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Abstract: Human functioning related to living and economic activity involves generating an increas-
ing amount of sewage and sludge, which needs to be subjected to advanced processes of treatment,
neutralization, and management. The deterioration in the susceptibility of excess sludge to biochemi-
cal decomposition observed under anaerobic conditions leads to the development and application
of highly effective methods of wastewater treatment based on the removal of biogenic compounds
using activated sludge, with a high degree of sludge thickening obtained in mechanical facilities.
The concentration of volatile fatty acids, being an important intermediate product of anaerobic
stabilization, directly determines biogas production efficiency. This study aimed to determine the
effect of chemical disintegration with peracetic acid on biogas production efficiency using methane
fermentation of pretreated sludge. Intensification of the hydrolysis phase is an important determinant
of the efficiency of biochemical sludge decomposition under anaerobic conditions. The association
of excess sludge oxidation, initiated by peracetic acid with biological hydrolysis, which is the first
phase of methane fermentation, led to an increase in sludge digestion degree and biogas production
efficiency. The compound of STERIDIAL W-10, which is an aqueous solution of 10% peracetic acid,
10% acetic acid, and 8% hydrogen peroxide, was used. The disintegration of excess sludge with a
reactant dose of 3.0 mL of STERIDIAL W-10/L yielded a specific biogas production of 0.52 L/g VSS
and a 74% degree of sludge digestion.

Keywords: disintegration; peracetic acid (PAA); anaerobic stabilization; biogas; digestion degree

1. Introduction

Subjecting excess sludge to disintegration under the most favorable process conditions
improves the effectiveness of methane fermentation. Depending on the energy supplied to
the sludge, disintegration methods can be divided into mechanical, thermal, chemical, and
biochemical (enzymatic) methods, as well as hybrid methods, which are a combination of
the above [1].

According to literature data, chemical methods lead to oxidation and dissolution
of organic compounds contained in sludge [2,3]. The application of pretreatment before
anaerobic stabilization not only accelerates hydrolysis but also improves sludge suscep-
tibility to biodegradation and dewatering, limits its foaming, and reduces the content of
pathogens present in the sludge [4–11]. According to Sridhar Pilli et al. [12], the rate of
biogas production is directly proportional to the sludge liquefaction factor.

Pretreatment of excess sludge using chemical reagents to break down single and
clustered cells of microorganisms contained in the sludge leads to the release of intracellular
organic matter into the liquid phase, and it also increases the availability of these substances
to bacteria living in the sludge. Liquid substances in the hydrolysate are rich in organic
compounds because fats and carbohydrates are converted into easily degradable forms,
whereas proteins lose their protective enzymatic structure [13,14].

Based on data in the literature [15–17], it is known that the choice of reactant, its dose,
and the appropriate time of its action have a great effect on the degree of disintegration.
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Chemical methods of disintegration using the energy of chemical reactions can be
divided into the methods of advanced oxidation (based on the Fenton reaction, hydrogen
peroxide, and ozone) and chemical methods using strong acid or alkali in amounts causing
pH to reach close to extreme values [18,19].

The chemical methods also include wet oxidation, which consists of sludge oxidation
under conditions of elevated pressure. This process simultaneously involves the oxidation of
organic compounds and thermohydrolysis, which is the main disintegrating agent [20–22].

Currently, methods based on the disinfecting power of oxidants such as ozone, hydro-
gen peroxide, chlorine, and chlorine dioxide are commonly used in sludge decomposition
studies. Only a few researchers have used a combination of the effect of these reactants
with anaerobic stabilization. An alternative to the above-mentioned reactants is the use of
peracetic acid [23,24], which is available on the chemical market in the form of an aqueous
solution of acetic acid, peracetic acid, and hydrogen peroxide. Peracetic acid, with an
oxidation potential of 1.81 eV, has many applications in the medical and food industry as
a disinfectant and an oxidizing agent. As reported by Domínguez Henao et al. [25–27],
in addition to its high efficacy, peracetic acid is characterized by no toxic degradation
products. As a result of the action of PAA, low concentrations of DBP were observed,
mainly carboxylic acids, which are not considered genotoxic. It was found that there is no
evidence of endocrine or ecotoxicological disturbances of human health. Furthermore, it
was observed that disinfected wastewater with PAA in the concentrations used typically
in sewage treatment plants had limited toxic, mutagenic, or genotoxic effects on aquatic
organisms.

Oxidation of organic compounds with peracetic acid occurs through the formation of
hydroxyl radicals, which react with organic substances according to the following reaction:

RH + OH*→ H2O + R* (1)

The resulting organic radical reacts with the other components [28].
According to Yoon et al. [29], hydroxyl radicals are efficient oxidizing agents formed

by the Fenton reaction. According to the radical theory, the course of the Fenton reaction
can be generally represented by the equation:

Fe2+ + H2O2 + H+ → Fe3+ + H2O + OH• (2)

However, the course of the Fenton reaction is complex.
Hydroxyl radicals formed in the Fenton reaction oxidize organic substances (RH) and

produce highly reactive organic radicals (R•):

RH + HO• → H2O + R• (3)

According to Braun et al. [30], hydroxyl radicals can react with organic compounds in
three ways:

- Through dehydrogenation, with this reaction usually taking place in unsaturated
organic compounds:

HO• + RH→ R•+ H2O (4)

- Through electrophilic addition:

HO• + X2C = CX2 → X2C(OH) − C•X2 (5)

- Through electron transfer:

HO• + RX→ XR• + HO− (6)
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The above-mentioned processes lead to the formation of organic radicals with an
unpaired electron on the carbon atom (carbon radicals), which react with dissolved oxygen
to produce peroxyl radicals according to the reaction:

R• + O2 → ROO• (7)

Peracetic acid in an aqueous medium decomposes to water and acetic acid, which is a
valuable substrate for methanogenic microorganisms responsible for biogas production.

According to Fleck et al. [28,31], peracetic acid causes the oxidation of a part of the
organic suspension in the sludge with simultaneous inactivation of sludge microorganisms.

As demonstrated by Shang Meng et al. [32], sludge disintegration with peracetic acid
at a concentration of 0.011% and a pretreatment time of 12 h leads to an approximately 72%
increase in biogas production. Furthermore, the study by Appels et al. [33] showed that a
dose of peracetic acid amounting to 25 g/kg T.S. of sludge yielded a ca. 21% increase in
biogas production.

It should be noted that sludge pretreatment with peracetic acid at the dose of peracetic
acid of 40 g/kg T.S. and higher, due to the high concentration of volatile fatty acids of
12,000 mg CH3COOH/L, led to the deactivation of anaerobic microorganisms, consequently
resulting in a decrease in biogas production intensity [34].

According to Neis [35], a maximum degree of ca. 40% sludge digestion can be achieved
during conventionally conducted anaerobic stabilization of excess sludge. Therefore, the
disintegration of excess sludge using peracetic acid is technologically advisable due to the
possibility of an increase in the degree of sludge digestion, intensification, and shortening
of the hydrolysis phase, and an increase in the efficiency of biogas generation.

In conclusion, an important advantage of peracetic acid disintegration is no secondary
contamination of sludge due to the absence of toxic or mutagenic oxidation by-products
or chemical residues [36,37]. The products of acetic acid breakdown are water and acetic
acid [33]. The oxidation of organic compounds with peracetic acid occurs through the
formation of hydroxyl radicals, which interact with organic compounds: RH + OH*→
H2O + R*. However, the produced organic radicals R* react with other components [33].

Therefore, the aim of this study was to determine the effect of chemical disintegration
with PAA on biogas production efficiency using methane fermentation of the sludge after
pretreatment. The novelty of the research is the application of a highly effective method of
oxidation with the use of peracetic acid based on the most favorable treatment conditions
to generate biogas from excess sludge. In this research, the most favorable conditions of
sludge disintegration with peracetic acid were determined by analyzing changes in the
pH value, alkalinity, acidity, dissolved chemical oxygen demand, and the concentration of
volatile fatty acids. After the methane fermentation process, the degree of sludge digestion
and biogas yield were determined while simultaneously conducting an analysis of daily
biogas production intensity with consideration of the volumetric ratio of methane.

2. Materials and Methods
2.1. Materials

To achieve the aims of this study, excess sludge was used as a basic substrate in
laboratory experiments concerning disintegration and in the next stage of conventional
methane fermentation and assisted disintegration. Furthermore, during anaerobic stabiliza-
tion, digested sludge was used as an inoculum. Sludge was collected from a mechanical
and biological treatment plant at an increased nutrient removal rate. Due to the nature
of the research, sludge from a large sewage treatment plant was selected for laboratory
experiments, with the technology of sludge disposal allowing for potential implementation
of the technological processes based on disintegration methods. A general characterization
of selected physicochemical parameters determined for the sludge studied is presented
in Table 1.
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Table 1. Characterization of the substrates in the study.

Physicochemical Parameter/Unit
Type of Sludge Used in the Experiment

Excess Sludge Digested Sludge (Inoculum)

Total Solids (TS) 12.35 g/L ± 0.23 17.54 mg/L ± 0.11

Volatile Susprended Solids (VSS) 9.12 g/L ± 0.16 12.76 g/L ± 0.21

Soluble chemical oxygen demand (SCOD) 168 mg O2/L ± 6 1124 mg O2/L ± 14

Volatile fatty acids (VFAs) 75 mg CH3COOH/L ± 1.5 692 mg CH3COOH/L ± 3

Alkalinity 860 mg CaCO3/L ± 5 2760 CaCO3/L ± 10

Kjeldahl nitrogen 115 mg N/L ± 3.1 732 mg N/L ± 2.3

Ammonium nitrogen 59 mg N-NH4/L ± 1.7 582 mg N-NH4
+/L ± 1.2

pH 7.03 ± 0.05 7.31 ± 0.11

2.2. Technological Examinations

The research concerned the course of methane fermentation conducted in a conven-
tional way and supported by chemical disintegration with peracetic acid (PAA).

The first stage of the research involved the disintegration of excess sludge with
peracetic acid. A compound with the trade name STERIDIAL W-10 was used, which is
an aqueous solution of 10% peracetic acid, 10% acetic acid, and 8% hydrogen peroxide.
Selected doses of the tested reagent were used (0.5 ÷ 8 mL STERIDIAL W-10/L), and
the pretreatment times using the chemical method were 1, 4 h, and 8 h. To chemically
disintegrate the sludge, a mixture of excess sludge and reagent was pretreated at an
appropriate dose selected for testing. Acid disintegration of sewage sludge was carried
out at an ambient temperature in laboratory flasks protected from air and placed in a
laboratory shaker.

The values of VFAs and SCOD were corrected by the value of these indices derived
from the dose of peracetic acid, and acetic acid added into the sludge, which was the
components of the reagent, i.e., STERIDIAL W-10, taking into account their percentage
content in the solution and their density. As recommended by Appels et al. [33], it was
assumed that peracetic acid was completely decomposed to acetic acid in the aqueous
medium, and its value was calculated as 1.07 g O2 = 1 g CH3COOH.

The results were the basis for the determination of the most favorable pretreatment
conditions, for which the highest value of soluble chemical oxygen demand (SCOD) and
the highest increase in the concentration of volatile fatty acids (VFAs) was obtained.

In the second stage of the study, methane fermentation of non-pretreated sludge and
the sludge subjected to chemical oxidation with peracetic acid was carried out. The 26-day
anaerobic sludge stabilization was performed in a glass cylinder digester (Applicon, USA)
with an active volume of 5 L. The system was equipped with an installation for biogas
collection and a device to ensure optimum mixing rate and to maintain a constant process
temperature. A water jacket was placed outside to heat the sludge that fills the chamber. A
platinum thermoelectrode placed inside the chamber ensured that the correct temperature
was maintained. The stirrer had an option to control the rotational speed in the range of
0–1250 rpm. The mixing speed for all the processes carried out in the experiment was
constant at 120 rpm. The system for biogas capture consistsed of a cylinder with an active
volume of 2.5 L filled with a saturated sodium chloride solution and a 5 L compensation
cylinder. Reading of the volume of the generated biogas collected in the cylinder was
made based on the volume of the liquid displaced by the gas filling the vessel, with its
excess (based on the principle of the communicating vessels) flowing into the compensation
cylinder. The course of the fermentation was controlled every day based on gas production
intensity. Figure 1 shows the digester with the installation used to control adequate mixing
rate, maintain a constant process temperature, and capture the biogas.
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The scope of the partial research tasks included:

• Determination of the impact of disintegration on the value of indices of susceptibility
of the sludge to biodegradation;

• Determination of the effect of disintegration with peracetic acid on the structure of
pretreated excess sludge;

• Determination of the effect of the disintegration carried out by a chemical method with
the most favorable pretreatment conditions on the efficiency of anaerobic stabilization,
i.e., biogas production intensity, methane content, and the degree of mineralization of
excess sludge.

Mixtures of non-pretreated and disintegrated excess sludge were stabilized and in-
oculated with digested sludge to initiate the process, assuming a volumetric ratio of the
above-mentioned sludge of 10:1.

The following mixtures of sludge were subjected to anaerobic stabilization:

- Sludge A: raw excess sludge + inoculum;
- Sludge B—excess sludge chemically disintegrated using an acidic reagent at a dose of

3 mL of STERIDIAL W-10/L for 1 h + inoculum.

The effectiveness of disintegration was evaluated based on the analysis of the follow-
ing selected physicochemical parameters of the sludge:

• pH using pH meter (Cole Palmer 59002-00), according to PN-9/C-04540/05 [38];
• Alkalinity and total acidity, according to PN-91/C-04540/05 [38];
• Soluble chemical oxygen demand (SCOD) by bichromate method using tests for

HACH 2I00N IS spectrophotometer, according to ISO 7027 [39];
• Volatile fatty acids (VFA) by means of distillation with water vapor, according to

PN-75/C-04616/04 [40].

The correctness and effectiveness of anaerobic stabilization of non-disintegrated and
pretreated sludge were evaluated based on the following physicochemical determinations:

• Dry matter, dry organic matter, dry mineral matter according to PN-EN-12879 [41];
• pH using pH meter (Cole Palmer 59002-00), according to PN-91/C-04540/05 [38];
• Soluble chemical oxygen demand (SCOD) by bichromate method using tests for

HACH 2I00N IS spectrophotometer, according to ISO 7027 [39];
• Volatile fatty acids (VFA) by means of distillation with water vapor, according to

PN-75/C-04616/04 [40];
• Total alkalinity, according to PN-91/C-04540/05 [38];
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• Ammonium nitrogen, according to PN-73/C-04576/02 [42];
• Total Kjeldahl nitrogen, according to PN-73/C-04576/10 [43].

To evaluate disintegration efficiency, the liquefaction factor was determined using the
methodology proposed by Zielewicz [44], Baier, and Schmidheiny [45] according to the
following equation:

Fliq = SCODd/SCOD0 (8)

where Fliq is the liquefaction factor; SCODd is the soluble chemical oxygen demand deter-
mined in the filtrate after 0.45 µm filter, for a sample after disintegration, mgO2/L; SCOD0
is the soluble chemical oxygen demand determined in the filtrate after 0.45 µm filter, for a
sample before disintegration, mgO2/L.

Microscopic observations of the change in sludge structure were made at the stage
of disintegration. The microscopic images obtained for the sludge subjected to the above-
mentioned treatment processes provided, in addition to the values of selected physicochem-
ical determinations of the sludge, an additional tool for the assessment of the efficiency
of disintegration, and consequently the potential efficiency of methane fermentation. Mi-
croscopic observations of the structure of unprocessed and pretreated excess sludge were
performed using an Olympus BX 41 microscope with instrumentation for taking pho-
tographs. Microphotographs were taken at 500× magnification, and the assessment of
changes in the structure of excess sludge was made using a visual method taking into
account selected morphological features of the sludge.

The degree of digestion of the sludge tested was calculated according to PN-75/C-
04616/07 [46]. The volume of biogas produced during methane fermentation was converted
to standard conditions, according to the Polish standard PN-75/C-04616/07 [45]. On the
other hand, biogas yield (BY) was determined according to equation [47]:

BY = (∑n)/(∆f_u) (9)

where BY is the biogas yield, L/g VSS; ∑n is the sum of biogas volume obtained during
fermentation reduced to normal conditions, L; ∆fu is the loss of VSS in the sludge, g VSS.

Furthermore, the composition of the biogas produced was monitored at one-day
intervals during methane fermentation. A GA 2000 analyzer (Geotechnical Instruments)
was used to determine the percentage of methane in biogas. For selected parameters,
the standard deviation was determined, with its value presented on graphs. Selected
determinations were repeated three times during the research. For each value in the
dataset, the deviation of this value from the mean was calculated, and the deviation is
shown using the symbol ± [48].

Table 2 presents the characteristics of the research stages carried out.

Table 2. Characteristics of research stages.

SUBSTRATES STAGE I STAGE II

Excess Sludge
Digested Sludge (Inoculum)

(Ratio 10:1)

Excess Sludge Pretreatment
(0.5 ÷ 8 mL STERIDIAL W-10/L

Sludge; Pretreatment Time: 1,
4 h, and 8 h

Methane Fermentation of
Sludge A

(Time of Process: 26 d)
Excess Sludge + Inoculum (10:1)

Methane Fermentation of
Sludge B

(Time of Process: 26 d)
Excess Sludge Chemically

Disintegrated Using an Acidic
Reagent at a Dose of 3 mL of

STERIDIAL W-10/L Sludge for
1 h + Inoculum (10:1)

Selected physicochemical parameters:

TS, VSS, SCOD, VFAs, Alkalinity,
Kjeldahl nitrogen, Ammonium

nitrogen, and pH

pH, Alkalinity, Acidinity, SCOD,
VFAs, and Fliq.

TS, VSS, SCOD, VFAs, Alkalinity,
Kjeldahl nitrogen, Ammonium nitrogen, pH, VFAs/Alkalinity, biogas

production intensity, methane content in biogas, and sludge
digestion degree
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3. Results and Discussion
3.1. The Effect of the Disintegration Conducted Using Independent Methods on Indices of
Biodegradability of Sewage Sludge

In this section, the effect of acidic chemical disintegration on the increase in biodegrad-
ability of pretreated sludge was determined. The most favorable pretreatment conditions
were determined based on the increase in soluble chemical oxygen demand (SCOD) and
volatile fatty acids (VFAs) concentration. Furthermore, the pH of the pretreated sludge
and its acidity and alkalinity were determined for selected samples. To determine the most
favorable conditions of acid disintegration, the reagent dose was chosen at the assumed
pretreatment times of 1, 4, and 8 h. The correctness of the choice of the most favorable
conditions for sludge pretreatment was additionally confirmed by the value of the sludge
liquefaction factor, which was reflected in the observed change in the structure of the
pretreated sludge. The values obtained for repeated measurements of individual physic-
ochemical parameters were not differentiated. It was found that in the case of statistical
deviation determined for all measurements, the obtained results showed a slight deviation
from the mean.

3.1.1. Increase in the Concentration of Dissolved Organic Matter Observed in the
Supernatant Liquor of Chemically Disintegrated Sewage Sludge

Based on the results, it was found that an increase in the reagent dose had a decisive
impact on the increase in the values of indices determining the biodegradability of pre-
treated sludge, i.e., SCOD and VFAs. Furthermore, a decrease in pH was observed after
the addition of an acidic reagent to the sludge (Figure 2). For the dose range studied and
pretreatment time of 1 h, the pH value ranged from 4.27 to 7.49; for the pretreatment time
of 4 h, they ranged from 3.93 to 7.42, while for the 8 h pretreatment—from 3.54 to 7.26.
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Figure 2. Changes in pH values determined in the sludge liquor subjected to 1, 4, and 8 h chemical
disintegration of excess sludge vs. reagent dose.

According to Procházka et al. [49], the insignificant impact of PAA on the excess
sludge pH could be caused by buffering capacity, that is, equilibrium between ammonium,
carbonate, and volatile fatty acids (e.g., acetic, propanoic, and butyric acids). An increasing
trend was observed in the case of the total acidity of the sludge pretreated with the reagent
in the range of doses of 0.5 ÷ 8 mL of STERIDIAL W-10/L, with values of 37 ÷ 1167 mg
CO2/L for the pretreatment time of 1 h, 42 ÷ 1318 mg CO2/L for the pretreatment time of
4 h, and 45 ÷ 1427 CO2/L for the pretreatment time of 8 h (Figure 3).
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A decreasing trend was observed for total alkalinity determined in the case of pre-
treated sludge, with values ranging from 380 to 880 mg CaCO3/L for 1 h, 320 to 880 mg
CaCO3/L for 4 h, and 280 to 840 mg CaCO3/L for 8 h (Figure 4).
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Figure 4. Changes in acidity determined in the sludge liquor subjected to 1, 4, and 8 h chemical
disintegration of excess sludge vs. reagent dose.

As a result of 1, 4, and 8 h of sludge disintegration by addition of STERIDIAL W-10
solution in doses ranging from 0.5 ÷ 8 mL/L, an increase in the soluble chemical oxygen
demand (SCOD) values was from 256 to 4157 mg O2/L for the pretreatment time of 1 h,
from 324 to 4638 mg O2/L for 4 h, and from 332 to 4698 mg O2/L for 8 h with respect to
the lowest and the highest reagent doses, respectively (Figures 5–7). Based on the results
obtained, Cavallini et al. [50] concluded that PAA leads to an increase in the concentration
of dissolved organic matter, resulting in an increase in chemical oxygen demand in sewage
by approximately 20 mg/L for every 10 mg/L of PAA used. As the reagent dose increased,
a gradual increase in the concentration of volatile fatty acids determined in the supernatant
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liquid of the pretreated sludge was noted. For the tested reagent doses of 0.5 ÷ 8 mL
STERIDIAL W-10/L, a 1.1-fold to 20.4-fold increase in the VFA concentration for the
pretreatment time of 1 h, 1.4-fold to 26.3-fold for 4 h, and 1.6-fold to 26.6-fold for 8 h,
were obtained with respect to the VFA concentration values of the non-pretreated sludge
(Figures 5–7). According to data in the literature [28,30,31], chemical disintegration with
peracetic acid promotes the formation of highly reactive hydroxyl radicals, which is an
important oxidizing agent during chemical pretreatment.
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Figure 5. Changes in soluble chemical oxygen demand (SCOD) and concentration of volatile fatty
acids (VFAs) determined in the supernatant liquor of chemically disintegrated excess sludge (pre-
treatment time: 1 h) recorded in relation to the reagent doses used.
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Figure 6. Changes in soluble chemical oxygen demand (SCOD) and concentration of volatile fatty
acids (VFAs) determined in the supernatant liquor of chemically disintegrated excess sludge (pre-
treatment time: 4 h) recorded in relation to the reagent doses used.
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Figure 7. Changes in soluble chemical oxygen demand (SCOD) and concentration of volatile fatty
acids (VFAs) determined in the supernatant liquor of chemically disintegrated excess sludge (pre-
treatment time: 8 h) recorded in relation to the reagent doses used.

As a result of the disintegration of sludge by adding STERIDIAL W-10 solution in
doses ranging from 0.5 to 8 mL/L, the values of the liquefaction factor were 1.5 to 24.7 for
the pretreatment time of 1 h, 1.9 to 27.6 for the pretreatment time of 4 h, and 2.0 to 28.0 for
the pretreatment time of 8 h. It was observed that for the reagent doses tested, similar values
of the sludge liquefaction factor were obtained for greater treatment times (Figure 8).
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Figure 8. Changes in the value of the liquefaction factor determined in the supernatant liquid of
chemically disintegrated excess sludge (pretreatment time 1, 4, and 8 h).

Due to the technological conditions of the anaerobic stabilization process, a reagent
dose of 3.0 mL of STERIDIAL W-10/L of sludge was selected for further experiments, for
which, along with the subsequent increase in sludge biodegradability, there was no need
to modify the pH of the sludge treated. In the case of higher doses, a correction of the
pH value would be necessary and would cause secondary contamination of the treated
medium. The reagent dose of 3 mL of STERIDIAL W-10/L, and the pretreatment time of 1
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h were found to be the most favorable pretreatment conditions. According to Domínguez
Henao et al. [25–27], regarding the kinetics of the changes induced by peracetic acid, the
value of the rate constant and the initial consumption of PAA increases with increasing
content of organic matter. Therefore, the half-life of PAA dosed to sludge is short, with a
large amount of suspended solids.

3.1.2. Structure of Chemically Disintegrated Excess Sludge

The measurable effect of disintegrating factors is the observed change in the structure
of pretreated sludge, with its nature determining sludge susceptibility to biochemical
decomposition in anaerobic conditions. Changes in the structure of excess sludge subjected
to peracetic acid pretreatment recorded during microscopic observations correlate with
the value of the liquefaction factor (Fliq), which can be considered an additional research
tool confirming the effectiveness of the selected disintegration method. Intensification of
sludge particle liquefaction was observed with an increase in the reactant dose (Figure 9).
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Figure 9. Structure of non-pretreated excess sludge (a) and structure of excess sludge chemically
disintegrated with the reagent with the selected doses: 0.5 mL STERIDIAL W-10/L (b), 1.0 mL
STERIDIAL W-10/L (c), 2 mL STERIDIAL W-10/L (d), 3 mL STERIDIAL W-10/L (e), and 8 mL
STERIDIAL W-10/L (f) sludge for 1 h.
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3.2. Effect of Disintegration on the Efficiency of Anaerobic Stabilization, i.e., Volatile Fatty Acids
Generation, Biogas Production Intensity, Methane Content, and Sludge Digestion Degree

The choice of the most favorable conditions for chemical disintegration with peracetic
acid was based on the effectiveness of the disintegration method tested, i.e., the increase
in VFA concentration, SCOD value, and the liquefaction factor (Fliq), also taking into ac-
count the pH value, acidity, and alkalinity, which determine the correct course of methane
fermentation. Therefore, for technological reasons, a reactant dose of 3 mL of STERIDIAL
W-10/L and a pretreatment time of 1 h were chosen for further experiments. Due to the
buffering properties of the sludge, the application of the above-mentioned reagent dose
did not cause a significant decrease in pH value and did not require any correction of this
indicator to the optimal value for methane fermentation. It should be noted that the pH
affects solubility and forms of both organic and inorganic compounds. It also determines
the proper development of fermentation microorganisms, especially methanogens. Accord-
ing to Magrel [51], the pH of the supernatant liquid should be 7.0 ÷ 7.2. The pH limits
should be between 6.5 and 8.5. [51,52]. The disintegration of the excess sludge with 3 mL
of STERIDIAL W-10/L and a pretreatment time of 1 h resulted in a pH value of 6.78.

In the first research cycle, a conventional methane fermentation was carried out
(Mixture A), while in the next, chemically disintegrated sludge was subjected to methane
fermentation using a dose of 3 mL of STERIDIAL W-10/L (Mixture B). Chu et al. [53]
argued that disintegration of excess sludge leads directly affects the acceleration and leads
to the shortening of the time needed for stabilization to about 8 days and increasing the
rate of biogas production and unit biogas production. Figure 10 shows the changes in the
concentration of volatile fatty acids during 8-day conventional methane fermentation and
methane fermentation of sludge treated with peracetic acid (PAA).
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Figure 10. Generation of volatile fatty acids (VFAs) from excess sludge during methane fermentation.

With the changes taking place in the physicochemical and structural properties of
the disintegrated sludge, an increase in the amount and rate of production of volatile
fatty acids (VFAs) was observed at the stage of sludge acid digestion compared to the
anaerobic stabilization of pretreated sludge. The combination of acid hydrolysis caused by
the introduction of peracetic acid (PAA) and biological hydrolysis, which is the first phase
of methane fermentation, resulted in an increase in the efficiency of anaerobic stabilization
compared to the efficiency of stabilization of the non-pretreated sludge. According to data
in the literature [19], hydrolysis in conventional systems of sludge treatment based on
anaerobic processes has a decisive effect on the rate of methane fermentation, and it takes
place with the participation of exoenzymes produced by microorganisms.
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Table 3 shows selected physicochemical parameters obtained for conventional methane
fermentation and methane fermentation of the sludge after disintegration.

Table 3. Selected physicochemical parameters obtained for sludge A and B subjected to 26-day methane fermentation.

Index/Unit
Sludge A Sludge B

Day 0 of Process Day 26 of Process Day 0 of Process Day 26 of Process

TS, g/L 12.54 ± 0.11 9.26 ± 0.17 12.76 ± 0.36 7.18 ± 0.17

VSS, g/L 9.21 ± 0.32 4.34 ± 0.25 9.22 ± 0.53 2.37 ± 0.21

Alkalinity, mg CaCO3/L 880 ± 15 2420 ± 40 920 ± 20 2640 ± 10

SCOD, mg O2/L 185 ± 8 842 ± 3 1792 ± 7 1034 ± 11

VFAs, mg CH3COOH/L 83 ± 2.1 617 ± 5.5 912 ± 3 834 ± 4

Kjeldahl nitrogen, mg N/dm3 134 ± 4.3 585 ± 4.8 415 ± 2.1 617 ± 6.5

Ammonium nitrogen, mg N-NH4/dm3 69 ± 0.5 507 ± 1.6 134 ± 4.6 583 ± 1.8

pH 7.1 ± 0.04 7.31 ± 0.05 7.06 ± 0.03 7.24 ± 0.06

VFAs/Alkalinity - 0.25 - 0.32

The SCOD values of 842 mg O2/L and 1034 mg O2/L and concentrations of volatile
fatty acid (VFAs) of 617 mg CH3COOH/L, 834 mg CH3COOH/L were recorded for sludge
A and B on day 26 of the process, respectively. On the other hand, on the day of the process
initiation (Day 0), the values of the examined indices were 185 mg and 1792 mg O2/L
and 83 and 912 mg CH3COOH/L, respectively. Stabilization of sludge A yielded ca. 53%
sludge digestion degree and ca. 42% reduction in dry matter, while for sludge B, sludge
digestion degree was ca. 74%, and the reduction in dry matter was ca. 56%. The pH
value at the beginning of the process (Day 0) was 7.1 for sludge A; and 7.06 for sludge
B, reaching 7.31 and 7.24 on day 26. During the 26-day stabilization, the initial and final
alkalinity values were 880 and 2420 CaCO3/L for sludge A and 920 and 2640 CaCO3/L
for sludge B, respectively. The VFAs/alkalinity quotient on day 26 was 0.25 (sludge A)
and 0.32 (sludge B). The values of Kjeldahl nitrogen and ammonium nitrogen on the day
of process initiation (day 0) and after 26 days of stabilization of the sludge A were 134
and 585 mg N/L, and 69 and 507 mg N-NH4/L, respectively. Furthermore, for the tested
sludge B, the values of Kjeldahl nitrogen and ammonium nitrogen at the day of the process
initiation (day 0) and after 26 days of stabilization were 415 and 617 mg N/L, and 134 and
583 mg N-NH4/L, respectively.

During methane fermentation of sludge subjected to chemical disintegration with a
reactant dose of 3.0 mL of STERIDIAL W-10/L (sludge B), the highest value of daily biogas
production (0.28 L) was observed on the 10th day of the process. Total biogas production of
3.53 L was recorded, which translated into a specific biogas production of 0.52 L/g VSS. In
the case of the conventional sludge methane fermentation (sludge A), the highest value of
daily biogas production (0.12 L) was observed on day 12. A total biogas production of 0.97 L
was recorded, which translated into specific biogas production of 0.2 L/g VSS. According to
the literature data [45], biogas production efficiency can be determined with reference to
the volume of the digester expressed in m3, the volume of biogas per one inhabitant, or by
defining the volume of biogas obtained from the removal of a load of pollutants contained
in the sludge expressed as dry organic matter, i.e., biogas yield (L/g VSS).

Based on research results, Sun et al. [54] found that with regard to the methane
fermentation of untreated sludge, the cumulative biogas production increased by 20.0%
after 26 days of anaerobic digestion of the sludge subjected to oxidation with peracetic acid.
The biogas production rate in the digester with pretreated sludge reached the maximum
on day 8 at 87 mL/d, but the peak value was obtained on day 11 at 74 mL/d in the case
of non-pretreatment sludge. Therefore, based on the results obtained in the present study
and those obtained by other scientists [33,54–56], it can be concluded that disintegration
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with peracetic acid may shorten the retention time of methane fermentation and increase
biogas production.

Figure 11 shows the course of biogas generation, while Figure 12 shows the propor-
tion of methane in biogas expressed in volume percentage during conventional methane
fermentation of sludge and methane fermentation of chemically disintegrated sludge.
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Figure 11. Biogas generation from non-pretreated excess sludge (sludge A) and chemically pretreated
excess sludge with the reagent dose of 3.0 mL STERIDIAL W-10/L (sludge B).
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Figure 12. Percentage of methane in biogas expressed as volume percentage recorded during
conventional methane fermentation of sludge and methane fermentation of chemically pretreated
sludge with the reagent dose of 3.0 mL STERIDIAL W-10/L.

According to data in the literature, pre-oxidation of sludge with PAA leads to the
degradation of extracellular polymer substances and improves the solubility of organic matter
and sludge disintegration, thus contributing to increased biogas production [33,54,57,58].
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4. Conclusions

The disintegration of excess sludge before methane fermentation plays an important
role by supporting the biochemical decomposition of sludge under anaerobic conditions.
The use of intracellular substances separated from the cells of activated sludge microor-
ganisms by anaerobic bacteria of methane fermentation occurs only in a dissolved form as
a result of the initiation of hydrolysis by disintegrating agents characterized by different
types of energy supplied to the sludge.

A novelty aspect of the research is the use of a highly effective method of oxidation
of excess sludge with peracetic acid (PAA), taking into account the selection of the most
favorable treatment conditions to increase the effectiveness of methane fermentation.

Sludge pretreatment with peracetic acid (PAA) resulted in an increase in soluble
chemical oxygen demand and the correlated increase in the concentration of volatile
fatty acids, determined in the filtrate fluid of the pretreated sludge. Furthermore, the
physicochemical transformation of sludge taking place as a result of sludge pretreatment
is reflected in a significant change in the sludge structure expressed by an increase in the
degree of particle dispersion. The total and unit biogas production reported during the
26-day anaerobic stabilization of disintegrated sludge and the degree of sludge digestion
show, compared to anaerobic stabilization of non-treated sludge, a significant increase in
biodegradability of excess sludge treated using the method studied. However, no increase
in the calorific value of biogas was found compared to conventional methane fermentation.

It should be emphasized that the potential application of the tested disintegration
method in the technological line for sludge disposal offers both ecological and economic
benefits resulting from reduced environmental load due to the application of sludge
pretreatment, which does not cause secondary pollution.
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