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Abstract: Direct current microgrids are attaining attractiveness due to their simpler configuration and
high-energy efficiency. Power transmission losses are also reduced since distributed energy resources
(DERs) are located near the load. DERs such as solar panels and fuel cells produce the DC supply;
hence, the system is more stable and reliable. DC microgrid has a higher power efficiency than AC
microgrid. Energy storage systems that are easier to integrate may provide additional benefits. In this
paper, the DC micro-grid consists of solar photovoltaic and fuel cell for power generation, proposes a
hybrid energy storage system that includes a supercapacitor and lithium–ion battery for the better
improvement of power capability in the energy storage system. The main objective of this research
work has been done for the enhanced settling point and voltage stability with the help of different
maximum power point tracking (MPPT) methods. Different control techniques such as fuzzy logic
controller, neural network, and particle swarm optimization are used to evaluate PV and FC through
DC–DC boost converters for this enhanced settling point. When the test results are perceived, it is
evidently attained that the fuzzy MPPT method provides an increase in the tracking capability of
maximum power point and at the same time reduces steady-state oscillations. In addition, the time to
capture the maximum power point is 0.035 s. It is about nearly two times faster than neural network
controllers and eighteen times faster than for PSO, and it has also been discovered that the preferred
approach is faster compared to other control methods.

Keywords: MPPT; fuzzy logic controller (FLC); solar photovoltaic (PV); fuel cell (FC); DC-link;
artificial neural network (ANN); particle swarm optimization (PSO)

1. Introduction

The global energy demand is steadily increasing. Traditional energy sources emit
greenhouse gases, so non-traditional energy sources such as solar PV and wind turbines
were developed to be renewable, abundant in nature, cost-efficient, and widely used.
Instead, use a source as FC has in this ever-increasing power demand. The majority of rural
areas do not have access to reliable electricity. The initial investment cost to electrify rural
areas was very high. Still, with the aid of DC microgrids based on renewable energy sources
(RES) such as solar PV and FC with energy storage systems (ESS), implementation is simple
and cost-effective [1,2]. In this current scenario, DC microgrids are more popular because
of easy interfacing with distribution generation without interlinking AC/DC and DC/AC
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transformation stages. They do not have any reactive power and complex frequency issues.
DC/DC converters are important for the integration of distribution generation in DC
microgrids [3]. Buck converters, boost converters, and buck-boost converters [4] are the
three types of DC/DC converters commonly used. Buck converter produces a controlled
output voltage, which is lesser than the input voltage; for a boost converter, the controlled
output voltage is greater than the input voltage; similarly, for a buck-boost converter, the
controlled output voltage is lesser or greater than the input voltage. Compared to an
AC micro-grid, connecting RESs to a common DC bus has many advantages, including
greater performance and accuracy and the elimination of frequency and phase control
requirements [5,6]. Similarly, bi-directional DC/DC converters are used in this dc microgrid
to maintain high reliability and load power supply [7]. The ultra-capacitor is preferred
with battery combinations because of low power density battery cannot reimburse for fast
power fluctuation [8,9]. Mohammed T. Arif proposed a significance of storage on solar PV
system for residential load considering PV as renewable energy generator [10].

In the FC, an electrolyzer produces hydrogen gas by the process called electrolysis.
The gas tanks and metal hydride tanks are used to store the hydrogen gas in the FC.
Compared to gas tanks, metal hydride is more expensive and bigger in size, but the safety
against accidents is high, and that’s why it is essential for self-governing systems installed
in remote areas [11]. In this paper, the maximum power point tracking (MPPT) of solar PV
and FC are achieved. To track the maximum power, different types of MPPT techniques are
used, namely perturb and observe (P and O), incremental conductance (INC), FLC, ANN,
and the particle swarm optimization (PSO) algorithm. In these different MPPT methods,
P and O MPPT technique is most frequently used, and it is proposed for both PV and FC
systems [12,13]. In this paper, different types of MPPT [14–16] techniques (FLC, ANN and
PSO) are used for attaining the maximum power of PV and FC system and embrace all
hybrid power (PV-FC) with battery and ultra-capacitor power at DC link. Saleh Elkelani
Babaa [17] has presented an overview of different MPPT methods for PV systems. Luigi
Costano and Massimo Vitelli [18] have designed a single-stage grid-connected PV system
in mind. Its efficiency is compared numerically to that of the commonly used perturb and
observe (P and O) MPPT technique. Mohammed Junaid Khan [19] has designed a fuzzy
logic–based MPPT controller for PV and FC applications.

Figure 1 shows the distributed RES, ESS, DC load with grid-connected voltage source
converter. DC microgrids have more advantages such as high efficiency, reliability, and low
environmental pollution than AC microgrid and do not have frequency, reactive power
issues. Hence, it is easy to link with DC micro sources.

A study of different controllers such as FLC, NN, and PSO algorithm for hybrid DC
microgrid has been made in this paper. With the assistance of various controllers, the
settling time of power is observed. It is determined that fuzzy provides the most effective
MPPT system compared to other control techniques. The organization of this research
is as follows. Section 2 presents the solar PV and FC mathematical modeling. Section 3
explains the different MPPT control techniques such as FLC, ANN, and PSO algorithm to
control the DC bus voltage, and the simulation results are presented in Section 4. Section 5
illustrates the conclusion and future scope of the hierarchical control structure.
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Figure 1. Schematic Diagram of DC Microgrid consists of Renewable Energy Sources (RESs) and
Energy Storage Systems (ESS).

2. Mathematical Model of Solar PV and Fuel Cell

The mathematical equations are modeled and designed using MATLAB/Simulink
(2019a, The Mathwork, Inc., Natick, MA, USA) for PV and FC, which is illuminated
as follows:

2.1. Modelling of Solar PV

PV cells are electrical devices that transform solar energy into electricity using semi-
conducting devices that demonstrate the photovoltaic effect. The photovoltaic cell is used
to describe electrical variables such as current, voltage, and resistance as they change in
response to sunlight. The equivalent circuit of a solar cell is shown in Figure 2. When
an electron collides with another electron in its bound state, electron conduction occurs,
and these electrons are energized by the base energy provided by the semiconductor’s
bandgap. The equivalent circuit of PV [20] module contains a diode, light-created source,
and resistance connected in parallel. Figure 3 shows the P-V and I-V characteristics [21–23]
of solar cell, which is conditioned and screened for various irradiances at T = 25 ◦C. The
following Equations (1)–(4) represent the mathematical equations for modeling solar cells.

I = Iph − Id

[
exp

(
qV

kbTA

)
− 1
]

(1)

Ish =
[V + (I ∗ Rs)]

Rsh
(2)

Iph = Irr
[
Isc + ki

(
Top − Tref

)]
(3)

Id = Irr

[
Top

Tref

]3
exp

(
qEg

kQA

[
1

Tref
− 1

Top

])
(4)

where, I = total current (A); V = output voltage (V); T = temperature (◦C); q = elec-
tron charge; ki = short-circuit temperature coefficient; Ish = shunt resistance current;
Rs = Series Resistance; Rsh = Shunt Resistance; kb = open-circuit voltage temperature
coefficient and k = Boltzmann’s constant; A = ideality factor; Iph = load current; Id = diode
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current; Irr = saturation current at Tref; Isc = short-circuit current at reference condition;
Tref = reference temperature; Q = total electron charge; Eg = band-gap energy.
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2.2. FC Mathematical Model

The FC [24] consists of Proton exchange membrane (PEM) [25–27], catalyst layer (CL),
gas diffusion layer (GDL), gas channel (GC), and current collector (CC) of both anode and
cathode. Figure 4 illustrates the proton exchange membrane fuel cell (PEMFC).

2.2.1. Model Equations of FC

FC’s fundamental model includes mass, thermal energy, momentum, organisms, and
charge. This FC model is based on five equations. These equations are combined to form
an electrochemical process to express reaction kinetics and electro-osmotic drag during
the polymer electrolyte process. Equations (5)–(10) represent the five equations for this FC
model in vector form.
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2.2.2. Continuity Equation

The electrodes present in the FC are made up of carbon fiber or carbon cloth. The
reactant gases are spread over the CL, and the electrodes are restrained as a porous medium
everywhere. The continuity equation for the porosity with the help of electrodes (ε) has
given in Equation (5). (

∂ερ

∂t

)
+∇× (ερU) = 0 (5)

where ∇ = differential operator of a vector, ρ = liquid density, ε = porosity, U = floating
speed vector and t = time.

2.2.3. Momentum Conservation

Navier–Stokes equation has given in Equation (6) and designed for a Newtonian fluid.(
∂(ερU)

∂t

)
+∇·

(
ερU2

)
= −ε∇p + εF +∇·(ετ)− ε

2µU
k

(6)

where ρ = pressure; τ = stress tensor; F = floating mass vector; µ = liquid viscidity degree;
k = permeate ratio of the liquid by porous medium.

2.2.4. Conversion of Charge Equation

PEMFC is used in CL to conduct electrochemical reactions. The charge equations are
an integral part of the FC, and this equation consists of two equations: electron removal
above conductive solid phase and proton transference above the membrane. The oxygen
diffusion flux (ODF) on the catalyst surface is used to calculate the current density (CD)
that circulates along with CL. The CL’s two-dimensional Poisson’s equation is as follows:

∇·i = 0 (7)

The sum of phase currents of solid (is) and membrane (im) during CL is equal to the
total current (i), which is given in the following equation,

i = is + im (8)

Using Ohm’s law, the transfer current density (Jt) with solid surface tension is given by,

Jt = −∇· − (σs∇ϕs) = ∇·(−σm∇ϕm) (9)
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where Jt = transfer current density at time t, σs = solid phase surface tension, σm = mem-
brane phase surface tension, ϕs = solid phase flux, ϕm = membrane phase flux.

2.2.5. Electrochemical Reaction Dynamics equation

The current density at time (Jt) is a classification of electrochemical reaction velocity,
the concentration of species, and potential among the phase of the membrane and solid.
The expression for Butler–Volmer (B–V) has expressed below,

Jt = Jo

{
exp

[
αaF
RT

(Φs −Φm)

]
− exp

[
αcF
RT

(Φs −Φm)

]} N

∏
j=1

[Λ]αj (10)

where, F = Faraday’s constant, R = electrical resistance, J0 = exchange current density,
αj = charge transfer coefficient, αa and αc = transfer coefficients of cathode and anode.
Λ = mol concentration of the reactant.

3. MPPT Techniques

The efficient yield of solar PV and FC has developed via different MPPT methods.
Various types of MPPT techniques are there. From that, the utmost familiar MPPT methods
are perturb and observe (P and O), incremental conductance technique (INC), the FLC,
ANN, and particle swarm optimization (PSO) control methods. In this paper, power has
been transferred to load with the help of MPPT to extract maximum power from hybrid
(PV-FC) DC microgrid. DC/DC boost converter performs as an interface among load
and hybrid (PV-FC) sources. The maximum power has been obtained by changing the
duty cycle of the DC/DC converter with respect to the load impedance. Hence, the MPPT
techniques for solar PV and FC are necessary to sustain the module functioning at its MPPT.

3.1. Particle Swarm Optimization (PSO)

Kennedy and Eberhart founded PSO [28–30] as an evolutionary computation strategy.
Birds penetrating for food stimulate the PSO. Flocking is a mechanism through which birds
classify their food sources, and it was through these flock activities, the PSO process was
discovered. The search space directs moving particles to their known positions. When a
better position is found, it will be used to direct the flock’s movement. Since the method is
ongoing, as is the execution, the appropriate outcome can be trusted but not guaranteed.
The difference between PSO and conventional evolutionary computation approaches is that
particle velocities are tuned while individual evolutionary positions are replaced; it’s as if
the particle swarm individual’s “fate” is changed rather than their “state.” Furthermore,
PSO experiences partial optimism, which results in less precise measurements of its position
and velocity in its Control. However, this algorithm does not solve the optimization or
scattering problems. The flowchart for the PSO algorithm is shown in Figure 5.

3.2. Artificial Neural Network

The computational tool that represents nonlinear systems has been said to be ANN [31–33].
ANN consists of biological neurons, which contain weight and bias to interconnect each
other by transferring signals. The weights related to input values go together with the
learning rule in the training process. The output yj of ANN has given in Equation (11),

yi = f
(
∑ wijxi + b

)
(11)

where f = activation function, xi = input signal and wij = weight between input and output,
b = bias value. The output neuron E, obtained as follows,

E =
1
2 ∑

i
(ydi − yi)

2 (12)

where ydi = desired value of output neuron i and yi = actual output.
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In this paper, a quasi-Newton back propagation algorithm has been used for weight
mean square error (MSE). With the help of a minimum number of neurons per layer, maxi-
mum accuracy has been obtained by carrying out more trials. The ANN that is developed
in this paper, the input layer contains 1 neuron, the hidden layer has 10 neurons, and the
output layer has 1 neuron. The neurons in the input layer and the hidden layers’ sigmoidal
activation functions are used, and the neurons in the output layer linear activation function
are used. The structure of ANN used in this paper is shown in Figures 6 and 7.
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3.3. Fuzzy Logic Controller

The linguistic variables and their ranges are determined with the help of the main
control variables. With the help of these control variables, the fuzzy logic controller
(FLC) [34–37] is designed. The human’s specific intellect and understanding for developing
the membership functions are essential for making the perception. Figures 8 and 9 depict
an FLC-based MPPT controller and an FLC rule viewer and sur-face viewer, respectively.
Consider the input variables error E (k) and shift in error DE when determining the fuzzy
membership functions (k). As a result of these input signals, linguistic variables are
obtained. Change of Control (Duty cycle D (k)) is the contribution of the fuzzy membership
function. Figure 10 shows the proposed MPPT [38] control scheme with membership
feature fuzzy controller for E (k), DE (k), and D (k). With the use of the intuition method, a
triangular membership function was used to obtain E (k) membership values and DE (k).
The E (k) and DE (k) (−2, 2) intervals are set. To classify some unique input, a triangular
style membership feature is proposed for an individual dominant fuzzy subset. Fuzzy
rules for the hybrid (PV–FC) scheme are presented in Table 1.
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Figure 10. (a) Design of fuzzy (b) membership functions of input variable E (k) (c) membership
functions for input variables DE (k) (d) membership functions of output change in duty cycle.

Table 1. Rules table of the fuzzy logic controller (FLC).

E(k)
NB NM NS ZE PS PM PB

∆E(k)

NB ZE ZE NS NM PM PM PB
NM ZE ZE ZE NS PS PM PB
NS ZE ZE ZE ZE PS PM PB
ZE NB NM NM ZE PS PM PB
PS PB NM NM ZE ZE ZE ZE
PM NB NM NM PS ZE ZE ZE
PB NB NM NM PM PS ZE ZE

4. Simulink model of DC Microgrid

The hybrid DC microgrid Simulink model using MATLAB comprises DC–DC boost
converters, PV, FC, FLC, ANN, PSO-based MPPT method, and resistive load. This pro-
posed hybrid DC microgrid has been developed with the help of MATLAB simulation
software. The system parameters for PV, FC, boost converter, DC–DC bidirectional con-
verter, supercapacitor, and battery are illustrated in Table 2. Figure 11 illustrates MATLAB
Simulink model of hybrid DC microgrid, and Figures 12–14 show the subsystem of FC,
DC–DC bidirectional converter and boost converter, model of FLC.
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Table 2. Renewable Energy Parameters Used for DC Microgrid.

Parameters Values Name of the Component

Temperature 25 ◦C

Solar PV Module

Irradiance 1000 W/m2

Series Connected Modules Per
String 2

Parallel Strings 4
Open Circuit Voltage 21 V
Short Circuit Current 8 A
Number of Cells 65 Fuel Cell
Nominal Stack Efficiency 55%
Operating Temperature 65 ◦C
Nominal Air Flow Rate 300 1pm

Nominal Supply Pressure Fuel—1.5 bar
Air—1 bar

Nominal Composition 99.95 H2, 21 O2, 1 H2O in %
Fuel Cell Resistance 0.07833 Ω
Nerst Voltage of one Cell 1.1288 V
Input Resistance 0.005 Ω Boost Converter
Inductor 3 mH
Input Capacitor 0.02 µF
IGBT 1 No.
DC–Link 300 µF

Input Inductance 1.5 mH DC-DC Bidirectional
Converter

IGBT 2 Nos.
Output Resistance 0.5 Ω
Output Inductance 0.35 mH
Rated Capacitance 29 F Super Capacitor
Equivalent DC Series Resistance 0.03 Ω
Rated Voltage 32 V
Number Series Capacitor 1
Number of Parallel Capacitor 1
Initial Voltage 32 V
Operating Temperature 25 ◦C
Type lithium-Ion Battery
Nominal Voltage 24 V
Rated capacity 14 Ah
Initial state-of-charge 50%
Cut-off voltage 18 V

Figure 15a,b shows the solar PV irradiance of 980 W/m2 for t < 1 s and 800 W/m2

for t > 1 s with constant temperature T = 25 ◦C and nominal charging and discharging
characteristics of an energy storage system.

In this proposed system, the hybrid DC microgrid comprises solar PV with a boost
converter, FC with a boost converter, Supercapacitor with bidirectional converter, and
battery with bidirectional converter. The aforementioned simulations comprise FLC, ANN,
and PSO-based MPPT. Figures 16–18 illustrate solar PV power with (FLC, ANN, and PSO)
and without MPPT controller.
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Similarly, Figure 19 shows the output power of FC with (FLC, ANN and PSO) and
without an MPPT controller. Figures 20 and 21 show the output voltage, current, power,
and state of charge (SOC) of battery and supercapacitor with the use of a bidirectional
converter. Using FLC, the performance of solar PV has risen to 1402 W from 845 W, which
is a rise of 66%, then FC has raised to 1278 W from 787 W, which is a rise of 62%. Using
ANN, the performance of solar PV has risen to 1335 W to 845 W, which is a rise of 58% then
FC has raised to 1208 W from 787 W, which is a rise of 53%. Similarly, by using the PSO
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algorithm, the performance of solar PV has raised to 1260 W from 845 W, which is a rise of
49% then FC has raised to 1188 W from 787 W, which is a rise of 51%.
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It clears that FLC gives the best performance for this proposed hybrid Dc microgrid
when compared to ANN and PSO algorithm. Table 3 gives the comparative analysis of
power for PV and FC without MPPT and with FLC, ANN, and PSO algorithm-based MPPT.

Table 3. Comparison table for hybrid (PV–FC) power with and without MPPT techniques.

Sources

Power (Watt)

Without MPPT
With MPPT Control

FLC ANN PSO

PV 845 1402 1335 1260
FC 787 1278 1208 1194

Figures 22–24 show the Simulink output voltage of 150 V, current of 15 A and power
of 2250 W for hybrid DC microgrid with a comparative analysis of FLC, ANN and PSO
algorithm-based MPPT controller. Table 4 shows the comparison of settling time, overshoot,
and undershoot for the proposed hybrid DC microgrid with the help of FLC, ANN, and
PSO algorithm. The simulation results, which were obtained for the hybrid DC microgrid,
tabulated in Table 4. Hence, with the help of different controllers, the enactment of the
hybrid structure has been detected and analyzed. The Simulation analysis for hybrid DC
microgrid using MATLAB/Simulink has been done to compute the maximum power of
the DC load (resistive load) with different controllers.
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Table 4. Performance of load parameters with different controllers (FLC, ANN, and PSO).

Control Technique Performance Parameters after MPPT

Under Shoot (W) Over Shoot (W) Settling Time (s)

PSO 1442 1667 0.650
Neural Network 1490 1775 0.054

Fuzzy 1491 1735 0.035
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5. Conclusions

In this paper, a hybrid DC microgrid with various control techniques has been pro-
posed to achieve maximum power point in solar PV and FC. The MPPT method improves
the settling time of the proposed hybrid DC microgrid, according to the results obtained
using different control techniques such as FLC, ANN, and PSO algorithm. When compared
to other control methods, FLC has a higher efficiency rating. The results show that the
fuzzy MPPT approach for forecasting hybrid DC microgrid output has a high level of
precision, effectiveness, and reliability. This research has been applied to both grid and
stand-alone systems. As a result of this research into different control techniques for MPPT
systems, it is now possible to choose a particular MPPT process for various applications.
We will investigate the possibility of implementing the appropriate control methods to
other types of DC-DC converters as well as to control a DC microgrid with advanced
DC-DC converter topologies in future research.
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