGRE definition of system resilience reported in Section 2.1
includes a list of different phases in power system management where operators can deploy
mitigation measures to improve resilience.
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The measures to boost system resilience [9] in case of natural threats can be classified
into two categories:

• Passive approaches, aimed at improving the ability of the infrastructure not to be
damaged in case of threats, by preventing and minimizing the impact by means of
the introduction of redundancies, the hardening of the components, and the use of
protective barriers;

• Active approaches, taken in operational planning or operation stages and aimed to
minimize disruptions, to improve system absorption capability, and recovery speed.

Two examples of passive and active measures are, respectively, the reconductoring,
i.e., the upgrade of the mechanical strength of conductors by adopting larger diameters
for the conductors, and the optimal reconfiguration of counterfeeds. The former is mainly
effective against wet snow while the latter can provide benefits both in case of wet snow
and tree falls.

Reconductoring can be applied both to the HV and to the MV grids, given that in some
cases, a potential upgrade of the physical supporting infrastructure (i.e., the towers/poles)
must be performed in order to withstand the increased weight of the new conductors.

In a DN, the process of reconfiguring counterfeeds following a contingency that
determines the out-of-service of network components (for example MV connections, or
primary or secondary substations) can have different objectives:

• Maximize the load restored (main goal);
• Minimize the number of manoeuvres;
• Reduce active losses in the post-contingency network configuration.

The reconfiguration optimizer adopted in the tool exploits the modified Viterbi algo-
rithm [29]. The conversion of a bare conductor OHL into a cable and the realization of a
new counterfeed are also two hardening measures which are effective both against wet
snow and tree fall.

Other measures specifically effective to reduce the vulnerability of OHLs to tree fall
can be deployed, i.e.,

• The enlargement of the right-of-way of the line;
• The trimming of tree height (when permitted by legislation).

3. Case Studies

The described case studies intend to demonstrate the ability of the proposed method-
ology (and tool) to anticipate critical conditions in the integrated transmission and distri-
bution system. For the sake of brevity, the cases studies will analyse two threats (wet snow
events with moderate winds, and tree fall due to strong winds). However, the methodology
is general and its application to other threats (pollution, etc.) can be found in [30].

3.1. Test System and Summary of Simulations

The test system under study includes two MV feeders involved in the Deval DSO
“Smart Grid” project, promoted by the Italian Regulatory Authority ARERA [31], and a
portion of the surrounding HV/Extra High Voltage (EHV) transmission grid in Aosta Valley,
Italy (see Figure 2) around the HV/MV primary substation of Villeneuve, particularly
critical as it provides energy to a large area (770 km2).

The MV/HV grid model, derived from Deval [31,32], and Terna [33] public references,
includes 92 MV electrical nodes (of which 60 are MV/Low Voltage -LV- substation nodes),
8 EHV (220 kV) nodes, 10 HV (132 kV) nodes, 20 HV OHLs and 3 EHV/HV transformers.
In Figure 2, the codes of MV (EHV/HV) nodes begin with the letter “D” (“V”). Three
counterfeeds are present in the MV network and they connect nodes D63 and D26, D26
and D31, D12 and D46.

As described in Section 3, the threats under study are wet snow storms and the fall of
trees induced by strong winds. The time interval for the computation of the risk indicators
is set to 10 min. As far as wet snow storms are concerned, the analysis is performed in
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engineering mode in order to quantitatively assess the T&D grid response to events with
different intensities and in case of deployment of specific countermeasures. This kind of
study can help in a resilience-oriented design of the system. The values of the weather
variables are not provided by a weather prediction model (like in the operational planning
mode), but they are calculated on the basis of an analytical geospatial model for wet snow
events described in [21].

Figure 2. Integrated MV/HV/EHV grid: (a) map of the MV feeders and of the surrounding HV grid, (b) one-line diagram
of the two feeders.

Table 1 reports the expected values of the main parameters characterizing the wet
snow storm applied in engineering mode on the test system. The selected parameters do
not refer to any past extreme event but they are chosen within the typical ranges for the
threat under study (thus, temperature is limited between −0.5 and +1.5 ◦C so that wet
snow can form, and the wind speeds are moderate so that the wet snow sleeve can accrete
but there is no effect of snow removal). The model also accounts for the time evolution
of the wet snow storm and for the potential shedding of wet snow sleeves. In the present
simulation, the parameter “initial precipitation level” is used to summarize the evolution
of the storm from its beginning to the current moment of the analysis and it is linked to the
thickness of the sleeves accumulated on the OHL wires up to the current time.

Table 1. Expected values for parameters characterizing wet snow events.

Hazard Parameter S1 (Moderate) S2 (Severe)

Peak wind speeds 5–3 m/s 5–3 m/s

Precipitation rate 2 mm/h 2 mm/h

Initial precipitation level 65 mm 80 mm

Air temperature −0.5–1.5 ◦C −0.5–1.5 ◦C



Energies 2021, 14, 4742 11 of 25

As far as tree falls induced by wind storms are concerned, the analysis is performed in
“operational planning mode”, with the aim of anticipating critical system conditions due to
the incumbent threat. In particular, weather conditions play a fundamental role to quantify
the probability of tree falls on the lines. For this purpose, the study case uses the forecast
weather conditions referring to a severe wet snow storm in the north of Italy that occurred
in February 2015. The DEM (Digital Elevation Model) of the terrain is extracted from the
website at [32] and the “level-3” tree coverage information was retrieved from the CORINE
database [25]. In particular, the wind load assumed for the simulation is the maximum
value forecasted for the specific geographical location 72 h ahead, while the wet snow load
is computed considering the forecasted hours with the simultaneous presence of a non-null
precipitation rate in the temperature range (−0.5/+1.5 ◦C). The region under study was
marginally struck by the Feb 2015 event, and the highest values for the forecasted wind
speeds (mean value on a 4 × 4 km area) are around 45 km/h. Locally, wind gusts are
characterized by wind speed values much higher (also 2–3 times higher) than the mean
value forecasted by Numerical Weather Forecast, which is taken into account in the model.
The expected values of the parameters characterizing the trees (mainly larches) are reported
in Table 2 [26].

Table 2. Expected values for the parameters of tree forests in the studied region.

Parameter Measurement Unit Value

Linear coverage density inside ROW δin Nr of trees/km 10

Linear coverage density outside ROW δout Nr of trees/km 50

Tree height outside ROW m 20

Tree weight outside ROW kg/m3 800

Young’s Modulus MPa 12 106

Modulus of Rupture MPa 50 106

Rotational stiffness of roots kN m/rad 104

The vegetation species in the study, i.e., the larches, are characterized in a probabilistic
way, by representing the parameters as stochastic variables with Gaussian distributions
centered on the relevant expected values.

The geometric parameters of the lines (support heights, cross arm widths) are set on
the basis of design criteria from operators’ codes: in particular, most frequent values for
bracing widths and support heights for HV (MV) line towers are, respectively, 6 (0.8) m and
30 (12) m. Both copper and ACSR standard conductors are adopted for MV lines, while
ACSR standard conductors are used in HV and EHV lines [26].

The ROW value is set according to the Italian standard CEI 11.4 [28]. In particular, the
ROW half width is composed of the following contributions:

• The width of the largest cross-arm;
• The sag in maximum sag conditions (40◦ C in the north of Italy, or in Southern- Central

Italy at altitudes higher than 800 m, 40◦ C elsewhere, according to Std. CEI 11.4 [28])
with an inclination of 30◦ with respect to the vertical axis;

• A minimum distance for dielectric insulation related to the voltage level of the line
equal to 0.5 + 0.01 × Vnom;

• A fourth contribution set by the operator for deferrable maintenance.

The following mitigation measures are simulated:

• Wet snow—specific hardening measures.

# Reconductoring.

• Tree fall—specific hardening measures.

# Enlargement of ROW.
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# Height tree trimming.

• General active measures.

# Optimal redispatch.

• General passive measures.

# Adding a new counterfeed.

Table 3 reports the list of described simulation cases.

Table 3. Summary of the simulation cases.

Case ID Threat Scenario Measure

A1 S1 Anticipation

A2 S2 Anticipation

A3 W1 + T Anticipation

M1.1 S1 Reconductoring

M2.1 S2 Optimal redispatch

M3.1 W1 + T 30% enlarge ROW

M3.2 W1 + T Height trimming

M3.3 W1 + T Adding a new counterfeed

3.2. Case A1

In this simulation, a wet snow storm with moderate wind speeds is supposed to
affect the test system and to be centred at coordinates UTM 32T [359838, 5054271]. In
particular, wind peaks are limited to 5 m/s, but the wet snow persists with a relatively
high precipitation rate for a total duration of 32 h. This, in combination with temperatures
around 0 ◦C, causes significant wet snow sleeves up to 70 mm around the conductors
which determine the mechanical damage of the MV line conductors. Figure 3 reports the
geolocalization of the critical components, i.e., the components with the highest failure
probability. It is worth observing that all the damaged lines are MV lines with conductors
with 35 mm2 or 70 mm2 cross sections. Table 4 reports the list of the critical components
in detail with the relevant failure probability over the time interval of 10 min and the
subcomponent of the line which determines the line failure.

It is worth noticing that in all the critical MV lines detected, the most vulnerable
subcomponent is the phase conductor. This result is consistent with the maintenance
experience of distribution operators.

Table 4. List of critical components with the relevant failure probabilities over 10 min, case A1.

ID Failure Probability Damaged Subcomponent

D533311 - D543311: 0.86835 Conductor

D162311 - D192311: 0.68913 Conductor

D573311 - D583311: 0.56858 Conductor

D733311 - D753311: 0.4632 Conductor

D332311 - D352311: 0.4506 Conductor

D713311 - D723311: 0.38509 Conductor

D222311 - D232311: 0.079871 Conductor

D633311 - D643311: 0.055966 Conductor
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Figure 3. Map of the components with the highest failure probabilities, case A1. The colour legend
is the following: magenta is associated with probabilities between 1 and 0.8, red to probabilities
between 0.6 and 0.8, yellow to probabilities between 0.4 and 0.6, while cyan to probabilities between
0.2 and 0.4 and white to probabilities lower than 0.2.

Figure 4 indicates the actual mechanical tensions produced by the storm (blue dots)
on the MV and HV lines of the T&D system with their relevant rated tensile strength
(indicated with red squares).

Figure 4. Mechanical tension on phase conductors (a) in kN, and on shield wires (b) in kN, wet snow sleeve thickness on
shield wires (c), total load on OHL conductors (d), wet snow sleeve thickness on phase conductors (e), total load on tower
supports (f). Red squares represent the maximum admissible stress on the subcomponents. Components with IDs between
300 and 750 represents MV lines while components with IDs between 750 and 820 represent HV (132 and 220 kV) line,
case A1.
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After identifying the critical components, RELIEF generates the set of risky (multi-
ple, also dependent) contingencies involving the critical components, by considering the
ex-ante impact metrics equal to the number of outage-affected components (henceforth
named “contingency order”) and assuming a minimum ex-ante risk threshold which can
include also high order multiple contingencies with high impacts but low probabilities
(this threshold is set to 10−10 after a try and error approach).

Figure 5 reports the contributions of the different contingency categories to the total
risk of loss of load. In particular, the label “N-k branch” refers to the common mode N-k
branch contingencies, while “N-k dependent” refers to multiple dependent contingencies
(e.g., busbar contingencies). It is worth noting that the major contribution to the risk
indicator comes from multiple common mode branch contingencies. Therefore, these
contingencies cannot be ignored in resilience analyses. The total risk of loss of load is equal
to 0.41 expected lost MW: 75% of total risk is due to N-2, N-3 and N-4 common mode
branch contingencies.

Figure 5. Contributions to the total LOL risk of each contingency category, case A1.

3.3. Case M1.1: Reconductoring

This simulation assumes that all the critical branches with 35 mm2 cross section are
upgraded with 70 mm2 cross-section conductors. Figure 6 reports the geolocalization of
the critical branches.
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Figure 6. Map of the components with the highest failure probabilities, case M1.1.

Table 5 reports the list of critical components. It can be noticed that there is a reduction
in the number of critical components, as well as a decrease of the probability of failure due
to wet snow induced stress.

Table 5. List of critical components with failure probabilities over 10 min, case M1.1.

ID Failure Probability Damaged Subcomponent

D733311 - D753311: 0.4632 Conductor

D713311 - D723311: 0.38509 Conductor

D633311 - D643311: 0.055966 Conductor

D162311 - D182311: 0.055026 Conductor

D603311 - D613311: 0.026015 Power supports

D242311 - D252311: 0.025488 Conductor

D643311 - D663311: 0.02514 Conductor

Figure 7a compares the contributions to the total loss of load risk indicator between
cases A1 and M1.1. It is worth noticing that the total LOL (Loss Of Load) risk passes from
0.41 expected lost MW in case A1 to 0.16 in case M1.1, showing a 61% reduction. This
allows to quantify the benefits to resilience brought by the reconductoring measure. In
particular, the major contribution comes from N-2 branch contingencies. Additionally,
Figure 7b shows a quite clear trend: the higher the contingency order of multiple branch
contingencies, the higher the median impact provoked in terms of loss of load.
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Figure 7. Risk analysis results for case M1.1: (a) contributions of different contingency orders to the LOL risk with respect
to base case A1, (b) median impact per contingency category.
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3.4. Case A2: Severe Wet Snow Storm

This simulation considers a more severe wet snow storm with respect to the one
described in case A1: in particular, the precipitation rate is still 2 mm/h with low wind
speed peaks but the accumulated snow precipitation is set to 80 mm instead of 65 mm. The
consequence consists of larger wet snow sleeves on the conductors and shield wires, thus
larger mechanical stresses on all the subcomponents of the MV and HV OHLs.

Figure 8 reports the geolocalization of the critical components.

Figure 8. Geolocalization of critical components, case A2.

Table 6 reports the complete list of critical components. It is worth noting that both
MV and HV branches are included in the list. The most vulnerable subcomponents for
MV lines are the phase conductors, which is consistent with DN operators’ operational
experience. Moreover, for such large wet snow sleeves, HV lines also show large failure
probabilities especially due to damages to shield wires (see for example lines V09-V20
and V10-V05). The TSO’s operational experience indicates that the conductors are in fact
the least vulnerable subcomponents, while supports and shield wires are more subject to
mechanical damages due to wet snow loads. These feedbacks from DSOs and TSOs grid
operational experience confirm the soundness of the proposed physics-based analytical
models for component vulnerability.



Energies 2021, 14, 4742 18 of 25

Table 6. List of critical components with their failure probabilities over 10 min, case A2.

LINE ID Failure Probability Damaged Component

D332311 - D352311: 0.99999 Conductor

D533311 - D543311: 0.99998 Conductor

D573311 - D583311: 0.99997 Conductor

D733311 - D753311: 0.99996 Conductor

D713311 - D723311: 0.99989 Conductor

D162311 - D192311: 0.99666 Conductor

V091111 - V201111: 0.96916 Shield

D773311 - D783311: 0.92208 Conductor

V101111 - V051131: 0.88755 Shield

D633311 - D643311: 0.88521 Conductor

D412311 - D422311: 0.8701 Conductor

V071111 - V081111: 0.83787 Shield

V071111 - V171111: 0.80166 Shield

D643311 - D663311: 0.77317 Conductor

V191111 - V171111: 0.73782 Shield

D883311 - D893311: 0.71867 Conductor

D603311 - D613311: 0.7069 tower supports

D853311 - D863311: 0.67928 Conductor

D422311 - D432311: 0.66223 Conductor

D673311 - D693311: 0.65822 Conductor

D863311 - D883311: 0.65028 Conductor

D222311 - D232311: 0.64161 Conductor

V091111 - V051131: 0.60362 Shield

V191111 - V201111: 0.59542 Shield

D162311 - D182311: 0.59466 Conductor

V051311 - D072311: 0.48493 Conductor

D162311 - D172311: 0.48129 Conductor

D392311 - D402311: 0.44766 Conductor

V121211 - V051211: 0.44613 Conductor

D893311 - D903311: 0.43029 Conductor

D242311 - D252311: 0.34717 Conductor

D833311 - D843311: 0.28585 Conductor

D733311 - D773311: 0.27145 Conductor

V151211 - V161211: 0.25849 Conductor

V131211 - V051211: 0.25262 Conductor

D663311 - D673311: 0.24607 Conductor

V051322 - D092311: 0.18891 Conductor

D382311 - D392311: 0.18506 Conductor

D793311 - D803311: 0.18033 Conductor

D402311 - D412311: 0.1718 Conductor

D753311 - D763311: 0.14452 Conductor

V141211 - V171211: 0.11793 Conductor

V211211 - V221211: 0.10208 Conductor
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Moreover, among MV branches all 35 and 70 mm2 show significant failure probabili-
ties, while MV branches with ACSR conductors with 150 mm2 cross-section do not appear
in the list of critical components due to the fact that they have a very low initial tension
(9.3%) which improves their ability to withstand heavy snow loads.

3.5. Case M2.1: Optimal Reconfiguration during Severe Storm

This scenario considers the N-2 outage of two critical branches connecting MV nodes
D41-D42 and D16-D19 in the A2 base case, which causes the loss of supply of many
customers connected to the Rhemes Valley feeder.

Table 7 compares some performance indexes (percentage of restored load, post contin-
gency minimum voltage and active power losses) for the switching configurations with
one or two switching on the three available counterfeeds. The “configuration” column
reports the status of the three counterfeeds: 1 means “closed” while 0 means “open”.

Table 7. Performance indicators for different counterfeed configurations in case of the outage of
branches D41-D42 and D16-D19.

Configuration % of Restored Load Mv [p.u.] Plosses [MW]

0 0 1 65.81 0.9956 0.0116

0 1 0 48.29 0.9987 0.0087

0 1 1 65.81 0.9956 0.0116

1 0 0 82.48 0.9971 0.012

1 0 1 100 0.9956 0.0149

1 1 0 82.48 0.9975 0.0109

Two main remarks can be derived:

• In the present case, there is no “one switching” reconfiguration of a counterfeed (k = 1)
which allows to restore all the unsupplied load.

• After checking all the reconfigurations of two counterfeeds (k = 2), only one of these
reconfigurations, specifically XD63-D26 = 1, XD26-D31 = 0 and XD12-D46 = 1 (1 = “closed”,
0 = “open”), allows to restore all the unsupplied load with a minimum number of
maneuvers, while preserving the radiality of the post-contingency network topology.

3.6. Case A3: Tree Falls Due to High Wind Speeds

This simulation assumes that the same area under study is affected by the severe
weather conditions which occurred in the north of Italy in February 2015. As reported in
Section 3.1 the wind speeds and wet snow precipitation rates correspond to the maximum
values forecasted on the occasion of this severe real event. Strong wind has both direct
effects (direct actions) and indirect effects (falling trees) on OHL subcomponents. The
methodology is able to simulate both effects. In particular, considering the limit of wind
speed for OHL design (130 km/h), the major source of damage is due to the fall of trees
induced by strong winds.

Figure 9 reports the geolocalization of the critical components for tree falls and the
localization of the areas covered by tall trees according to the CORINE database [25].
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Figure 9. (a) Geolocalization of critical components due to tree falls; (b) geolocalization of areas characterised by tall trees
based on CORINE information [25], case A3.

The set of critical components is reported in Table 8.

Table 8. List of critical components with their failure probabilities over 10 min, case A3.

Line ID Failure Probability

D853311 - D863311: 0.88837

D863311 - D883311: 0.86207

D903311 - D913311: 0.79399

D883311 - D893311: 0.64361

D893311 - D903311: 0.51418

D843311 - D853311: 0.31828

It is worth noticing that all the lines with a high probability of failure due to tree falls
belong to MV feeders, because of the smaller dimensions of the towers with respect to HV
lines. The criticality of the branches in the southern part of the Valsavarenche feeder is
confirmed by the DSO resilience plan [34] where the DSO reports relatively low resilience
indexes and low return periods of outage (due to the dominant threat of “tree fall”) for the
MV/LV substations (e.g., Degioz) connected to the last part of the above-mentioned feeder.
This fact suggests a good matching between the resilience assessment tool outcomes and
the DSO feedbacks from the field.

Again, the tool identifies the set of risky contingencies involving those critical compo-
nents. Figure 10 reports the contributions to the total risk of loss of load on the basis of the
order and type of contingencies. The total LOL risk is equal to 0.51 expected lost MW’s.
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Figure 10. Contributions of contingency orders to the total LOL risk, case A3.

3.7. Case M3.1: 30% Enlargement of the ROW

The 30% enlargement of the ROW for MV lines does not provide any benefits to
resilience, because according to the indications of the Italian standard CEI 11.4 the ROW
is around 8–10 m for 15 kV lines (which means around 5 m per side). Given the mean
height of the trees (i.e., 20 m) outside the ROW and the relatively low height of the MV line
supports, the 30% enlargement does not avoid the interception of the line by the falling
tree. On the other side, larger increments of the ROW would not be permitted by actual
legislation, thus they are not realistic. The simulation carried out confirms the same set of
critical components with the same failure probabilities.

The ROW enlargement is effective when the line support heights are comparable with
the height of the trees outside the ROW, i.e., in case of HV lines exposed to interfering
vegetation.

3.8. Case M3.2: Tree Height Trimming

In this case, it is assumed that a 5 m trimming is applied to the trees outside the ROW
of the MV critical lines. The measure is effective; in fact, its implementation brings to the
absence of critical components and carries a negligible risk of loss of load due to tree falls.

3.9. Case M3.3: Introduction of a New Counterfeed

This simulation considers the construction of a new counterfeed between nodes 48
and 91. The same situation as in case A3 is simulated but the response of DN also accounts
for the availability of the new counterfeed.

Figure 11 compares the contributions to the total LOL risk for the present case M3.3
and base case A3. It can be noticed that the LOL risk passes from 0.51 in case A3 to 0.27
expected lost MW in case M3.3, showing a 47% reduction. This also justifies the choice of
building the counterfeed which has been proposed in the DN operator resilience plan [34]
to counteract faults in the area of nodes 84–90.
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Figure 11. Contributions of contingency orders to the total LOL risk, case M3.3 vs. base case A3.

4. Discussion

A major condition for the applicability of the proposed resilience assessment and
enhancement methodology discussed in the present paper consists of the verification of the
analytical physics-inspired models for component vulnerability to the modelled threats.
Given the low number of failure events available from operators’ recordings, it is hard to
validate such models against failure statistics. However, several elements can be mentioned
to support the capabilities of the developed vulnerability analytical models, at least with
reference to the specific threats (wet snow and tree falls):

• With reference to wet snow events, in [14] the authors have applied the tool in the
operational planning mode in order to anticipate potential critical lines due to me-
chanical damages for wet snow and wind loads during a real wet snow storm, which
occurred in the north of Italy on 5–7 February 2015 on the basis of the weather forecasts
produced on Feb 4. The simulations have shown a good matching between the list
(updated hour by hour) concerning the OHLs with the highest failure probabilities
and the set of OHLs which actually failed during the Feb 2015 event. Moreover,
simulations of case A2 in the present paper also indicate that the most vulnerable
subcomponent of MV (HV) OHLs is the conductor (cross-arms and support), which is
confirmed by DSOs’ and TSO’s operational experience.

• As far as tree falls are concerned, in [22] the authors show that a typical value of wind
speed which provokes the failure of OHL spans for indirect effects (i.e., interfering
vegetation) with a not negligible (>10%) failure probability is around 70 km/h: the
comparison of this threshold with the wind speed values recorded during some past
events in the Italian grid (e.g., Vaia storm in 2018) confirms the soundness of the
threshold evaluated with the analytical model. Moreover, as described in case M3,
the combination of the CORINE database with the developed OHL vulnerability
models allows to identify critical branches due to tree falls in the grid (last part of the
Valsavarenche feeder).

The above-mentioned aspects confirm the capabilities of the proposed vulnerability
models, which are essential conditions to assure the applicability of the results (failure
probability of components, thus the probability of multiple contingencies in the grid).

The reported simulation cases demonstrate the ability of the tool to quantify not only
the resilience of the integrated transmission and distribution system in case of an extreme
event, but also the risk reduction of an unsupplied load which can be achieved via each of
the simulated countermeasures. In this regard, Table 9 summarizes the LOL risk indicators
for the resilience assessment of simulation cases A1 and A3, also highlighting the benefit of
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the applied countermeasures measured as the difference between the LOL risk indicator
before and after the countermeasure deployment.

Table 9. Summary of resilience assessment results: LOL risk indicators before and after measure deployment, base cases
A1, A3.

Case ID Threat Scenario Measure
LOL Risk before

Measure Deployment
[Expected Lost MW]

LOL Risk after
Measure Deployment
[Expected Lost MW]

Technical Benefit,
∆ LOL Risk

[Expected Lost MW]

A1 S1 Anticipation 0.41 - -

A3 W1 + T Anticipation 0.51 - -

M1.1 S1 Reconductoring 0.41 0.16 +0.25

M3.1 W1 + T 30% enlarge ROW 0.51 0.51 0

M3.2 W1 + T Height trimming 0.51 0 +0.51

M3.3 W1 + T Adding a new
counterfeed 0.51 0.27 +0.24

As far as severe wet snow storms in threat scenario S2 are concerned, the base case A2
is characterized by very severe multiple N-k branch contingencies affecting both transmis-
sion and distribution infrastructure. The active countermeasure simulated in case M2.1
allows to rapidly restore the whole load of DN for a specific low order N-k contingency,
bringing a benefit to resilience in terms of reduction of the energy not supplied to MV/LV
customers.

5. Conclusions

This paper has presented a comprehensive risk-based methodology and tool to assess
and enhance the resilience of T&D systems subject to different threats. Simulations, per-
formed on a detailed model of a real-world MV grid (i.e., two MV feeders in the Deval
network in Aosta Valley) integrated with the surrounding HV/EHV grid, have demon-
strated the main capabilities of the approach, i.e., its ability to simulate different threats, and
the relevant response of the MV/HV grid, its flexibility to model the detailed vulnerability
curves of both MV and HV grid components, and its ability to quantify the benefits of
some resilience boosting measures (e.g., tree height trimming, reconductoring, optimal
redispatching), in terms of reduction of loss of load risk, in case of threats with different
severities. Performed simulations have confirmed the good agreement of the analytical
models for component vulnerability with the operators’ feedback from the field.

Though the described examples focus on wet snow events and tree falls due to strong
winds, the methodology can simulate a wide set of natural threats thanks to its general
modeling framework, and it may represent a useful tool for resilience-oriented planning
and operational planning. Even though the application cases refer to a specific DN (in
Aosta Valley), the methodology is general and can be applied to any DN, provided that
enough data are available to characterize the vulnerability of DN components to the specific
threat under study. Further works will consist of a refinement of the modeling of the DN
response to disturbances by including DG and storage. Modeling these devices will allow
to enlarge the set of modelled mitigation measures.
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