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Abstract: Even with modern smart metering systems, erroneous measurements of the real and reac-
tive power in the power system are unavoidable. Multiple erroneous parameters and measurements
may occur simultaneously in the state estimation of a bulk power system. This paper proposes a gross
error reduction index (GERI)-based method as an additional module for existing state estimators in or-
der to identify multiple erroneous parameters and measurements simultaneously. The measurements
are acquired from a supervisory control and data acquisition system and mainly include voltage
amplitudes, branch current amplitudes, active power flow, and reactive power flow. This method
uses a structure consisting of nested two loops. First, gross errors and the GERI indexes are calculated
in the inner loop. Second, the GERI indexes are compared and the maximum GERI in each inner loop
is associated with the most suspicious parameter or measurement. Third, when the maximum GERI is
less than a given threshold in the outer loop, its corresponding erroneous parameter or measurement
is identified. Multiple measurement scans are also adopted in order to increase the redundancy of
measurements and the observability of parameters. It should be noted that the proposed algorithm
can be directly integrated into the Weighted Least Square estimator. Furthermore, using a faster
simplified calculation technique with Givens rotations reduces the required computer memory and
increases the computation speed. This method has been demonstrated in the IEEE 14-bus test system
and several matpower cases. Due to its outstanding practical performance, it is now used at six
provincial power control centers in the Eastern Grid of China.

Keywords: error identification; erroneous parameters and measurements; gross error reduction-
index-based method; multiple measurement scans; power system state estimation

1. Introduction

State estimation (SE) has a strong impact on power system applications in a smart
grid [1]. Even with modern smart metering systems, erroneous measurements of the
real and reactive power in the power system are unavoidable. Multiple erroneous pa-
rameters and measurements may occur simultaneously in the state estimation of a bulk
power system.

Traditional detection methods for erroneous measurements assume that the values
of the network parameters are precisely correct [2]. These methods detect and identify
measurement errors effectively using residual analysis (sum of squared residuals [3] and
weighted-normalized residuals [4,5]) and nonquadratic criteria [6]. However, one erro-
neous parameter, e.g., branch impedance, usually produces an obscure error. The parameter
error and the set of correlated measurement errors on the same branch have the same effect
on SE [7]. Thus, parameter errors are misidentified, negatively influencing the SE.

Parameter errors occur when data are entered incorrectly or fail to be updated in
time, etc. [1,7]. Parameter identification and estimation are considered sequentially in
traditional parameter estimation methods. These methods are typically performed using
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either residual sensitivity analysis [8–10] or augmented SE [11–16]. The first approach does
not need to modify the core SE code and is, thus, easy to implement, as the sensitivities
of measurement residuals to measurement errors can be directly acquired from solved
SE cases. However, the identification results are easily corrupted by parameter and mea-
surement errors. The second approach identifies parameter errors by treating suspicious
parameters as additional state variables to estimate. Such calculations can be performed
with static normal equations [11–13] or the Kalman filter theory [14–16]. Their advantages
and disadvantages are shown in Reference [7].

The normalized Lagrange multipliers (NLM) method [17–21] uses measurement resid-
uals to calculate the Lagrange multipliers of parameters. By comparing the normalized
measurement residuals representing measurement errors and Lagrange multipliers repre-
senting parameter errors with a threshold, erroneous parameters and measurements can be
identified simultaneously [18]. To increase the redundancy of measurements, researchers
have adopted synchronized phasors [19] and multiple measurement scans [20,21].

The problem of parameter errors and measurement errors is usually studied using the
least square method. Reference [22] proposes a phasor measurement unit-based positive
sequence measurement error model to identify parameter errors based on the Weighted
Least Square (WLS) SE. Reference [23] combines adaptive linear neuron and the traditional
robust IGG method for parameter identification by training the adaptive linear neuron
with the least mean square algorithm. Reference [24] adopts Gaussian least squares dif-
ferential correction to identify the gross error between estimated values and measured
data. Based on an intelligent measurement infrastructure, Reference [25] makes full use
of the simplicity and accuracy of the improved nonlinear least square method to identify
erroneous parameters.

Compared with the above algorithms, a robust state estimation directly eliminates the
influence of parameter errors on SE without having to go through the steps of identifying,
correcting, and removing erroneous parameters [26]. Reference [27] conducts a two-stage
WLS SE to reduce the negative effect of measurement errors directly. Reference [28]
calculates transmission line parameters at both ends of a line using median estimation
to reduce the impact of measurement errors. Reference [29] automatically updates the
weighting factors of measurement dependencies with a robust state estimation method
based on the WLS SE model. Reference [30] uses the genetic learning particle swarm
optimization hybrid algorithm for the robust state estimation method to estimate the key
parameters. Seven robust methods for line impedance estimation using fast voltage and
current variation measurement are compared in an analysis of real measured data [31].
However, the robust state estimation requires extreme changes to existing power system
SE applications.

This paper proposes a gross error reduction index (GERI)-based method as an addi-
tional module for an existing state estimator to identify multiple erroneous parameters and
measurements simultaneously.

In addition, identification methods adopt multiple measurement scans to increase the
redundancy of measurements and the observability of parameters in Reference [10,16,20,21].
The GERI-based method also adopts multiple measurement scans in this paper.

In the bulk power system, the existence of erroneous parameters is harmful to SE.
Moreover, we try to explore a parameter identification method applied easily in the bulk
power system. The GERI-based method is adopted to simultaneously identify multiple
erroneous parameters and measurements. Its contributions are as follows:

1. Identifying multiple erroneous parameters and measurements simultaneously with
only one WLS SE.

2. Being an additional module integrated into the WLS state estimator with minor
changes in the WLS SE code.

3. Adopting the simplified calculation of variables to increase the computation speed
and reduce the required computer memory.
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4. Adopting multiple measurement scans to increase the redundancy of measurements
without any investment in new meters.

The rest of the paper is organized as follows. We derive the formulation of the GERI-
based method in Section 2. In Section 3, a simplified calculation of variables is deduced
and the different effects of multiple measurement scans on erroneous parameters and
measurements are analyzed. In Section 4, the effectiveness of the proposed method is
verified by simulation results on the IEEE 14-bus test system, several matpower cases,
and the Eastern Grid in China. Finally, the paper is concluded in Section 5.

2. The GERI-Based Method
2.1. The Weighted Least Square State Estimation

Except for topological errors, the GERI-based method is adopted to identify erro-
neous parameters and measurements simultaneously. For the convenience of expression,
we define their corresponding network parameter error vector (pe) and measurement error
vector (ve) as a general parameter error vector (s):

s =

[
pe
ve

]
. (1)

The nonlinear measurement equation considering ve and pe is as follows:

z = h(x, pe) + ve + r, (2)

where z is the vector of measurements; x is a system state vector, including voltage
magnitudes and phase angles; h(x, pe) is the nonlinear function relating measurements
to system states and network parameter errors; and r is a measurement residual vector
modeled as a random Gaussian variable with zero mean.

Let x0 be the initial value of x. The Taylor series expansion is applied in h(x, pe) to
obtain the following approximate linear formula:

h(x, pe) = h(x0, 0)−Hx∆x−Hppe, (3)

where ∆x is the state variable vector, and ∆x = x − x0. Hx and Hp are the coefficient
matrices of ∆x and pe:

Hx =
∂h(x, pe)

∂x

∣∣∣∣
x=x0,pe=0

, (4)

Hp =
∂h(x, pe)

∂pe

∣∣∣∣
x=x0,pe=0

. (5)

Substituting the linear term in h(x, pe) (3) into measurement Equation (2), r is given
as follows:

r = z− h(x0, 0)−Hx∆x−Hppe − ve = r0 −Hx∆x−Hss, (6)

where r0 is the initial measurement residual vector; s is general parameter error vector
defined in (1); Hs is the coefficient matrix of s. r0 and Hs are formulated as follows:

r0 = z− h(x0, 0), (7)

Hs =
[
Hp, I

]
. (8)

Based on the Weighted Least Square estimator, the objective function (J(x0 + ∆x, s)) is:

Min : J(x0 + ∆x, s) = rTWr,

where the weighting matrix W is a diagonal matrix.
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With (6), J(x0 + ∆x, s) can be simplified as:

J(x0 + ∆x, s) = (r0 −Hx∆x−Hss)TW(r0 −Hx∆x−Hss). (9)

2.2. Gross Error and the GERI Index for Proposed Method

Gross error and the GERI index are important indexes for each parameter or mea-
surement. Both are closely related to the minimum objective function, so the minimum
objective function is presented first. According to Reference [1], J(x0 + ∆x, s) in (9) is
expanded to find the minimum value.

J(x0 + ∆x, s) = r0T

(
W−W[Hx, Hs]

([
Hx

T

Hs
T

]
W[Hx, Hs]

)−1[
Hx

T

Hs
T

]
W

)
r0+

([
∆x
s

]
−
([

Hx
T

Hs
T

]
W[Hx, Hs]

)−1[
Hx

T

Hs
T

]
Wr0

)T

×
([

Hx
T

Hs
T

]
W[Hx, Hs]

)
×([

∆x
s

]
−
([

Hx
T

Hs
T

]
W[Hx, Hs]

)−1[
Hx

T

Hs
T

]
Wr0

)
. (10)

It is obvious that the first term on the right-hand side of (10) has nothing to do with[
∆x
s

]
and J(x0 + ∆x, s) reaches the minimum when the second term on the right hand

side is 0. The estimated value of
[

∆x
s

]
that makes J(x0 + ∆x, s) the minimum satisfies:

[
∆x̂
ŝ

]
=

([
Hx

T

Hs
T

]
W[Hx, Hs]

)−1[
Hx

T

Hs
T

]
Wr0, (11)

where ∆x̂ is the estimated state variable vector, and ŝ is the estimated general parameter
error vector. ŝ and ∆x̂ can be rewritten as:

ŝ = (Hs
TWAHs)

−1Hs
TWAr0, (12)

∆x̂ = (Hx
TWHx)

−1Hx
TW(r0 −Hs ŝ), (13)

where:
A = I−Hx(Hx

TWHx)
−1Hx

TW. (14)

As A is a dense matrix, its computation will worsen the whole algorithm’s computa-
tional efficiency. By using the results of the orthogonal transformation method in WLS SE,
the calculations of ŝ and ∆x̂ can be simplified, as will be introduced in Section 3.1.

By substituting ŝ and ∆x̂ into (9), the minimum objective function (J(x0 + ∆x̂, ŝ)) is:

J(x0 + ∆x̂, ŝ) = (r0 −Hx∆x̂−Hs ŝ)TW(r0 −Hx∆x̂−Hs ŝ). (15)

J(x0 + ∆x̂, ŝ) is defined as the gross error for all parameters and measurements.
When a parameter j is suspected, its gross error (J(x0 + ∆x̂j, ŝj)) is calculated with all

the parameters and measurements, except for j. The gross error for j is as follows:

J(x0 + ∆x̂j, ŝj) = (r0 −Hx∆x̂j −Hs ŝj)TW(r0 −Hx∆x̂j −Hs ŝj). (16)

The GERI index for j is defined as ∆J j:

∆J j = J(x0 + ∆x̂, ŝ)− J(x0 + ∆x̂j, ŝj). (17)

If j is erroneous, the values of J(x0 + ∆x̂j, ŝj) and J(x0 + ∆x̂, ŝ) will show a large
difference. Hence, the value of ∆J j represents the suspicion degree of j.
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2.3. Algorithm for the GERI-Based Method

The GERI-based method has a structure of nested two loops: Algorithm 1 (the inner
loop) is the identification of the most suspicious parameter or measurement; Algorithm 2
(the outer loop) is the validation of erroneous parameters and measurements.

2.3.1. Algorithm 1: Identification of the Most Suspicious Parameter or Measurement

Algorithm 1 aims to identify the most suspicious parameter or measurement in each
loop. Assuming that (k− 1) erroneous parameters or measurements have been identified,
Bk denotes the set of identified erroneous parameters and measurements, dimBk = k− 1.
Let Qk denote the set of suspicious erroneous parameters and measurements.

At the kth cycle, we denote the parameter or measurement to be checked next as
j, such that j∈Qk. During the jth loop, the gross error for j removes the influence of j.
Hence, the Jacobin matrix Hs needs to remove j’s corresponding row and column for the
calculation of ŝk,j, ∆x̂k,j, and J(x0 + ∆x̂k,j, ŝk,j). Hs is updated to Hs

k,j.
ŝk,j and ∆x̂k,j are as follows:

ŝk,j = (Hs
k,jTWAHs

k,j)−1Hs
k,jTWAr0, (18)

∆x̂k,j = (Hx
TWHx)

−1Hx
TW(r0 −Hs

k,j ŝk,j). (19)

The gross error for j is:

J(x0 + ∆x̂k,j, ŝk,j) = (r0 −Hx∆x̂k,j −Hs
k,j ŝk,j)TW(r0 −Hx∆x̂k,j −Hs

k,j ŝk,j). (20)

The gross error for all elements in Qk is J(x0 + ∆x̂k−1, ŝk−1) obtained from the
(k− 1)th cycle.

The GERI index for j is as follows:

∆Jk,j = J(x0 + ∆x̂k−1, ŝk−1)− J(x0 + ∆x̂k,j, ŝk,j). (21)

After calculating and comparing all the GERI indexes of j, the maximum GERI (∆J) is
given by the following:

∆J = max
j

∆Jk,j = ∆Jk,b. (22)

Its corresponding parameter or measurement b is the most suspicious parameter or
measurement and has the greatest impact on J(x0 + ∆x̂k−1, ŝk−1).

When Algorithm 1 is over, ∆J and its corresponding b will be output for validation;
Bk, Qk, ŝk,b, ∆x̂k,b, and J(x0 + ∆x̂k, ŝk) are output for Algorithm 2, as well.

The algorithm of Algorithm 1 during the jth loop at the kth cycle is shown in Algorithm 1.

2.3.2. Algorithm 2: Validation of Erroneous Parameter or Measurement

Algorithm 2 aims to validate erroneous parameters or measurements in each cycle.
At the beginning, k = 0, Bk = φ, and Qk contains all parameters and measurements.

Assuming that Algorithm 2 has cycled (k− 1) times, Algorithm 1 outputs ∆J and its
corresponding b.

If ∆J is greater than the given threshold, b is the erroneous parameter or measurement
identified during the kth cycle. We update Bk+1, Qk+1, ŝk+1, and ∆x̂k+1 for the next cycle.

If not, there is no erroneous measurement or parameter in Qk. Algorithm 2 will output
ŝk and ∆x̂k.

The algorithm of Algorithm 2 during the kth cycle is shown in Algorithm 2.
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Algorithm 1. Identification of the most suspicious parameter or measurement.

1: Input: k, Bk, Qk, W, Hx, Hs and J(x0 + ∆x̂k−1, ŝk−1);
2: Output: b, ∆J, Qk, ŝk,b, ∆x̂k,b and J(x0 + ∆x̂k, ŝk);
3: Initialize j = 0, b = 0, ∆J = 0,ŝk = φ, ∆x̂k = φ, and J(x0 + ∆x̂k, ŝk) = 0;
4: for Each j∈Qk do
5: Qk,j = Qk − {j};
6: if ‖Hs

TWAHs‖ = 0 then
7: ∆Jk,j = 0;
8: else
9: Update ŝk,j, Equation (18);

10: Update ∆x̂k,j, Equation (19);
11: Update J(x0 + ∆x̂k,j, ŝk,j), Equation (20);
12: Update ∆Jk,j, Equation (21);
13: end if
14: if ∆Jk,j > ∆J then
15: b = j and ∆J = ∆Jk,b;
16: end if
17: end for
18: J(x0 + ∆x̂k, ŝk) = J(x0 + ∆x̂k,b, ŝk,b);
19: Return b, ∆J, ŝk,b, ∆x̂k,b and J(x0 + ∆x̂k, ŝk).

Algorithm 2. Validation of erroneous parameter or measurement.

1: Input: W, Hx, Hs, x0, r0, ∆x and J(x0, 0);
2: Output: Bk, ŝk and ∆x̂k;
3: Initialize k = 0, Bk = φ and Qk ={all parameters and measurements};
4: Repeat
5: b = 0 and ∆J = 0;
6: Algorithm 1;
7: Bk+1 = Bk + {b};
8: Qk+1 = Qk − {b};
9: ŝk+1 = ŝk,b;

10: ∆x̂k+1 = ∆x̂k,b;
11: k + 1;
12: until ∆J < threshold
13: Return Bk, ŝk and ∆x̂k.

2.4. Flowchart of the GERI-Based Method

The whole algorithm contains three key steps: Step 1—the WLS state estimation;
Step 2—identification with the GERI-based method; Step 3—parameter estimation via
augmented SE. The measurements are acquired from the supervisory control and data
acquisition system and mainly include voltage amplitudes, branch current amplitudes,
active power flow, and reactive power flow.

Figure 1 shows the flowchart of the GERI-based method.
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Figure 1. Flowchart of the GERI-based method.

Step 1—The WLS SE combined with the orthogonal transformation method is adopted
to improve the numerical stability and computation efficiency [32]. With fast Givens rota-
tions technique [33], Hx

TWHx, the most important factor in WLS SE and our identification
can be computed faster. Hx

TWHx is output for the simplified calculation of the variables
(ŝ and ∆x̂). W, Hx, x0, r0, ∆x, and J(x0, 0) are the inputs for Algorithm 2. In comparison
with the NLM method, the GERI-based method only requires one run of the WLS SE. Thus,
Step 1 is only run once.

Step 2—With the WLS SE results, the gross errors and the GERI indexes are calculated
with the parameters and measurements from multiple measurement scans in Algorithm 1.
Then, Algorithm 1 gains the most suspicious parameters and the maximum GERI by
comparing all the indexes in Algorithm 1. Algorithm 2 will find all the maximum GERI
indexes less than the threshold from output of Algorithm 1 in Algorithm 2. With the
GERI-based method, it will output the erroneous parameters and measurements identified
for parameter estimation in the next step.

Step 3—Before parameter estimation, linear correction for x and s is performed
by x = x0 + ∆x̂k and s = ŝk. With the corrected x and s, erroneous parameters and
measurements in Bk are estimated via augmented SE.
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The proposed method is an extension of the WLS method, which makes it closely
related to the WLS state estimator in Step 1. When we try to identify multiple erroneous
general parameters, it is practical for the proposed method to be directly integrated into
the WLS state estimator as an additional module. Furthermore, identification in Step 2
reuses the WLS SE results, which helps to increase the computation speed.

2.5. Relation to the Normalized Lagrange Multiplier Method

The NLM method can identify parameter errors accurately and efficiently. When we
identify only one erroneous parameter, the GERI-based method is equivalent to the NLM
method. The maximum GERI is equal to the square of the NLM index, ∆J = λNT

j λN
j .

According to Reference [18], a normalized Lagrange multiplier λ of larger than 3 is an
indication of an erroneous parameter. Hence, the maximum GERI of larger than 9 is the
corresponding threshold for parameter identification.

Due to the length of the derivation, the proof process is placed in Appendix A. It selects
the model of the NLM method cited in Reference [17].

3. Implementation of the Method in Practice
3.1. Simplified Calculation of Variables

As indicated by (14), A = I−Hx(Hx
TWHx)−1Hx

TW. As A is a dense matrix, the cal-
culation of A−1 will consume a large amount of time and memory. The method reduces
the computation and storage burden of A by deriving and computing subsets of ŝ and ∆x̂.

According to WLS SE in Step 1, Hx
TWHx, which is the key part of A, can be sim-

plified using the orthogonal transformation method [32] and the fast Givens rotations
technique [33] as follows:

Hx
TWHx = Hw

THw = (QHw)T(QHw) = RTR, (23)

where Hw = W1/2Hx; Q is the orthogonal transformation matrix; R is the sparse upper
triangular matrix, QHw.

Substituting (23) into A:

A = I−HxR−1R−THx
TW. (24)

By converting the calculation of the dense matrix (A) into sparse matrices (Hx, R and
W), we can improve the computation speed.

3.1.1. Simplified Calculation of ŝ

As shown in (12), ŝ = (Hs
TWAHs)−1Hs

TWAr0.
To simplify the calculation of ŝ, we calculate its key parts: Ar0 and Hs

TWAHs.

Ar0 = r0 −HxR−1R−THx
TWr0

12345

. (25)

The second term of (25) solves sparse matrix-vector iterative multiplication in the
order indicated by the underlines.

For another key part, Hs
TWAHs:

Hs
TWAHs = Hs

TWHs −Hs
TWHxR−1R−THx

TWHs. (26)

Denote: M = R−THx
TWHs123

, (26) can be simplified as:

Hs
TWAHs = Hs

TWHs −MTM, (27)

where M is the sparse matrix and can be simply calculated in the order indicated by
the underlines.
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Substitute Ar0 (25) and Hs
TWAHs (27) into ŝ (12):

ŝ =(Hs
TWHs −MTM)−1Hs

TW× (r0 −HxR−1R−THx
TWr0). (28)

3.1.2. Simplified Calculation of ∆x̂

As shown in (13), ∆x̂ contains two key parts: Hx
TWHx (23) and ŝ (28). Hence, ∆x̂ is

given by:

∆x̂ = R−1R−THx
TW(r0 −Hs ŝ)

12345

. (29)

∆x̂ can be calculated directly and easily in the order indicated by the underlines in (29).
With the simplified calculation of the variables above, we can calculate ŝ and ∆x̂

directly and avoid calculating the dense matrix A. The main computation part of ŝ and ∆x̂
is R, which is calculated in WLS SE. As R is a sparse upper triangular matrix, the calcu-
lations of variables (ŝ and ∆x̂) only needs to utilize sparse forward-backward iterations,
which reduces the computation time and memory requirements.

3.2. Multiple Measurement Scans

Consider a set of N measurement scans. Each measurement residual vector for scan i
is expressed as follows:

ri = zi − hi(xi, pe)− ve
i ∀i ∈ {1, 2, . . . , N}, (30)

where i, N, ri, zi, hi(xi, pe), and ve
i are defined in Table 1.

Table 1. Definition for variables.

Variable Definition

i the measurement scan index
N the number of measurement scans
zi the measurement vector for scan i

hi(xi, pe) the nonlinear function relating the measurements of
scan i to the system states for scan i and the network
parameter errors

pe the parameter error vector
xi the system state vector for scan i, including

voltage magnitudes and phase angles
ve

i the suspected measurement error vector for scan i
ri the measurement residual vector for scan i

Let us define the following vectors associated with the N scans:

r =


r1

r2

...
rN

, z =


z1

z2

...
zN

, x =


x1

x2

...
xN

, ve =


ve

1

ve
2

...
ve

N

,

h(x, pe) =
[
h(x, pe)1 h(x, pe)2 · · · h(x, pe)N]T .

The method of using multiple measurement scans to identify general parameter
errors via the GERI-based method is similar to that of using a single measurement scan.
Multiple measurement scans increase the redundancy of measurements and improve the
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parameter identification accuracy. However, the influences of multiple measurement scans
on erroneous parameters and measurements are different.

If a single erroneous parameter exists, it is relatively constant and will affect the gross
error of each scan. Hence, parameter errors can be considered as deterministic variables
and their sum influence can be calculated when multiple measurement scans are considered
simultaneously. This, therefore, makes erroneous parameters far easier to identify.

If a single erroneous measurement exists, the GERI index is independent of the number
of measurement scans made. Using multiple measurement scans increases the redundancy
of measurements for identification.

In addition, identification with multiple measurement scans has the same number of
x as the augmented state variables compared with a single scan. However, it improves the
identification accuracy and numerical stability by increasing the redundancy in SE.

4. Simulation Results

The GERI-based method identifies erroneous measurements simultaneously based on
the identification of erroneous parameters. To illustrate the performance and limitation
of this method, its procedure is implemented and tested in an IEEE 14-bus test system
and a real power system model of the Eastern Grid in China. Several matpower cases are
simulated to further analyze the computation speed of this method in large-scale power
systems. In the following simulations, the error covariance is assumed to be 0.01 p.u. for
all measurements and the parameter values are in p.u. Except for assumed errors in each
case, no deviations are introduced in other parameters or measurements. To improve the
implementation of the proposed method, cases consider power flow measurements of
6 scans at load levels of 0.7, 0.8, 0.9, 1.0, 1.1, and 1.2.

4.1. Simulations of the IEEE 14-Bus Test System

The IEEE 14-bus test system has 14 buses, 20 branches, and 123 measurements, as de-
picted in Figure 2. All measurements were taken from the WLS SE; are considered to
increase redundancy; and contain 1 phase (θ), 14 node voltage values (Vj), 14 node power
flow values (Pj), 14 node reactive power flow values (Qj), 40 power flow values (Pij, Pji),
and 40 reactive power flow values (Qij, Qji).

Figure 2. Diagram of IEEE 14-bus test system.

Different types of errors are adopted to test the identification effect of the method in
three cases.
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4.1.1. Case 1: Identification of a Single General Parameter Error

This case identifies all single general parameter errors by adding an assumed general
parameter relative error to the true parameter or measurement. The assumed general
parameter relative error refers to the ratio of general parameter error (s) to the true number
of parameters or measurements.

Figure 3 presents the relation between the identification-rate and the assumed gen-
eral parameter relative error. The identification rate refers to the ratio of the number of
identified erroneous parameters and measurements to the total number of parameters and
measurements. A single scan is used in Test A-1 and Test B-1, while six scans are used in
Test A-6 and Test B-6. Tests A and B in Figure 3 are carried out as follows:

Test A: Different relative errors are introduced in single measurements (Pij);
all parameters are error-free.

Test B: Different relative errors are introduced in single parameters (Xij); all mea-
surements are error-free.

Figure 3. Identification-rate for a single general parameter error.

According to Test A, the proposed method identifies the single measurement error
when the relative error is larger than or equal to ±5%, and no single measurement error
is identified when the relative error is less than or equal to ±1%. Although multiple
measurement scans increase the redundancy of measurements, they have no effect on the
identification-rate for a single measurement error in Figure 3. According to Test B, the
identification-rate for a single parameter error increases with the relative error. With six
scans, the method identifies more single erroneous parameters than with a single scan.
Text B-6 is also more beneficial to small parameter errors between +3%–+5% and−3%–−5%
than Text B-1. The adoption of multiple measurement scans increases the identification-rate
for a single parameter error, as stated in Section 3.2.

For +30% error added to each parameter (L1 in Figure 3) and +5% error added to each
measurement (L2 in Figure 3), Table 2 shows the partial identification results obtained with
the NLM method and the GERI-based method with a single scan. The 2nd column presents
the normalized residual index (λ) and the 3rd column presents the identified erroneous
parameters and measurements when λ ≥ 3. The 4th column presents the GERI index (∆J)
and the 5th column presents the identified erroneous parameters and measurements when
∆J ≥ 9. The 6th column presents the ratio of λ2 to ∆J. It is obvious that the deduction
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of the relation between the NLM method and the GERI-based method in Appendix A is
correct; thus, λ2 = ∆J. For the erroneous reactance of branch 13–14, values of λ and ∆J are
too small to identify X13−14. However, general parameter errors on branch 1–5 and 2–5 can
be identified correctly with both methods.

Table 2. Single error identification results for the NLM method and the GERI-based method with a
single scan.

Assumed the NLM Method the GERI-Based Method

General Index Identified Index Identified λ2/∆J
Parameter /λ (λ ≥ 3) /∆J (∆J ≥ 9)

X1−5 23.891 X1−5 570.773 X1−5 1.000012
X13−14 1.455 NO 2.117 NO 1.000012
P2−5 4.785 P2−5 22.895 P2− 5 1.000054
Q2−5 4.773 Q2−5 22.786 Q2− 5 0.999804

4.1.2. Case 2: Identification of a Single Parameter Error with an Adjacent Measurement Error

This case identifies all the single erroneous parameters (Xij) with an adjacent erroneous
measurement (Pij) by adding an assumed parameter relative error to the true parameter.
The assumed parameter relative error refers to the ratio of parameter error (s) to true
parameter value. If the erroneous Xij and Pij are identified simultaneously, the identification
case is correct. Identification-rate refers to the ratio of correctly identified cases to the total
number of cases.

Figure 4 presents the identification-rate of Test B-6 and Test C-6. Test B-6 is equal to
Test B-6 in Figure 3. Test C-6 is as follows.

Figure 4. Identification-rate for single parameter error with an adjacent measurement error.

Test C-6: Different assumed parameter relative errors are added to the param-
eters when their adjacent measurement error is 5%. Six scans are used for
identification.

When measurement error and parameter error exist at the same time, it is most difficult
to identify the correlation between them, as the two errors have a similar effect on the SE.
According to Test C-6, negative effects of Xij and Pij can be distinguished with the GERI
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indexes. Compared with Test B-6, Test C-6 can increase the identification-rate for Case 2 by
improving the identification-rate for a single erroneous parameter.

4.1.3. Case 3: Identification of Two Adjacent Parameter Errors

This case presents the identification-rate for two adjacent parameter errors (Xij and
Xik) existing simultaneously with same assumed parameter errors. Test D adds different
assumed parameter relative errors to two adjacent parameters (Xij and Xik). For each Xij
and Xik, the errors are the same. The difference between Test D-1 and Test D-6 is as follows:

Test D-1: A single scan is used for identification.

Test D-6: Six scans are used for identification.

According to Figure 5, this method can identify more parameters with an increasing
parameter relative error. The adoption of six scans generally improves the identification-
rate for two adjacent parameter errors and the identification of minor parameter relative
error between −5% and +5%.

Figure 5. Identification-rate for two adjacent parameter errors.

For N in Figure 5, Table 3 displays the identification results of two erroneous line
reactances (X4−7 and X4−9) with assumed 30% errors. The 2nd column indicates the
cycle of erroneous parameters identified. The 3rd column shows the identified erroneous
parameter, and the 4th column shows its GERI index. The 5th column indicates exact values,
and the 6th column indicates estimated values. The estimation errors in the 7th column
are equal to the estimated values minus exact values. With a single scan, X4−7 and X4−9
are unidentified because their GERI indexes are less than 9, which is the threshold. X5−6 is
over-identified. Hence, there are estimation errors after linear correction and parameter
estimation. With six scans, X5−6 is still over-identified but X4−7 and X4−9 are correctly
identified. The over-identification of X5−6 does not affect their correct estimation. It is
apparent that multiple measurement scans do help to identify two adjacent erroneous
parameters and gain correct estimation values.
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Table 3. Identification of two adjacent erroneous parameters with assumed 30% errors.

Identified Identified GERI Exact Estimated Estimation
Cycle Parameter Index Value/p.u. Value/p.u. Error/p.u.

With a 1 X5−6 34.126 0.25202 0.278599 0.026579
single NO X4−7 < 9 0.20912 0.250944 0.041824
scan NO X4−9 < 9 0.55618 0.667416 0.111236

With 1 X5−6 185.203 0.25202 0.25202 0
six 2 X4−9 25.492 0.20912 0.20912 0

scans 3 X4−7 68.652 0.55618 0.55618 0

4.2. Simulations of the Eastern Grid in China

This case comprises tests on a model of a real power system, the Eastern Grid in China.
The Eastern Grid has 6023 buses, 9557 branches, 2454 loads, 72,270 states, and 337,788 mea-
surements, as shown in Table 4. The initial power flow result is obtained from power flow
calculation using offline data. To ensure the identification effect, the power flow results at six
measurement scans are similarly used to identify multiple erroneous parameters. This runs
on a laptop with an Intel (R) Core (TM) i7-4710 MQ CPU@2.50 G Hz and 8.00 GB of RAM.

To test the identification results and calculation efficiency of the proposed method in
large-scale power systems, 10 randomly generated erroneous parameters were designed in
this case with six measurement scans. The values of these erroneous parameters are their
exact values plus 30%.

Table 4. Scale of simulation for the Eastern Grid in China.

Type Number

Buses 6023
Branches 9557

Generators 658
Loads 2454

Total states 72,270
Total measurements 337,788
Measurement Scans 6

Introduced erroneous parameters 10

Table 5 shows 1st the parameter identification results obtained from the Eastern
Grid in China. The 1st column indicates the identified cycle of general parameter error.
Error type is shown in the 2nd column. The 3rd column indicates the identified parameter.
The 4th column gives the gross error of the identified erroneous parameter. The GERI index
in the 5th column is equal to the gross error of the current cycle minus that of the next
cycle, as is shown in (17). We note that all random erroneous parameters are identified
simultaneously. Although X1667−1670 relates to X1667−1678, both are identified correctly
without over-identification. However, five additional measurements are over-identified for
linearization-induced errors in the nonlinear model.

To analyze the adverse effects of over-identification, Table 6 shows the parameter
estimation results. The 1st column gives the cycle of parameter identified. The 2nd
column shows the value of the assumed erroneous parameter. The 3rd column presents
the estimated parameter value obtained via augmented SE. The 4th column presents the
exact parameter value. The estimation error is given in the 5th column. By comparing
the estimated parameter values and exact parameter values, it can be observed that the
estimation errors of 10 erroneous parameters are all equal to 0. Thus, over-identification
in Table 5 does not affect the estimation results of parameters when multiple erroneous
parameters are accurately identified. The GERI-based method performs well in identifying
multiple erroneous parameters simultaneously.
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Table 5. Parameter identification results for the Eastern Grid in China.

Cycle Error Type Identified Parameter Gross Error GERI

1 parameter X621−622 523,705 281,764
2 parameter X1667−1670 241,941 212,557
3 parameter X3325−3328 29,384 7458
4 parameter X2874−2875 21,926 6110
5 parameter X4355−4357 15,816 4869
6 parameter X15−16 10,947 4672
7 parameter X1667−1678 6275 2359
8 parameter X2991−2993 3916 2166
9 parameter X5077−5080 1750 751

10 parameter X324−325 999 730
11 measurement P621−622 269 34
12 measurement P3325−3328 235 25
13 measurement P15−16 210 18
14 measurement P4355−4357 192 13
15 measurement P5077−5080 179 9

Table 6. Parameter estimation results for the Eastern Grid in China.

Cycle of Assumed Estimated Exact

Parameter Erroneous Parameter Parameter Estimation

Identified Parameter Value Value Error

Value/p.u. /p.u. /p.u. /p.u.

1 0.007161 0.01023 0.01023 0.000000
2 0.007364 0.01052 0.01052 0.000000
3 0.007490 0.01070 0.01070 0.000000
4 0.007490 0.01070 0.01070 0.000000
5 0.008218 0.01174 0.01174 0.000000
6 0.008939 0.01277 0.01277 0.000000
7 0.011158 0.01594 0.01594 0.000000
8 0.012712 0.01816 0.01816 0.000000
9 0.017780 0.02540 0.02540 0.000000
10 0.025354 0.03622 0.03622 0.000000

Table 7 provides the detailed computation time of each step of the simulation for
the Eastern Grid test system. For large-scale power systems, parameter identification
accounts for the greatest computation time. It takes about 45.87 s to detect 10 erroneous
parameters from 9557 line reactances simultaneously with a simplified calculation of
variables in Section 3.1. The GERI-based method only requires one run of WLS SE, which
takes about 4.48 s. Compared with the method that requires SE for each identification, the
proposed method reduces 14 SEs and saves about 62.7 s. Hence, the proposed method
can be practically applied in a bulk power system, as it requires less memory and less
computation time.

Table 7. Computation time of simulation for the Eastern Grid in China.

Procedure Time (s)

Step 1: State Estimation 4.48
Step 2: Parameter Identification 45.87

Step 3: Parameter Estimation 2.07

Total 52.42
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4.3. Simulations of Several Matpower Cases

This simulation applies six matpower files: case 14 (power flow data for the IEEE
14 bus test case), case 30 (power flow data for 30 bus, 6 generator case), case 118 (power flow
data for the IEEE 118 bus test case), case 300 (power flow data for the IEEE 300 bus test
case), case 1888rte (AC power flow data for the French system), case 3120sp (power flow
data for the Polish system—summer 2008 morning peak), and case 6468rte (AC power flow
data for the French system).

To compare the computation time when a different number of nodes and a different
number of measurement scans are used, we introduced a randomly generated erroneous
parameter with an assumed 30% error in each case.

With the single erroneous parameter identified in all cases, Figure 6 shows that the
computation time increases when the number of nodes or the number of measurement
scans increase. For a system with below 1000 nodes, erroneous parameters can be identified
within 50 s by using 41 measurement scans. For a system with 6000 nodes, it takes within
50 s using 10 measurement scans. With multiple measurement scans, we need to select
the appropriate number of measurement scans to balance the identification effect and
computation speed.

Figure 6. Computation time taken with a different number of nodes and a different number of
measurement scans.

5. Conclusions

A practical GERI-based method is proposed to identify multiple erroneous parameters
and measurements simultaneously for the existing static-state estimator. As an additional
functional module, it can be applied quickly and effectively when needed. If administrators
have doubts about the accuracy of parameters, the proposed method can be carried out to
identify erroneous parameters and eliminate their adverse effects. The simulation of the
IEEE 14-bus test system shows the identification effect of three cases. The identification of
a single general parameter error, a single parameter error with an adjacent measurement
error, and two adjacent parameter errors verify the accuracy of the GERI-based method.
Multiple measurement scans increase the redundancy of measurements and help to identify
multiple erroneous parameters. The simulation of the Eastern Grid in China indicates that
the GERI-based method can identify multiple erroneous parameters accurately in large-
scale power systems and performs quite well in terms of computation cost. Simulations of
several matpower cases can improve the computation speed by selecting a suitable number
of measurement scans.
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At present, the proposed identification method has been commissioned for use in six
provincial power grids in China. By introducing phasor data from phasor measurement
units and testing to find the appropriate number of measurement scans, we will further
improve the identification effect and computation speed of this method.
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Appendix A. Relation to the NLM Method

When single erroneous parameter is to be identified, the proposed GERI-based method
is equivalent to the Normalized Lagrange Multiplier method.

Appendix A.1. Simplified Calculation of GERI

According to (15) in Section 2.2, the gross error J(x0 + ∆x̂, ŝ) is

J(x0 + ∆x, s) = (r0 −Hx∆x−Hss)TW(r0 −Hx∆x−Hss),

where r is gain by substituting (13) into (6),

r = r0 −Hss−Hx∆x

= (r0 −Hss)−Hx(Hx
TWHx)

−1Hx
TW(r0 −Hss)

= [I−Hx(Hx
TWHx)

−1Hx
TW](r0 −Hss)

= A(r0 −Hss).

Thus, the gross error is

J(x0 + ∆x, s) = (r0 −Hss)TATWA(r0 −Hss).

https://matpower.org/docs/ref/matpower6.0/menu6.0.html
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By simplifying ATWA as follows:

ATWA =[W−WHx(Hx
TWHx)

−1Hx
TW][I−Hx(Hx

TWHx)
−1Hx

TW]

=W−WHx(Hx
TWHx)

−1Hx
TW

=WA,

we can get the final form of the gross error,

J(x0 + ∆x, s) = (r0 −Hss)TWA(r0 −Hss) = r0TWAr0 − 2r0TWAHss + sTHs
TWAHss.

When single erroneous parameter is existed, k = 1. Considering that x0 is the con-
verged SE point, ∆x0,j = 0 and s0,j = 0. ∆x in (13) follows that

∆x = Hx(Hx
TWHx)

−1Hx
TWr0 = 0.

Thus,

Ar0 = r0 −Hx(Hx
TWHx)

−1Hx
TWr0 = r0. (A1)

Moreover, the initial value and the first iteration valve of the gross error are as follows:

J(x0 + ∆x0,j, s0,j) = J(x0, 0) = r0TWAr0,

J(x0 + ∆x1,j, s1,j) = r0TWAr0 − 2r0TWAHss + sTHs
TWAHss.

Hence, the GERI index is

∆J1,j = J(x0 + ∆x0,j, s0,j)− J(x0 + ∆x1,j, s1,j)

= 2r0TWAHss1,j − (Hss1,j)THs
TWAHss1,j, (A2)

where W is diagonal matrix and WA is symmetric matrix.
The second term of (A2) can be simplified to half of the first term:

(Hss1,j)THs
TWAHss1,j = [Hs(Hs

TWAHs)
−1Hs

TWr0]TWAHss1,j

= r0TWHs(Hs
TWAHs)

−1Hs
TWAHs(Hs

TWAHs)
−1Hs

TWr0

= r0TWHs(Hs
TWAHs)

−1Hs
TWr0

= r0TWAHss1,j.

Then, simplify the first term of (A2) by substituting s (12) and Ar0 (A1) as follows:

r0TWAHss1,j = r0T(WA)THss1,j = (WAr0)THss1,j

= (Wr0)THs(Hs
TWAHs)

−1Hs
TWr0

= r0TWHs(Hs
TWAHs)

−1Hs
TWr0.

So, the GERI index is

∆J1,j = r0TWAHss1,j = r0TWHs(Hs
TWAHs)

−1Hs
TWr0. (A3)

Appendix A.2. Simplified Calculation of NLM

As for the Normalized Lagrange Multiplier method in Reference [17], the optimization
model is as follows:
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min
x,pe

1
2

rTWr

s.t. pe = 0
.

Therefore, λ = −Hp
TWr, and[

0 Hx
TW

Hx I

][
∆x
r

]
=

[
0

z− h(x0, 0)

]
.

Define the inverse of the coefficient matrix above as follows:[
0 Hx

TW
Hx I

]−1

=

[
E1 E2
E3 E4

]
.

From (7), r0 = z− h(x0, 0). ∆x and r are given as follows:[
∆x
r

]
=

[
E1 E2
E3 E4

][
0
r0

]
.

From the above formula, we can get E2, E4, and r.

E2 = (Hx
TWHx)

−1Hx
TW,

E4 = I−Hx(Hx
TWHx)

−1Hx
TW = A,

r = E4r0 = Ar0. (A4)

The covariance matrix of λ is

cov(λ) = Λ = Hp
TW(rrT)WHp

= Hp
TW(AW−1AT)WHp

= Hp
TWAW−1ATWHp

= Hp
TWAW−1(AW)THp

= Hp
TWAHp.

According to (A4) and (A1),

λ = −Hp
TWr = −Hp

TWAr0 = −Hp
TWr0.

Therefore, the Normalized Lagrange Multiplier can be obtained as follows:

λNT
j λN

j = λT
j Λ−1(j, j)λj

= r0TWHpj(HT
pjWAHpj)

−1HT
pjWr0

= r0TWHs(Hs
TWAHs)

−1Hs
TWr0 (A5)

= ∆J1,j.

When only one erroneous parameter existed, the GERI index in (A3) is equal to the
square of the NLM index (λ) in (A5) for all j∈{all parameters and measurements}.

According to Reference [18], a normalized residual or a normalized Lagrange multi-
plier λ larger than 3 is an indication of an erroneous measurement or erroneous parameter.
Hence, a GERI index larger than 9 is the corresponding threshold for identification of an
erroneous parameter.
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