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Abstract: Today, Formula 1 race cars are equipped with complex hybrid electric powertrains that
display significant cross-couplings between the internal combustion engine and the electrical energy
recovery system. Given that a large number of these phenomena are strongly engine-speed dependent,
not only the energy management but also the gearshift strategy significantly influence the achievable
lap time for a given fuel and battery budget. Therefore, in this paper we propose a detailed low-level
mathematical model of the Formula 1 powertrain suited for numerical optimization, and solve the
time-optimal control problem in a computationally efficient way. First, we describe the powertrain
dynamics by means of first principle modeling approaches and neural network techniques, with
a strong focus on the low-level actuation of the internal combustion engine and its coupling with
the energy recovery system. Next, we relax the integer decision variable related to the gearbox by
applying outer convexification and solve the resulting optimization problem. Our results show
that the energy consumption budgets not only influence the fuel mass flow and electric boosting
operation, but also the gearshift strategy and the low-level engine operation, e.g., the intake manifold
pressure evolution, the air-to-fuel ratio or the turbine waste-gate position.

Keywords: hybrid electric vehicles; Formula 1; optimal control; gearshift optimization; cylinder
deactivation; outer convexification; neural networks; mixed-integer nonlinear optimization

1. Introduction

Formula 1 (F1) is the top category for single-seater circuit racing and features the
fastest racing cars in the world. In the past, these were powered by V8, V10 or even V12
engines. Since 2014, however, the Fédération Internationale de l’Automobile (FIA) [1,2]
has prescribed the parallel hybrid powertrain topology shown in Figure 1. In this so-called
power unit, the main source of propulsive power is still the internal combustion engine,
but in the form of a downsized and turbocharged V6 with a displacement volume of
1.6 L. However, the engine is supplemented by an electric recovery system composed of
two electric motor generator units, denoted by motor generator units (MGUs), and an
electric energy storage in the form of a battery. The MGU-K (K for kinetic) is coupled
to the engine’s crankshaft and is used to increase the propulsive power of the car or to
recuperate energy during braking. To increase the powertrain’s efficiency, the FIA allows
the installation of a second electric motor on the turbocharger shaft, referred to as MGU-H
(H for heat). As a consequence, the turbine is oversized and in general produces more
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power than absorbed by the compressor, such that part of the energy contained in the
hot exhaust gases can be recuperated by the MGU-H and fed to the battery or directly to
the MGU-K. Additionally, the MGU-H can be used to speed up the compressor to avoid
turbo lag. While the FIA restricts the MGU-K power to ±120 kW, no limits are imposed
on the MGU-H. Finally, the power unit is connected to the wheels by an eight-speed
sequential gearbox and a differential. In addition to the finite capacity of the battery
of 4 MJ, the FIA also limits the fuel consumption for an entire race (≈300 km) to 110 kg
and constrains the maximum fuel mass flow as a function of the engine speed. Every
F1 driver’s goal is to win the race, i.e., to complete the defined number of laps in the
shortest amount of time. Therefore, controlling the powertrain in a time optimal way is
of utmost importance. The complex interactions between the thermal and the electrical
part, which are coupled not only through the drivetrain but also through the electrified
turbocharger, together with the limited available energy imposed by the FIA rules, call for
a rigorous model-based optimization of the powertrain operation. Since the behavior of
several internal combustion engine components highly depends on the engine speed, any
offline optimization must also take into account the gearshift strategy. Therefore, in this
paper we present a framework that jointly computes the time-optimal control and gearshift
strategy for a detailed low-level model of the current hybrid electric F1 powertrain. In the
following paragraphs, we review the relevant literature, formulate the research statement
and outline our contribution, and give an overview on the paper structure.

Given that the F1 power unit is hybrid electric, the methodology applied to optimize
its energy management can be related to hybrid electric vehicle research: for road-going
vehicles, such as passenger cars, the main objective is to minimize the fuel consumption,
whilst for race cars the key performance indicator is the lap time. Therefore, we identify
two streams of research related to our topic. The first one deals with the fuel-optimal
control of hybrid electric vehicles, where in the majority of the cases the power request
and the vehicle speed are known and given, i.e., the vehicle is assumed to follow a specific
driving cycle. Non-causal optimal control strategies were investigated using dynamic
programming [3–5], convex optimization [6–8] and Pontryagin’s minimum principle [9–11].
The sizing of the powertrain components [12], of the drivetrain [13,14] or the design of
the powertrain topology [15] were also discussed in previous works. For feedback control,
equivalent consumption minimization strategies have been applied for fuel consump-
tion minimization [16,17] considering also pollutant emissions [18], the battery state of
health [19] or turbocompounding [20,21]. Furthermore, the integer nature of gears and the
engine on/off choice were tackled with iterative algorithms [7], Pontryagin’s minimum
principle [22,23], dynamic programming [8,23], outer convexification [24–28] and shooting
or bisection methods [29,30]. However, all these approaches mainly rely on quasi-static
system models and ignore the dynamic behavior of the internal combustion engine, e.g.,
the intake manifold or the turbocharger dynamics. To properly capture the engine dy-
namics, mean value engine models are usually formulated using nonlinear differential
equations [31–34] and optimized offline [35–40] or online in a model predictive control
fashion [41–44]. Recently, the air path of a forced-intake engine was modeled in a quasi-
static manner as a basis for minimum fuel control [45,46]. However, in these works several
assumptions about the air-to-fuel ratio and the turbocharger operation were made to render
the resulting model convex. In Ref. [47] instead, a piecewise affine low-level model of a
high-performance hybrid electric power unit is presented. The proposed model includes
the most relevant low-level engine dynamics, as well as the integer nature of the cylinder
deactivation, and presents a methodology to fit the highly nonlinear turbocharger maps by
means of neural networks techniques. While the resulting fuel-optimal mixed integer linear
program has global optimality guarantees, it relies on measured engine speed and power
request trajectories, i.e., the gearshift command and the vehicle speed are not optimized
but are given. The second stream of research concerns the time-optimal control of race
cars. In Ref. [48–50], the authors solved the general problem of evaluating the vehicle
lateral and longitudinal control that yields to the minimum time maneuvering around
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a racetrack. Structural components that additionally influence the achievable lap time
were included in the optimization framework: the suspensions [51] and the tyres [52]. The
computation of the optimal driving trajectory was further extended with the inclusion
of power flows [53], of the F1 specific power flows and regulations [54], or of the power
flows and therewith associated thermal management of a Formula E race car [55]. Finally,
the authors of [56] show that the time-optimal energy management marginally influences
the race car’s velocity evolution in the corners, whilst it significantly impacts its speed
on the straights. The most important assumption made in the previous works on F1 in
our group, is to decouple the energy management from the driving path: we assume
the driver to be responsible for following the time-optimal path on the racetrack, whilst
we put the focus on the optimal usage of the available energy [57–62]. The time-optimal
control strategies for race and qualifying scenarios were solved numerically in [57,60],
while real-time feedforward and feedback control architectures were derived analytically
and tested in [58,59]. A two-level model predictive control architecture was also proposed
as an online controller in [62] and afterwards extended with adaptation algorithms in [61].
Finally, in [63] we combined convex optimization, dynamic programming and Pontryagin’s
minimum principle in an iterative scheme to solve the energy management and gearshift
control of a modern F1 powertrain. However, the majority of the models used for mini-
mum time optimization are high-level models that mainly rely on quasi-static formulations,
ensuring low computational times in the order of seconds to minutes. Thus, they can serve
a rapid parametrization of the energy management but neglect important effects such as
transient motor generator unit (MGU)-H operation during the gearshifts. Moreover, they
do not consider the dynamics of the engine, e.g., the intake manifold and the turbocharger,
they do not model the engine cylinder deactivation and do not include the air-to-fuel ratio
and the spark advance influence on the achievable engine power.

To the best of the authors’ knowledge, there exists no framework so far that jointly
computes the time-optimal control and gearshift strategy for a detailed low-level model of
a F1 hybrid electric powertrain. The impact of both the gearshift strategy and the targets for
fuel and battery usage on the engine power generation and on the low-level dynamics, e.g.,
on the air-to-fuel ratio or on the intake manifold pressure evolution, has not been studied
yet for time-optimal control purposes. Therefore, in this paper we propose a detailed low-
level mathematical formulation of the F1 powertrain suited for numerical optimization.
Beside the specific focus on the engine speed dependency of each powertrain’s component,
we propose a continuous nonlinear model to describe the engine cylinder deactivation
and reformulate non-smooth inequality constraints such that they can be accommodated
by off-the-shelf nonlinear solvers. We relax the resulting mixed integer nonlinear model
using outer convexification techniques, thereby reducing computational times for solving
the time-optimal control problem by two orders of magnitude. The presented framework
can be used as a tool to benchmark the low-level actuation of the internal combustion
engine components in the context of the time-optimal energy management. Specifically,
the suboptimality of the control strategy adopted during a race week-end can be assessed,
reference trajectories for online control can be generated and control heuristics can be
inferred. Moreover, the framework allows to perform parametric studies aimed at the
design of new powertrain components. For the purpose of this work, only a part of the
FIA sporting and technical regulations [1,2] are considered and modeled. As an example,
specific limits on the energy transfer between the battery and the electric motor connected
to the crankshaft are not implemented. This is due to confidentiality reasons and also
facilitates the results analysis given the complexity of the system.

The paper is structured as follows: in Section 2 we present a mixed integer nonlinear
model of the F1 hybrid electric powertrain and the car’s longitudinal dynamics, especially
focusing on the engine speed dependency, the dynamic behavior of the intake manifold
and the turbocharger, as well as the engine cylinder deactivation. Thereafter, we formulate
the time-optimal control problem and apply outer convexification. In Section 4 we present
parameter studies where we compute and discuss the time-optimal control strategies for
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different energy budgets and operational limits, both over portions of lap and entire lap.
Finally, conclusions are drawn in Section 5.

2. Modeling of the Formula 1 Powertrain

In this section we identify and validate a detailed low-level model of the F1 hybrid
electric powertrain. A schematic of the system is shown in Figure 1 and its mathematical
mean-value model formulation suited for numerical optimization is mostly based on or
inspired by [31,47,57].

Figure 1. Schematic representation of the main components of the Formula 1 (F1) hybrid electric
powertrain.

In addition to the energy storages onboard, i.e., the battery and the fuel tank, the
power unit consists of an internal combustion engine equipped with an electrified tur-
bocharger and two motor generator units: the MGU-K is mounted on the engine shaft and
is used for electric boosting or regenerative braking, whilst the MGU-H is an electric motor
that converts part of the heat contained in the hot exhaust gases into electrical energy or
reduces the turbo lag. The engine system is composed of an intake manifold equipped with
an intercooler and a throttle valve, a 1.6 L gasoline direct injection engine with cylinder de-
activation capabilities, an exhaust manifold and a turbocharger. The turbocharger consists
of a radial compressor, a radial turbine equipped with a waste-gate valve and the MGU-H
mounted on the turbocharger shaft. Finally, the remaining part of the powertrain consists
of a gearbox and a differential that connect the engine and the MGU-K to the wheels.

A schematic representation of how the state and the input variables of the considered
system relate to each other, is displayed in the causality diagram shown in Figure 2. The
system’s state variables are the car’s velocity v and its position s on the racetrack, the intake
manifold pressure pim, the turbocharger rotational kinetic energy Etc, the battery energy
Eb and fuel energy Ef consumed. In contrast to the intake manifold dynamic behavior,
the exhaust manifold is modeled as a static subsystem. This modeling assumption will be
motivated in Section 2.4. The system’s input variables are the power of the friction brakes
Pbrk, the MGU-K power Pk, the MGU-H power Ph, the engaged gear g, the throttle valve
position uth, the spark-advance position usa, the cylinder fuel mass flow ṁf,cyl, the cylinder
deactivation variable Ψe and the waste-gate valve position uwg. The powertrain model is
partly taken or inspired by the works conducted at our institute or published by ourselves.
Specifically, the energy recovery system model in Section 2.5 and the longitudinal dynamics
in Section 2.6 are taken from [57]. The linear waste-gate model in Section 2.3 and the static
approximation of the exhaust manifold in Section 2.4 are taken from our previous work [47],
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where the engine speed over the entire mission was given and we made use of integer
variables and linear equations to model a high-performance power unit. For confidentiality
reasons, the model parameters cannot be disclosed and the data shown on the plots are
normalized and denoted by (·)0. For instance, the normalized value of the turbine mass
flow ṁt is denoted by ṁt,0. To quantify the modeling mismatch, we use the normalized
mean absolute error defined as

enorm =
1

max|xmeas| · N
·

N

∑
i=1

∣∣∣∣∣∣xmeas[i]− xmodel[i]
∣∣∣∣∣∣

1
, (1)

where N is the number of data points considered, xmodel is the modeled value and xmeas is
the measured one. The data displayed in the Figures 3, 5–10 are telemetry data acquired
during a race week-end on a current F1 hybrid electric race car by our industrial partner.
For confidentiality reasons, we are not allowed to disclose the exact experimental setup
used to obtain them, i.e., sensor specification and placement. The majority of the data are
acquired directly by means of sensors, e.g., intake manifold pressure, or are computed
online by means of maps that were recorded on dedicated test-benches, e.g., compressor
and turbine mass flow maps. Finally, all the validation plots shown in the following
sections cover roughly a third of the racetrack and include three straights and two corners.

Figure 2. Causality diagram of the system. The shaded blocks represent the dynamical subsystems, the plain blocks the
static/algebraic subsystems and the dashed lines the control inputs of the system.
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2.1. Intake Manifold

The intake manifold is modeled as an isothermal receiver [31], since the intercooler
operation leads to temperature fluctuations over one lap of less than 1%, as Figure 3 shows.
As a consequence, we assume a constant temperature ϑim inside the intake manifold.

Figure 3. Measured and modeled intake manifold temperature (enorm = 0.23%).

We then model the dynamics of the intake manifold pressure pim as

d
dt

pim(t) =
Rair · ϑim

Vim
·
(

ṁc(t)− ṁβ(t)
)

, (2)

where Vim is the intake manifold volume, Rair is the specific gas constant of air, ṁc is the
compressor mass flow and ṁβ is the engine air mass flow. The engine air mass flow is
modeled as

ṁβ(t) =
pim(t)

Rair · ϑim
· ωe(t)

4π
·Vd · λvol

(
ωe(t)

)
· uth(t), (3)

where ωe is the engine speed, Vd is the engine displacement volume, λvol is the volumetric
efficiency and uth ∈ [0, 1] is the throttle position. Since the throttle is placed after the
plenum, the intake manifold pressure dependency [31] of the volumetric efficiency is
neglected. The map λvol(ωe) that relates the volumetric efficiency to the engine speed is
identified using the neural network technique presented in Appendix C. For confidentiality
reasons, it cannot be displayed.

2.2. Engine Power and Cylinder Deactivation

The internal combustion engine power Pe is the sum of three contributions: the engine
power stemming from the fuel combustion Pe,c, the engine power losses due to the pistons’
friction Pe,fr and the engine pumping power Pe,p arising from the gas exchange in the intake
and exhaust manifold. Therefore we model the engine power as

Pe(t) = Pe,c(t) + Pe,fr(t) + Pe,p(t). (4)

Since the engine features cylinder deactivation, the engine combustion power Pe,c is the
sum of all the cylinder-individual combustion power values:

Pe,c(t) =
Ncyl

∑
i=1

Pe,c,i(t), (5)

where Pe,c,i denotes the engine combustion power delivered by cylinder i ∈ {1, . . . , Ncyl}.
It is defined as

Pe,c,i(t) = ηωe

(
ωe(t)

)
· ηAF,i(t) · ηSA,i(t) · ṁf,i(t) · Hl, (6)

where Hl is the fuel lower heating value and ṁf,i is the amount of fuel injected in cylinder
i. The combustion efficiency ηωe is engine speed dependent, whereas ηAF,i and ηSA,i are
cylinder individual correction factors that capture the influence of the air-to-fuel ratio
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and spark-advance position, respectively. Since all cylinders share the same engine speed
and, if active, we assume the same amount of fuel injected ṁf,cyl, air-to-fuel ratio and
spark-advance, (6) can be rewritten as

Pe,c(t) = ηωe

(
ωe(t)

)
· ηAF,cyl(t) · ηSA,cyl(t) · [Ψe(t) · ṁf,cyl(t)] · Hl, (7)

where the cylinder deactivation variable Ψe ∈ [0, Ncyl] defines the number of active cylin-
ders. This variable is assumed to be continuous to reduce the calculation complexity (more
on that in Section 3.2). The total fuel mass flow injected ṁf is therefore

ṁf(t) = Ψe(t) · ṁf,cyl(t), (8)

while the change in fuel energy Ef consumption is modeled as

d
dt

Ef(t) = ṁf(t) · Hl. (9)

The maximum amount of fuel injected per cylinder is limited by the FIA regulations [1,2]:

0 6 ṁf,cyl(t) 6 ṁmax
f
(
ωe(t)

)
/Ncyl, (10)

where the speed-dependent maximum allowed fuel injection in [kg/h] is

ṁmax
f
(
ωe(t)

)
=

{
fFIA,ωe

(
ωe(t)

)
= (0.009 ·ωe(t)[rpm] + 5.5) if ωe(t) 6 ωFIA

e ,
fFIA,const = 100 if ωe(t) > ωFIA

e ,
(11)

where ωFIA
e = 10, 500 rpm is the engine speed threshold imposed by the FIA regulations.

To implement this non-smooth constraint in the optimization framework, we rewrite and
relax (11) and introduce the lifting variable ˙̃mmax

f in the following manner:

˙̃mmax
f (t) > 0,

˙̃mmax
f (t) 6 fFIA,const,

˙̃mmax
f (t) 6 fFIA,ωe

(
ωe(t)

)
.

(12)

Finally, using (12) we can rewrite (10) as

0 6 ṁf,cyl(t) 6 ˙̃mmax
f (t)/Ncyl. (13)

The reformulation (12) is schematically drawn in Figure 4 and can be interpreted as follows:
if the engine speed is below 10, 500 rpm the maximum amount of fuel that can be injected
is constrained by the engine-speed dependent ramp fFIA,ωe ; if the engine speed is above
10, 500 rpm, the maximum amount of fuel is limited by the constant constraint fFIA,const.

Figure 4. Fédération Internationale de l’Automobile (FIA) regulation on the maximal allowed fuel
mass flow [1,2].
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The spark-advance efficiency depends on the spark advance position uSA and the
engine speed ωe. The relationship is usually defined by a map ηSA = fSA(uSA, ωe). We as-
sume that for any engine speed we can realize a spark-advance efficiency ηSA ∈ [ηmin

SA , ηmax
SA ]

and in post-processing compute the spark-advance position uSA which realizes the desired
efficiency. The engine speed efficiency is modeled as

ηωe(ωe) = k1,e ·ω2
e(t) + k2,e ·ωe(t) + k3,e, (14)

where k1,e, k2,e and k3,e are coefficients subject to identification. Next, we introduce the
definition of the air-to-fuel ratio in the cylinder [31]

λAF,cyl(t) =
ṁβ(t)/Ncyl

ṁf,cyl(t)
· 1

σ0
, (15)

where σ0 is the stoichiometric constant. The main drawback of (15) is its singularity if no
fuel is injected, i.e., for ṁf,cyl = 0. For this reason, we introduce the fuel-to-air ratio φAF,cyl,
which is defined as

φAF,cyl(t) =
1

λAF,cyl(t)
=

ṁf,cyl(t)
ṁβ(t)/Ncyl

· σ0. (16)

The fuel-to-air ratio φAF,cyl is always defined and bounded, since the engine air mass
flow cannot be zero during operation. Furthermore, the fuel-to-air ratio mixture has an
impact on the combustion efficiency, which is defined by the map ηAF,cyl = fAF(φAF,cyl).
Similar to the engine speed efficiency maps, the fuel-to-air ratio efficiency maps usually
present a peak efficiency at the optimal fuel-to-air ratio value and gradually decrease in
an asymmetric way if the fuel-to-air ratio is larger or smaller than that [31]. To properly
capture the asymmetric form of the map, the fuel-to-air ratio efficiency is fitted using the
neural network techniques presented in Appendix C. If a cylinder is activated, i.e., Ψe 6= 0,
the fuel-to-air ratio must lie in the allowed range [31], leading to the case distinction

φAF,cyl(t) ∈
{
[φmin

AF , φmax
AF ] if Ψe(t) 6= 0,

R if Ψe(t) = 0.
(17)

It is worth noticing that φAF,cyl can be any value if Ψe = 0. Ideally, when the engine is
completely shut off, i.e., Ψe = 0, the fuel-to-air ratio should be zero because no fuel should
be injected, i.e.,

ṁf,cyl(t) ∈
{[

0, ṁmax
f

(
ωe(t)

)
/Ncyl

]
if Ψe(t) 6= 0,

0 if Ψe(t) = 0.
(18)

Since it is computationally expensive to implement (18), we neglect it for the following rea-
son: If Ψe 6= 0, the fuel injected in the cylinders is constrained by both the FIA regulations
(11) and the fuel-to-air ratio constraints (17); If Ψe = 0, the fuel injected in the cylinders is
only constrained by the FIA regulations, but it will not have an impact on any algebraic
or dynamic equation of the model, e.g., on the combustion engine power in (7) or the fuel
energy dynamics in (9), since ṁf,cyl is always multiplied with Ψe. Finally, we make use of
so-called vanishing constraints [64] to rewrite (17) as

0 6 Ψe(t) ·
(
φAF,cyl(t)− φmin

AF
)
,

0 6 Ψe(t) ·
(
φmax

AF − φAF,cyl(t)
)
.

(19)

The engine friction power Pe,fr is modeled as a quadratic function of the engine speed as

Pe,fr(t) = k1,fr ·ω2
e(t) + k2,fr ·ωe(t) + k3,fr, (20)
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where k1,fr, k2,fr and k3,fr are coefficients subject to identification. Finally, the engine
pumping power Pe,p is modeled as

Pe,p(t) =
(

pim(t) · uth(t) · kp − pem(t)
)
·ωe(t) ·

Vd
4π

, (21)

where pem is the exhaust manifold pressure and kp is a coefficient subject to identification.
Figure 5 shows the fitting of the engine combustion, friction and pumping power. Whilst
all three power contributions match precisely the measurements data on the straights, the
friction and pumping powers partially differ during the corners, i.e., where the engine is
not operated at full load. Regarding the friction power, this might be attributable to the
simple model which lacks additional (input or state) dependencies, whilst the difference in
the pumping power might be due to physical phenomena that zero-dimensional models
are not able to capture properly.

Figure 5. Measured and modeled engine combustion power (enorm = 1.26%), friction power
(enorm = 2.59%) and pumping power (enorm = 6.37%).

2.3. Turbocharger and Waste-Gate

The turbocharger’s state variable is its rotational kinetic energy Etc defined as

Etc(t) =
1
2
·Θtc ·ω2

tc(t), (22)

where Θtc is the moment of inertia of the entire turbocharger and ωtc is the rotational speed
of the shaft. The rotational kinetic energy evolves as a function of the turbine power Pt,
compressor power Pc and MGU-H power Ph acting on the shaft:

d
dt

Etc(t) = Pt(t)− Pc(t) + Ph(t). (23)

In Ref. [47], it was shown that the compressor and turbine mass flows and powers can be
accurately described as a function of the turbocharger rotational energy Etc, the intake manifold
pressure pIM, the exhaust manifold pressure pem and exhaust manifold temperature ϑEM.
Therefore, these quantities can be represented with the following multi-dimensional mapsM:
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ṁc(t) =Mṁc

(
Etc(t), pim(t)

)
, (24)

Pc(t) =MPc

(
Etc(t), pim(t)

)
, (25)

ṁt(t) =Mṁt

(
Etc(t), pem(t), ϑem(t)

)
, (26)

Pt(t) =MPt

(
Etc(t), pem(t), ϑem(t)

)
. (27)

This is a direct consequence of the assumption that the pressure and temperature at the
compressor entrance, as well as the pressure after the turbine, are assumed to be constant
and equal to the ambient conditions [47].

Both compressor and turbine are subject to operational limits. While the mechanical,
blocking and choke limits of the compressor can be accounted for by introducing constant
constraints on the turbocharger rotational speed and compressor mass flow, the compressor
surge limit varies depending on the turbocharger rotational speed:

psurge(t) =Mpsurge

(
Etc(t)

)
. (28)

In order to avoid compressor operation in the surge region, we introduce the constraint

pim(t) 6 psurge(t). (29)

All the turbocharger maps are fitted using the neural network modeling technique pre-
sented in Appendix C. Since the turbine and the waste-gate mass flows are well approxi-
mated as orifices [31] and share the same exhaust manifold pressure and temperature, the
waste-gate mass flow ṁwg is modeled as [47]

ṁwg(t) = uwg(t) · ṁwg,max(t), (30)

where uwg ∈ [0, 1] is the normalized waste-gate position and ṁwg,max is defined as

ṁwg,max(t) = k1,wg · ṁt(t) + k2,wg, (31)

with k1,wg and k2,wg being parameters subject to identification. Figures 6 and 7 show that
the fitting precision of the turbocharger quantities and the waste-gate maximum mass flow
is satisfactory, with very good agreement between the model and the measurements.

Figure 6. Measured and modeled compressor mass flow (enorm = 0.36%), compressor power
(enorm = 0.46%) and compressor surge (enorm = 0.60%).
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Figure 7. Measured and modeled turbine mass flow (enorm = 0.42%), turbine power (enorm = 0.25%)
and maximum waste-gate mass flow (enorm = 0.92%).

2.4. Exhaust Manifold

The exhaust manifold of the considered engine displays a small gas residence time
and its volume is much smaller compared to the one of the intake manifold. As a con-
sequence, we approximate the exhaust manifold to be quasi-static and adiabatic [31].
In Ref. [47], this simplification was shown to satisfactorily approximate the dynamic nature
of a small plenum. Therefore, the exhaust manifold temperature ϑem is modeled as an
algebraic function

ϑem(t) =
1

Ncyl
·

Ncyl

∑
i=1

ϑe,out,i(t), (32)

where ϑe,out,i is the temperature of the gases exiting cylinder i. Since we assume all the
active cylinders to share the same combustion conditions, and the inactive cylinders to
share the same non-combustion conditions, (32) can be rewritten as

ϑem(t) =
1

Ncyl
·
(

Ψe(t) · ϑON
comb(t) + (Ncyl −Ψe(t)) · ϑOFF

comb(t)
)

, (33)

where the variables ϑON
comb and ϑOFF

comb represent the engine-out temperature if the cylinder is
active and inactive, respectively. The engine-out temperature of the active cylinders ϑON

comb
is modeled by superposing an enthalpic balance and a temperature increase induced by
the spark-advance retardation [65–67]

ϑON
comb(t) =

H̃ON
comb,enth(t) + H̃ON

comb,SA(t)
ṁf,cyl(t) + ṁβ,cyl(t)

, (34)

with

H̃ON
comb,enth(t) = ṁβ,cyl(t) · ϑIM + ṁf,cyl(t) ·

(
ϑfuel + ηEM,enth ·

Hl
cp

)
, (35)

where ϑfuel is the temperature of the injected fuel, cp is the heat capacity at constant
pressure of the exhaust gases and ηEM,enth is a fitting coefficient that represents how much
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combustion enthalpy goes into the exhaust manifold in form of heat. The term accounting
for the temperature increase due to the ignition delay is

H̃ON
comb,SA(t) = ηEM,SA ·

ṁf,cyl(t) · Hl ·
(
1− ηSA(t)

)
cp

, (36)

where ηEM,SA is a fitting coefficient that represents how much the exhaust manifold tem-
perature is increased by the extra heat arising from the spark-advance retardation.

Finally, the engine-out temperature of an inactive cylinder is modeled as in [47] by

ϑOFF
comb(t) = kOFF

1,em + kOFF
2,em · ṁβ,cyl(t), (37)

where kOFF
1,em and kOFF

2,em < 0 are coefficients subject to identification. The model (37) captures
that the engine-out temperature is colder for a higher engine air-mass flow. Figure 8 shows
the comparison of the exhaust manifold temperature model to measurement data. The
proposed model properly captures the behavior on the straights where the temperature is
high, especially during the upshifts (recognizable as little peaks), whereas it overestimates
the temperature in the last part of the corner. This might be attributable to the quasi-static
modeling choice, which entails the absence of the receiver’s inertia.

Figure 8. Measured and modeled exhaust manifold temperature (enorm = 1.29%).

Following the quasi-static modeling approach, the pressure in the exhaust manifold is
implicitly defined through the algebraic mass balance

ṁβ(t) + ṁf(t) = ṁt(t) + ṁwg(t). (38)

In Section 2.3, it was shown that the waste-gate mass flow can be approximated as a
function of the turbine mass flow ṁt and the waste-gate position uwg, i.e.,

ṁwg(t) =Mṁwg

(
ṁt(t), uwg(t)

)
, (39)

and that the turbine mass flow ṁt is a function of the turbocharger rotational kinetic energy
Etc, exhaust manifold pressure pem and exhaust manifold temperature ϑEM, i.e.,

ṁt(t) =Mṁt

(
Etc(t), pem(t), ϑEM(t)

)
. (40)

If we combine (38) with (39), we obtain

ṁt(t) = M̃ṁt

(
ṁβ(t) + ṁf(t), uwg(t)

)
. (41)

Finally, combining (41) with (40) the exhaust manifold pressure is found to be

pem(t) =Mpem

(
ṁβ(t) + ṁf(t), uwg(t), Etc(t), ϑEM(t)

)
. (42)
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The exhaust manifold pressure map is identified using the neural network technique
presented in Appendix C and its fitting is shown in Figure 9. Despite its quasi-static
modeling, the exhaust manifold pressure partially displays a dynamic behavior: this is
due to its dependency on the engine air mass flow, which is a function of two dynamic
variables, i.e., the intake manifold pressure and the car’s velocity.

Figure 9. Measured and modeled exhaust manifold pressure (enorm = 1.99%).

2.5. Energy Recovery System

In this section, we model the energy recovery system using a high-level modeling
approach [57]. The power conversion losses of the motor generator units (MGUs) from
mechanical-to-electrical conversion and vice-versa are approximated using the quadratic
functions

Pk,dc(t) = αk · P2
k(t) + Pk(t),

Ph,dc(t) = αh · P2
h(t) + Ph(t),

(43)

where Pk,dc and Ph,dc are the electrical powers of the MGUs, Pk and Ph the mechanical power
of the MGUs, and αk and αh coefficients subject to identification. The MGUs electrical
actuator limits are considered, namely

Pmin
h,dc 6 Ph,dc(t) 6 Pmax

h,dc ,

Pmin
k,dc 6 Pk,dc(t) 6 Pmax

k,dc .
(44)

The battery electrical losses can also be approximated using a quadratic model

Pi(t) = αb · P2
b (t) + Pb(t), (45)

where Pi is the internal battery power, Pb = Ph,dc + Pk,dc + Paux is the terminal battery
power, αb a coefficient subject to identification and Paux a constant auxiliary power.

Figure 10 shows the satisfactory fitting precision of the MGU-H, MGU-K and battery
power conversions. Finally, we assume a constant battery voltage [68,69] and model the
battery energy dynamics as an open integrator [47,57], i.e.,

d
dt

Eb(t) = −Pi(t). (46)
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Figure 10. Measured and modeled MGU-K electrical power (enorm = 0.67%), MGU-H electrical
power (enorm = 0.34%) and battery internal power (enorm = 0.42%).

2.6. Longitudinal Dynamics and Gearbox

In this section we present the longitudinal dynamics and the gearbox of the race car.
The position s of the car on the circuit evolves according to its velocity v, hence

d
dt

s(t) = v(t). (47)

The lateral dynamics of the car are condensed [57] into a track-dependent maximum
velocity profile vmax which constrains the velocity at each position of the racetrack

v
(
s(t)

)
6 vmax(s(t)). (48)

The achievable velocity when the driver is not fully pressing the accelerator pedal, i.e., in the
corners, is inferred from the telemetry data or using sophisticated simulations of the car’s
lateral dynamics, while the maximum velocity constraint on the straight is set constant and
equal to a value that is not achievable, e.g., 400 km/h. As an example, in Figure 11 we depict
a measurement of the car’s velocity on the layout of the Bahrain International Circuit.

The longitudinal dynamics are modeled as [57]

mcar ·
d
dt

v(t) = Ftr(t)− Fa(t)− Fr (49)

with

Ftr(t) =
Ptr(t)

v
,

Fa(t) =
(

ka + kcurve · γ
(
s(t)

)
− kdrs · ξdrs

(
s(t)

))
· v2(t),

Fr = mcar · G · kr,

(50)

where mcar is the car mass, ka, kcurve, kdrs and kr are the aerodynamic, curvature, drag
reduction (DRS) and rolling coefficient subject to identification, γ

(
s(t)

)
is a position-

dependent curvature parameter that accounts for the aerodynamic change during cornering
of open wheeled cars, ξdrs

(
s(t)

)
is a position-dependent boolean (where ξdrs = 1 in DRS

zones, otherwise 0), G is the gravitational acceleration and Ptr is the traction power. The
traction power is defined as

Ptr(t) = Pp(t)− Pbrk(t), (51)
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where Pbrk ∈
[
0, Pmax

brk

]
is the power dissipated in the friction brakes and Pp is the propulsive

power modeled as [57]
Pp(t) = k1,sl · P2

u(t) + k2,sl · Pu(t), (52)

where k1,sl and k2,sl are the slip coefficients subject to identification and Pu is the total power
unit power, i.e., Pu = Pe + Pk. More details on the longitudinal model and its validation
can be found in [57]. Finally, the power unit is equipped with an eight-speed gearbox, i.e.,
Ng = 8. The overall transmission of the gear g from the engine shaft to the car’s wheel is
denoted by Γ ∈ {Γ1, . . . , ΓNg}. Therefore the engine speed whit the gear g ∈ {1, . . . , Ng}
engaged is related to the velocity by

ωe(t) = Γg · v(t) (53)

and the engine speed is constrained for drivability and regulatory reasons [1,2] as

ωmin
e 6 ωe(t) 6 ωmax

e . (54)

Figure 11. Track layout of the Bahrain International Circuit with a color-coded representation of the
F1 car velocity measured during a race week-end. This specific racetrack layout is used in Section 4
for the results and case studies. The points A and B mark the beginning and end of the track segment
investigated in Section 4.

3. Optimal Control Problem

In this section, we state the optimal control problem. The state variables are the posi-
tion s, the car’s velocity v, the intake manifold pressure pim, the turbocharger’s rotational
kinetic energy Etc, the battery energy Eb and the fuel energy Ef. The input variables are
the throttle position uth, the waste-gate position uwg, the cylinder fuel mass flow ṁf,cyl, the
cylinder deactivation variable Ψe, the spark-advance efficiency ηSA, the MGU-K power Pk,
the MGU-H power Ph, the braking power Pbrk and the engaged gear g.

3.1. Objective and Space Domain

The objective of the optimal control problem is to minimize the lap time

min
∫ T

0
dt, (55)
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subject to the system dynamics and constraints presented in Section 2, as well as the energy
consumption targets imposed on the fuel ∆Ef,target and on the battery ∆Eb,target as terminal
constraints:

Eb(T) > Eb(0) + ∆Eb,target,

Ef(T) 6 Ef(0) + ∆Ef,target.
(56)

As presented in Section 2.6, the track-dependent parameters, e.g., the maximum velocity
profile vmax(s(t)) or the track curvature γ

(
s(t)

)
, are given as a function of the position s(t)

on the track. Therefore, we reformulate the optimal control problem in space domain with
the following change of variable based on (47)

v(t) =
ds(t)

dt
−→ dt(s) =

ds
v(s)

, (57)

where ds and dt are the differential variables in space and in time domain, respectively.
While the algebraic equations and constraints do not change, the differential equations
change as follows:

d
dt

x(t) = F
(

x(t), u(t), Γ(t)
)
−→ d

ds
x(s) = F̃

(
x(s), u(s), Γ(s)

)
=

F
(
x(s), u(s), Γ(s)

)
v(s)

, (58)

where F
(

x(.), u(.), Γ(.)
)

is the right-hand side of the differential equation in time domain
and F̃

(
x(.), u(.), Γ(.)

)
is its counterpart in space domain. Finally, the objective function

changes to

min
∫ T

0
dt −→ min

∫ S

0

ds
v(s)

, (59)

where T is the time necessary to cover the considered track length S.

3.2. Outer Convexification and Rounding

The model presented in Section 2 contains an integer variable, i.e., the engaged gear.
Since mixed-integer optimization is computationally expensive [70], we convexify the
model with respect to the integer variables using the outer convexification methodol-
ogy [71–73]. Specifically, we introduce a control variable δg(s) ∈ {0, 1} for each gear choice
Γ ∈ {Γ1, . . . , ΓNg}, with the bijection

Γ(s) = Γg ⇐⇒ δg(s) = 1. (60)

Furthermore, we impose the variables δ1, δ2, . . . , δNg to fulfill the special ordered set type 1
property (SOS-1), i.e.,

Ng

∑
g=1

δg(s) = 1, δg(s) ∈ {0, 1}, ∀g. (61)

Next, we relax the problem by making the integer variable continuous δ̂g, i.e.,

δ̂g(s) ∈ [0, 1] ∀g. (62)

The outer convexified differential equations of the system read as

d
ds

x(s) =
Ng

∑
g=1

δ̂g(s) · F̃
(

x(s), u(s), Γg
)
, (63)

while the inequality constraints of the form

0 6 h
(
s, x(s), u(s), Γ(s)

)
, (64)
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read as

0 6
Ng

∑
g=1

δ̂g(s) · h
(
s, x(s), u(s), Γg

)
. (65)

The detailed formulation of the outer convexified optimal control problem is presented in
Appendix A. Finally, to construct an integer δg sequence of the gear command from the
relaxed optimal one δ̂g, a rounding strategy is applied. Due to the conditions imposed by
the equality constraint in (61), the rounding strategy should not violate the SOS-1 property.
Therefore, we use the rounding methodology proposed in [74] that reads as

αg,i =
i

∑
m=0

δ̂g,m∆sm −
i−1

∑
m=0

δg,m∆sm (66)

δg,i =

{
1 if αg,i > αk,i ∀ k 6= g and g < k ∀k : αg,i = αk,i,
0 else,

(67)

where αg,i is an auxiliary variable of gear g at point i introduced to make (67) more readable,
∆sm = sm+1 − sm is the distance between two space points and i is the space point at which
the rounding is sought. This recursive methodology simultaneously takes into account all
Ng gears up to i− 1 and favors the choice of the smallest gear g with the largest αg,i.

Regarding the engine cylinder deactivation, the variable Ψe is treated as continuous,
although it is integer by nature. This is done to reduce the calculation time and complexity,
i.e., to avoid introducing Ng × Ncyl relaxed integers at each time step instead of Ng only.
In addition to that, the solution to this problem can be used as a benchmark to compare
the results obtained with an integer number of active cylinders and assess the resulting
suboptimality. Finally, for the sake of completeness, we compare in Appendix B the relaxed
and rounded nonlinear solution to the original mixed-integer nonlinear program solution.
The results highlight that the trajectories of the two solutions are close to identical and that
the lap time difference is negligible, thereby justifying the outer convexification approach.

3.3. Numerical Solution Method

We discretize the optimization problem using the multiple shooting method and the
standard explicit Euler integration method, which approximates the continuous derivative
of the variable x(s) as

x[k + 1] = x[k] + ∆s · F̃
(
x(k), u(k)

)
, (68)

where ∆s is the space domain discretization length, k = {0, 1, 2, . . . , N − 1} is the discrete
space variable, N = round(S/∆s) is the number of discrete steps and S is the considered
track length. The optimization problem is implemented in MATLAB [75] using the symbolic
framework CasADi [76] and solved with IPOPT [77]. Furthermore, the mixed-integer
nonlinear program (MINLP) solution presented in Appendix B is computed using BONMIN
with the branch-and-bound algorithm [78]. In [47], it was shown and validated that
sampling frequencies larger than 15 Hz were able to properly capture the intake manifold
and turbocharger dynamics. Since the optimization problem is described in space domain,
we pre-compute a variable space domain discretization length ∆s[k] for a specific (time
domain) sampling frequency fs using a nominal car’s velocity trajectory vnom measured
during a race week-end on a particular circuit:

∆t[k] =
∆s[k]

vnom[k]
=

1
fs

−→ ∆s[k] =
1
fs
· vnom[k]. (69)

While it is most likely that the optimized velocity profile will not be the same as the nominal
one in each point of the track, the sampling frequency does not deviate more than 0.9–
1.2 Hz on average for entire lap optimizations. The computational time to solve both the
relaxed and the rounded nonlinear program solutions on a desktop computer varies from
minutes to hours and depends on the chosen boundary conditions and the space horizon
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length. As an example, if only a small portion of the lap is considered, e.g., a straight
with two corners, the computational time is between 5 and 20 min. If the entire lap is
considered, the computational time varies between 2 and 4 h. Finally, the MINLP displays
computational times up to 100 times slower compared to the presented methodology.

4. Results

In this section, we show the results of the time-optimal control problem presented
in Section 3 for racing scenarios on the Bahrain International Circuit, a lap of which takes
roughly 90 s. The racetrack under consideration influences the vehicle dynamics through
its specific maximum velocity profile, path curvature and DRS zones. Our non-causal
optimization framework is not based on a driving cycle, since the velocity profile and the
propulsive power are subject to optimization. First, we analyze over a portion of the lap
the optimal gearshift and power unit control from a low-level point of view. Second, we
extend the analysis to entire lap results.

4.1. Detailed Analysis on a Portion of the Lap

In this subsection we present several case studies where we apply the proposed
optimization framework to practically relevant strategy and design decisions. To facilitate
a detailed analysis, we consider only a portion of the lap. We start by comparing the
optimal control of the power unit for two different battery recharge targets, which is a
strategy parameter that can be changed by the driver during a race. Thereafter, we add a
constraint on the compressor outlet temperature to showcase how the presented framework
can support the design choice of the intercooler dimension.

Figure 12 shows the most significant optimal state and input trajectories for two
different battery recharge targets and the same fuel consumption target. The considered
portion of lap is the section between the points A and B in Figure 11. It can be noticed that
the gearshift strategy is different: not only is the 8th gear solely engaged for the battery
discharge case (∆Eb,target = −0.3 MJ), but also several upshifts occur earlier compared
to the battery recharge case (∆Eb,target = 0.5 MJ). This trend can be attributed to the
abundance of electrical energy at disposal: the gears are selected to maximize the overall
engine power and therefore the propulsive power. For the battery recharge case, however,
the trade-off between the engine power and the MGU-H recuperation is more pronounced.
The fact of not shifting into the 8th gear keeps the engine speed high and therefore the
pressure in the intake manifold lower (compared to the battery discharge case). As a
consequence, the compressor power is lower and more power can be recuperated by the
MGU-H. The power unit control around the upshifts occurs each time in a similar manner:
the MGU-H recuperates less to accelerate the turbocharger shaft, whilst the throttle valve
is operated to achieve the optimal fuel-to-air ratio value. The battery recharge target also
influences the waste-gate operation. In conventional gasoline turbocharged engines, the
waste-gate is operated to diminish the turbine power and thereby controls the intake
manifold pressure [79]. By contrast, for the considered high-performance power unit the
waste-gate is used to increase the engine power by diminishing the exhaust manifold
pressure. The turbine power extraction is reduced and therefore the MGU-H power
recuperation goes roughly to zero (when no upshift is taking place). The intake manifold
pressure is not affected, the engine pumping power increases and so does the overall
engine power. In addition to that, the MGU-K operation is also influenced by the battery
availability. Not only the MGU-K cut occurs later on the straight if more battery energy
can be deployed, but also the slope is different: the analytical explanation for this can be
found in [58]. Finally, the optimal behavior in the corner is analyzed. The optimal cylinder
deactivation is mainly the same, except at the corner exit. In this region, for the battery
discharge case, slightly more fuel is injected. At the same time the spark-advance is slightly
retarded and produces a lower spark-advance efficiency. This causes a small increase in
the exhaust manifold temperature and pressure, allowing the MGU-H to recuperate more.
The procedure of converting a small portion of fuel energy into electrical energy through
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the increase of the exhaust manifold temperature is possible in the cases where the battery
recharge targets allow it. For the battery recharge case, this operation only occurs for a
very short amount of time, since every drop of fuel counts and the gearshift strategy is
not aimed at maximizing the engine efficiency, but rather finding the optimal trade-off
between the internal combustion engine and the energy recovery system.

Figure 12. Optimal state and input trajectories over a portion of the lap for two different battery recharge targets and the
same fuel consumption target. The grey areas represent the regions where the constraint on the car’s velocity is active. The
dotted lines are the state and input constraints, whilst the dashed line in the engine speed plot is placed at 10, 500 rpm.

Next, we investigate the suboptimality entailed by a smaller intercooler choice in
Figure 13. In such a case, to keep the same intake manifold temperature, the compressor
outlet temperature needs to be lowered. As an example we include a constraint to decrease
the maximum outlet temperature of the compressor by 3 % compared to the unconstrained
case, i.e., ϑlim

c 6 0.97 ·max
(
ϑunlim

c
)
. The compressor outlet temperature was modeled using

the assumptions presented in Section 2.3 and fitted with the methodology of Appendix
C, i.e., ϑc(s) =Mϑc

(
Etc(s), pim(s)

)
. To better visualize the transient phenomena during

the gearshifts, thin vertical lines have been inserted at the upshift locations. The battery
recharge target and fuel consumption target are the same for both scenarios. It can be
noticed at first glance that the intake manifold and turbocharger speed trajectories are
different and almost everywhere lower compared to the unconstrained case. This is
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mainly due to their dependency on the compressor outlet temperature. In addition, the
engine air and fuel mass flows, as well as the gearshift strategy, differ markedly to case
studies previously analyzed. Since the intake manifold pressure is (indirectly) limited, the
gearshifts occur at higher engine speeds to avoid large engine air mass flow deficits after
the upshift. Despite the throttle valve being completely opened after the upshifts, the fuel
mass flow is limited by the available engine air mass flow and the allowed fuel-to-air ratio
range. Consequently, the injected fuel displays a transient behavior induced by the intake
manifold inertia. The influence of the gradual increase of both the fuel injection and the air
mass flow are visible in the exhaust manifold quantities: The pressure is lower because of
a lower total mass flow through the turbine, whilst the temperature is higher due to the
larger fuel-to-air ratio. Finally, the lap time loss is roughly 12 ms and arises from the engine
power deficits occurring after the upshifts.

Figure 13. Optimal state and input trajectories over a straight for the comparison between the limited compressor outlet
temperature and the unlimited one. The limited compressor outlet temperature is 97 % of the unlimited case. The battery
recharge target and fuel consumption target are the same for both scenarios. The dotted lines are the state and input
constraints, whilst the dashed line in the engine speed plot is placed at 10, 500 rpm.
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4.2. Trends in Entire Lap Solutions

In this subsection we look at entire lap solutions with a focus on the gearshift strategy,
power unit actuation and lap time trends. First, we discuss the engine speed thresholds
at which the upshifts occur. Second, we extend the investigations of Section 4.1 for entire
lap results. Third, we analyze the power unit optimal control on the straights for a set of
battery recharge targets.

The engine speed thresholds at which the upshifts occur for each gear are shown
in Figure 14 for three different battery recharge targets. In the left plot the raw data are
depicted, in the right plot the averaged values are displayed. Regarding the raw data,
the points are spread and no clear pattern on the engine speed threshold can be inferred.
Instead, for the averaged data, two regions can be distinguished. In the first region, the
upshift thresholds from 2nd to 3rd and from 3rd to 4th gear are the same, irrespective of the
battery budget. This could be attributed to the fact that these two specific upshifts always
occur in the corners, where the power unit is (for the considered energy budgets) controlled
in a similar way, as also discussed in Section 4.1. In the second region on the other hand,
the upshift thresholds are related to the energy budget. This trend could be explained
by the fact that upshifting at higher engine speeds favors the electrical recuperation via
MGU-H at the expenses of lower engine efficiency, as seen and discussed in the case study
of Figure 12.

Figure 14. Gear-dependent engine speed upshift thresholds for three different battery recharge
targets with the same fuel consumption target: (left) Raw data; (right) Averaged data.

In Section 4.1 it was analyzed in detail how the compressor outlet temperature influ-
ences the achievable lap time. For this reason, the lap time losses over an entire lap for the
limited compressor outlet temperature for five different battery recharge targets, are shown
in Figure 15. The trend shows that irrespective of the battery recharge target, limiting the
compressor outlet temperature can yield a significant lap time loss. This result clearly
quantifies how lap time sensitive the choice of the compressor material or the intercooler
design can be.

Figure 15. Lap time losses over an entire lap for five different battery recharge targets with the same
fuel consumption target and the limited compressor outlet temperature used in Section 4.1.

The average internal combustion engine and energy recovery system powers for
different battery recharge targets but the same fuel target are shown in Figure 16. While the
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internal combustion engine and the energy recovery system powers in the corners influence
the energy at disposal to the power unit when exiting the corners, they do not have a direct
impact on the achievable lap time. For this reason, each power entry is averaged over all
straights. The trends displayed in Figure 16 are in line with the ones seen in Section 4.1.
The battery recharge target has an influence on the time interval the waste-gate is kept
open, and therefore directly influences the resulting engine pumping power. The latter is
shown to have the largest impact on the overall engine power, since the sum of the engine
combustion and friction power are, on average, constant for all the battery budgets (for
the considered fuel consumption target). Opening the waste-gate comes at the expense
of a lower MGU-H recuperation: in fact, the average MGU-H recuperation (on straight)
is roughly zero if the waste-gate is kept always open. A similar trend is observed for the
MGU-K operation, whose average value becomes larger if more battery energy can be
depleted. Overall, the power drawn from the battery, i.e., the sum of the MGU-K and
MGU-H powers, becomes very small in magnitude if an aggressive battery recharge target
has to be met: The power recuperated from the extra enthalpy contained in the hot exhaust
gases is directly fed from the MGU-H to the MGU-K. From a lap time point of view, it can
be noticed how the lap time sensitivity changes: the lap time loss from ∆Eb,target = 0.0 MJ
to ∆Eb,target = 2.0 MJ is more than twice compared to the one from ∆Eb,target = −2.0 MJ to
∆Eb,target = 0.0 MJ. Among other effects this can be explained by the nonlinearity of the
lap time integration in the objective and the longitudinal dynamics.

Figure 16. Internal combustion engine powers, energy recovery system powers and times for 9
different battery recharge targets with the same fuel consumption target. The overhead bar stands
for a variable that is averaged over all straights.

Finally, the lap time loss between ∆Eb,target = −2.0 MJ and ∆Eb,target = 2.0 MJ for
several fuel consumption targets is shown in Figure 17. It can be noticed how the lap time
loss increases nonlinearly if less fuel is used over the lap. This is a further proof of the
complexity and inherent cross-couplings between the internal combustion engine and the
energy recovery system of the considered hybrid electric powertrain.
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Figure 17. Lap time difference between ∆Eb,target = 2.0 MJ and ∆Eb,target = −2.0 MJ for four different
fuel consumption targets. The reference fuel consumption target used is the same of Figure 16.

5. Conclusions

In this paper we presented an optimization framework to compute the time-optimal
low-level control and gearshift strategies for the Formula 1 hybrid electric powertrain.
We put the focus on the engine speed dependency of the internal combustion engine
components and proposed a continuous nonlinear model to describe the engine cylinder
deactivation. Furthermore, we applied convex relaxations to model the non-smooth maxi-
mum fuel mass flow regulation and captured the highly nonlinear turbocharger maps with
neural network techniques. Finally, we solved the time-optimal control problem efficiently
by applying outer convexification to the integer decision variable introduced by the gear
selection. To showcase the optimization framework, we performed several case studies for
different energy budgets. The results underlined the significant existing coupling between
the internal combustion engine and the energy recovery system: The gearshift strategy, the
MGU-K and MGU-H operation, the air-to-fuel ratio operational range, the waste-gate and
throttle valve actuation, as well as the intake manifold pressure evolution were found to be
strongly dependent on the energy budgets. Finally, we demonstrated the effectiveness of
our framework as a design tool. For example, if the compressor outlet temperature has to
be reduced by 3 % due to a change in the intercooler design, the lap time can increase by up
to 130 ms for the considered conditions. The results presented in this work underline that
the framework can be used as a tool to benchmark real-time control strategies, to generate
reference trajectories and to develop control heuristics.
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Appendix A. Optimal Control Problem (Outer Convexified Formulation)

In this section, we state the optimal control problem. The state x and input u variables are

x =
[
v, pim, Etc, Eb, Ef

]
,

u =
[
uth, uwg, ṁf,cyl, Ψe, ηSA, Pk, Ph, Pbrk, δ1, . . . , δNg

]
.

(A1)

The resulting time-optimal low-level optimization problem is

min
∫ S

0

ds
v(s)

, (A2)

subject to the dynamics

d
ds

v(s) =
Ng

∑
g=1

δg(s) · F̃v
(
x(s), u(s), Γg

)
,

d
ds

pim(s) =
Ng

∑
g=1

δg(s) · F̃pim

(
x(s), u(s), Γg

)
,

d
ds

Etc(s) =
Ng

∑
g=1

δg(s) · F̃Etc

(
x(s), u(s), Γg

)
,

d
ds

Eb(s) =
Ng

∑
g=1

δg(s) · F̃Eb

(
x(s), u(s), Γg

)
,

d
ds

Ef(s) =
Ng

∑
g=1

δg(s) · F̃Ef

(
x(s), u(s), Γg

)
,

(A3)

the system equality constraints
Ng

∑
g=1

δg(s) = 1, (A4)

the system inequality constraints related to the integer variables

0 6 δg(s) 6 1, ∀g

0 6 ˙̃mmax
f,g (s), ∀g

0 6 fFIA,const − ˙̃mmax
f,g (s), ∀g

0 6 fFIA,ωe

(
ωe
(

x(s), Γg
))
− ˙̃mmax

f,g (s), ∀g

0 6
Ng

∑
g=1

δg(s) ·
(

˙̃mmax
f,g (s)/Ncyl − ṁf,cyl(s)

)
,

0 6
Ng

∑
g=1

δg(s) ·
(

ωe
(
x(s), Γg

)
−ωmin

e

)
,

0 6
Ng

∑
g=1

δg(s) ·
(

ωmax
e −ωe

(
x(s), Γg

))
,

0 6
Ng

∑
g=1

δg(s) ·
[

Ψe(s) ·
( ṁf,cyl(s) · σ0

ṁβ

(
x(s), u(s), Γg

)
/Ncyl

− φmin
AF

)]
,

0 6
Ng

∑
g=1

δg(s) ·
[

Ψe(s) ·
(

φmax
AF −

ṁf,cyl(s) · σ0

ṁβ

(
x(s), u(s), Γg

)
/Ncyl

)]
,

(A5)
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the system inequality constraints

vmin 6 v(s) 6 vmax,

pmin
im 6 pim(s) 6 pmax

im ,

pmin
im 6 pim(s) 6 psurge

(
x(s)

)
,

Emin
tc 6 Etc(s) 6 Emax

tc ,

Emin
b 6 Eb(s) 6 Emax

b ,

umin
th 6 uth(s) 6 umax

th ,

0 6 uwg(s) 6 umax
wg ,

0 6 Ψe(s) 6 Ncyl,

0 6 ṁf,cyl(s),

ηmin
SA 6 ηSA(s) 6 ηmax

SA ,

Pmin
k,dc 6 Pk,dc(s) 6 Pmax

k,dc ,

Pmin
h,dc 6 Ph,dc(s) 6 Pmax

h,dc ,

0 6 Pbrk(s) 6 Pmax
brk ,

(A6)

and the initial and terminal constraints

Eb(S) > Eb(0) + ∆Eb,target,

Ef(S) 6 Ef(0) + ∆Ef,target,

v(0) = v0,

v(S) = vS,

pim(0) = pim,0,

pim(S) = pim,S,

Etc(0) = Etc,0,

Etc(S) = Etc,S,

(A7)

where v0, vS, pim,0, pim,S, Etc,0 and Etc,S are the initial and terminal conditions for the velocity
of the car, the intake manifold pressure and the turbocharger kinetic energy, respectively.
For periodic paths (e.g., entire lap optimizations where the start and finish line coincide),
the last six constraints of Equation (A7) can be rewritten as periodicity conditions, i.e.,

v(0) = v(S),

pim(0) = pim(S),

Etc(0) = Etc(S),

(A8)

and can be freely optimized.

Appendix B. Mixed-Integer Nonlinear Program Solution

In this section, we present a comparison between the continuous solution, the rounded
solution and the mixed-integer nonlinear program (MINLP) solution. The results are shown
in Figure A1. As can be seen, the continuous solution partially differs from the rounded
one. The gear trajectories are close to each other except in the braking phase of the second
corner. Despite this fact, the difference between the solutions is marginal and the overall
lap time difference is less than 1 ms. Except for one point where the gearshift occurs one
space step earlier, the rounded and the MINLP solutions are similar. This results in a lap
time difference of less than 0.5 ms. Given that the optimization of the continuous and
rounded NLPs together displays computational times more than 100 times faster than the
MINLP optimization, we deem the small difference acceptable.
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(a) Continuous vs. rounded solution. (b) Rounded vs. MINLP solution.

Figure A1. Optimal state and input trajectories over a straight and a corner for the same battery and fuel budgets:
(a) continuous vs. rounded solution, (b) rounded vs. MINLP solution. The dotted lines are the state and input limits, while
the dashed line in the engine speed plot is placed at 10, 500 rpm.

Appendix C. Neural Networks

This Appendix is based on [47] and briefly summarizes the methodology used to fit
the maps presented in Section 2. We apply feedforward neural networks. More precisely,
we focus only on regression, i.e., both the input u ∈ U ⊆ RMin and output y ∈ U ⊆ RMout

vectors consist of real numbers, where Min, Mout ∈ N>0.

u1

u2

u3

y1

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure A2. Feedforward neural network schematic taken from [47]. The structure consists of L = 2
hidden layers, Min = 3 inputs and Mout = 1 output. Each neuron is connected to the next ones
through arrows.
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As shown in Figure A2, neural networks are structured in layers, each consisting
of multiple nodes. In particular, our architecture is composed of the input layer, where
each node stores the s-th entry of the input vector u, with s ∈ {1, . . . , Min}, L ∈ N>0
hidden layers, where each node is fed with all output information of the previous layer,
and the output layer, that collects the information of the L-th hidden layer and generates a
prediction. More precisely, each node i ∈ {1, . . . , Nk} of layer k ∈ {2, . . . , L + 2} performs
following operation:

xk
i =

Nk−1

∑
j=1

wk
ijz

k−1
j + bk

i

zk
i = fk(xk

i ),

(A9)

where Nk ∈ N>0 denotes the number of nodes of layer k, xk
i ∈ R is the node’s internal

variable, and zk
i ∈ R denotes its output. The activation function fk : R→ R of layer k can

be chosen arbitrarily. In this work we choose the hyperbolic tangent function

fk(x) = tanh(x) =
ex − e−x

ex + e−x (A10)

for the hidden layers to increase the fitting quality of the nonlinear maps, and a linear
function for the output layer. Finally, the parameters wk

ij ∈ R, j ∈ {1, . . . , Nk−1} and bk
i ∈ R

are learned during the training phase. It consists of determining the set of parameters
θ := {w1

ij, . . . , wL+2
ij , b1

i , . . . , bL+2
i } which minimizes a loss function over a given dataset

D = {{u(1), y(1), }, . . . , {u(N), y(N)}}. Specifically, let F : U → Y , u 7→ F(u; θ) be the
mapping described by the feedforward neural network. By applying a squared loss
function, it follows that

θ̂ ∈ arg min
θ

1
N

N

∑
h=1

∥∥∥F(u(h); θ)− y(h)
∥∥∥2

2
. (A11)

The optimization methodology used does not guarantee global optimality of the solution.
Therefore it is important to check the quality of the fitting a posteriori.
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