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Abstract: Our study combines machine learning techniques and dynamic moving window and
expanding window methods to predict crises in the US natural gas market. Specifically, as machine
learning models, we employ extreme gradient boosting (XGboost), support vector machines (SVMs),
a logistic regression (LogR), random forests (RFs), and neural networks (NNs). The data set used to
develop the model covers the period 1994 to 2019 and contains 121 explanatory variables, including
those related to crude oil, stock markets, US bond and gold futures, the CBOE Volatility Index (VIX)
index, and agriculture futures. To the best of our knowledge, this study is the first to combine machine
learning techniques with dynamic approaches to predict US natural gas crises. To improve the model’s
prediction accuracy, we applied a suite of parameter-tuning methods (e.g., grid-search) to select the
best-performing hyperparameters for each model. Our empirical results demonstrated very good
prediction accuracy for US natural gas crises when combining the XGboost model with the dynamic
moving window method. We believe our findings will be useful to investors wanting to diversify
their portfolios, as well as to policymakers wanting to take preemptive action to reduce losses.

Keywords: dynamic approaches; forecasting; logistic regression; random forests; support vector
machines; US natural gas crises; XGboost; neural networks

1. Introduction

To date, four international energy crises have occurred: The oil crisis of 1973, caused by the
Middle East War; the Iranian oil crisis of 1979, caused by the Islamic Revolution; the 1990 oil crisis,
caused by the Gulf War; and the energy crisis in 2008 caused by the financial crisis. In addition to being
a subsystem of the national economy, the energy system incorporates the petroleum, coal, natural gas,
and power economy. Birol [1] showed that the 2008 global financial crisis caused the energy demand
in most countries to decrease, ultimately leading to the energy crisis. On the other hand, imbalances
between energy supply and demand are still the root cause of rising energy prices, and high energy
prices were an underlying cause of the financial crisis.

Compared with fossil fuel oil and coal, natural gas is a more environment friendly and green
clean energy. As a result, natural gas has gained an increasingly prominent role in the global energy
market. As we know, people always use the settlement prices at the Henry Hub as benchmarks for the
entire North American natural gas market and parts of the global liquid natural gas (LNG) market.
According to the International Energy Agency (IEA), natural gas had a remarkable year in 2018,
with a 4.6% increase in consumption, accounting for nearly half of the increase in global energy demand
(https://www.iea.org/fuels-and-technologies/gas). Accurate predictions of crises in the natural gas
market make it possible for investors and policymakers to minimize losses. Figure 1 shows some of
the major events that affected US natural gas prices between 1994 and 2019.
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Figure 1. The major crisis events related to US natural gas.

An early warning system (EWS) is a chain of information communication systems comprising
sensors, event detection, and decision subsystems. By employing such systems to detect crises before
they occur, we can reduce false alarms [2]. An EWS must be able to send a clear signal about whether
an economic crisis is impending to complement the expert judgment of decision-makers. Edison [3]
developed an operational EWS that successfully detects financial crises based on a signal approach [4,5].
Ideally, an EWS should not ignore any crisis events but should minimize false alarms. However, the cost
of not sending a global crisis signal is much higher than the cost of an incorrect alert.

Machine learning refers to a scientific model in which computer systems rely on patterns
and inference to perform specific tasks without applying explicit instructions. Machine learning is
becoming increasingly useful in finance. As banks and other financial institutions work to strengthen
security, streamline processes, and forecast crises, machine learning is becoming their technology
of choice. Lin et al. [6] conducted a survey on machine learning in financial crisis prediction,
using a machine learning algorithm to investigate the achievements and limitations of cy-prediction
and credit-scoring models.

In this study, we propose a dynamic moving window and expanding window methodology
that incorporates extreme gradient boosting (XGboost), a support vector machine (SVM), a logistic
regression (LogR), a random forest (RF), and a neural networks (NNs) as machine learning methods to
predict US natural gas crises. To the best of our knowledge, this study is the first to combine dynamic
methodologies with machine learning to predict such crises. The main contributions of this study
are as follows:

• We employ dynamic methodologies to define a crisis, thus preventing extreme crisis events.
• We use advanced machine learning techniques, including XGboost, neural networks, and other

traditional machine learning methods.
• We combine dynamic methods with machine learning techniques to increase the prediction

accuracy of the model.
• We employ novel model evaluation methodologies, and use daily data for the period 1994 to 2019.

The long period ensures enough data for the machine learning model, and allows us to check
whether US natural gas crises are persistent and clustered.

Our main conclusion is that the combination of XGboost and the dynamic moving window
approach performs well in predicting US natural gas crises, particularly in the partial variable case with
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a moving window. In addition, LogR in the moving window method and NN in the expanding window
method do not perform badly in a partial variables situation whereas SVM in the moving window and
LogR in the expanding window performance do not perform badly in the all variables situation.

The remainder of the paper proceeds as follows. Section 2 reviews relevant empirical works.
In Section 3, we present the data and develop the model. In Section 4, we provide a brief description and
technical analysis of the machine learning models employed in this study. In Section 5, we introduce
novel model evaluation approaches. Here, we also present the empirical results for each machine
learning model. Section 6 concludes the paper. The Appendix A provides the XGboost variable
importance plots, the parameter tuning for the postulated SVM plots, the estimated LogR model
results, and the RF variable importance plots.

2. Literature Review

Recent financial crises have highlighted their devastating effects on the economy, society,
and politics. Therefore, being able to predict crises and disasters, particularly in areas, such as
banking, finance, business, medical, and others, means we can implement appropriate measures in
advance, and thus minimize losses. Chen et al. [7] considered value-at-risk (VaR) forecasting using
a computational Bayesian framework for a portfolio of four Asia-Pacific stock markets, showing that
the Autoregressive Conditional Heteroscedasticity (GARCH) model outperforms stochastic volatility
models before and after the crises. Bagheri et al. [8] proposed a new hybrid intelligence approach
to predict financial periods for the foreign exchange market, finding that it performs well for price
forecasting. Niemira and Saaty [9] developed an imbalanced crisis turning point model based on the
analytical network process framework to forecast the probability of crises, finding this method to be
more flexible and comprehensive than traditional methods. Chiang et al. [10] showed that traders
could generate higher returns by employing their proposed adaptive decision support system model.

An energy crisis refers to an energy shortage caused by rising energy prices, and energy and
financial crises have mutual effects. Gorucu [11] employed an artificial neural network (ANN) to evaluate
and predict natural gas consumption in Ankara, Turkey, examining the factors affecting the output, and
then training the ANN to determine the optimal parameters to predict gas consumption, achieving a
good performance. Xie et al. [12] used an SVM to forecast crude oil prices, finding that it outperforms
both auto regressive integrated moving average and back-propagation neural network models.

Regarding crisis prediction, there are currently three international financial crisis early warning
models. First, the discrete choice (probit or logit) model, developed by Frankel and Rose [13], has been
used to model financial contagion by Bae et al. [14]. Second, Sachs et al. [15] developed an STV
cross-section regression model, finding that the depreciation of the real exchange rate, growth of
domestic private loans, and international reserves/M2 (a calculation of the money supply that includes
cash and checking deposits as well as near money) are important indicators of whether a country will
experience a financial crisis. Third, Kaminsky and Reinhart [5] developed a signaling approach-KLR
model that monitors the evolution of several indicators that approach to show unusual behavior in
periods preceding a crisis. Furthermore, Knedlik and Schweinitz [16] investigated debt crises in Europe
by applying a signal approach, finding that a broad composite indicator has the highest predictive
power. Numerous works have since extended these three models, thus improving the early warning
system. Based on the multinomial logit model, Bussiere and Fratzscher [17] developed a new early
warning system (EWS) model for financial crises. Their results show that employing the proposed
EWS substantially improves the ability to forecast financial crises, and that their model would have
predicted crises correctly in emerging markets between 1993 and 2001. Xu et al. [18] combined an RF
and a wavelet transform in a new EWS to forecast currency crises, finding that real exchange rate
appreciation and overvaluation can be measured over a period of 16 to 32 months. Saleh et al. [19]
applied a new EWS model for systemic financial fragility and near crises in The Organisation for
Economic Co-operation and Development (OECD) countries over a 27-year period, finding that the
model has significant implications for financial stability and regulation.
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Researchers are increasingly combining EWSs with machine learning techniques to predict
financial crises. Ahn et al. [20] extended the EWS classification method to a traditional-type crisis,
using an SVM to forecast financial crises. As such, they proved that an SVM is an efficient classifier.
Sevim et al. [21] developed three EWSs, based on an ANN, a decision tree, and a LogR model,
respectively, to predict currency crises, finding that the decision tree model can predict crises up to
a year ahead with approximately 95% accuracy. In order to predict currency crises, Lin et al. [22]
developed a hybrid causal model, which is integrated by the learning ability of a neural network
with the inference mechanism of a fuzzy logit model, showing that this approach is promising in
terms of preventing currency crises. Finally, Chatzis et al. [23] employed a classification tree, SVM, RF,
neural network, XGboost, and deep neural network to forecast stock market crises. They show that
deep neural networks increase the classification accuracy significantly, and propose an efficient global
systemic early warning tool.

Few studies have used machine learning methods with moving windows to predict financial
crises. However, studies have focused on other classification methods. Bolbol et al. [24] combined
a moving window method with an SVM to classify Global Positioning System (GPS) data into different
transportation modes. Chou and Ngo [25] combined the time-series sliding window with the machine
learning system to predict real-time building energy-consumption data, showing that the model can
potentially predict building energy consumption using big data.

From the aforementioned literature, we can see that the methodologies proposed here offer clear
innovations and advantages. Thus, we compared the predictive ability of the following models: XGboost,
a SVM, a LogR, a RF, and a NN. In addition, we used a moving window and an expanding window
approach. Furthermore, we investigated the effects of explanatory variables on the models’ predictive
ability by splitting the variables into two categories—natural gas-related predictors (16 predictors), and all
predictors (121 predictors)—to compare their prediction accuracy separately. To the best of our knowledge,
our study is the first to analyze US natural gas market crises by combining machine learning techniques
with dynamic forecasting methods (the moving window and expanding window method).

3. Data

3.1. Data Collection

We employed daily data to model US natural gas market crises, focusing on the US crude oil,
stock, commodity, and agriculture markets, where the transmission of extreme events is stronger.
In order to obtain an adequate daily data sample for machine learning, we collected data from many
different sources and databases (see Table 1).

Table 1. Variables in the model.

Variables Raw Data Data Source

Natural Gas Henry Hub Natural Gas Futures (USD/Million Btu) Bloomberg
Crude oil Crude Oil WTI Futures (USD/Barrel) Bloomberg

Stock S&P 500 Index Bloomberg
Bond United States 10-Year Bond Yield Bloomberg
Gold Gold Futures Price Bloomberg
Vix CBOE Volatility Index Bloomberg

Canola Canola Futures Price Bloomberg
Cocoa US Cocoa Futures Price Bloomberg
Sugar No.11 Sugar Futures Price Bloomberg
Rice Rough Rice Futures Price Bloomberg
Corn Corn Futures Price DataStream

Wheat US Wheat Futures Price DataStream

The raw data included the most sensitive market variables from the energy, stock, commodity,
and agriculture markets. To remove the effect of the exchange rate on our results, we consolidated the
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currency units of the variables into a dollar currency unit. Then, because natural gas has the shortest
period of daily data (8 June 1990–18 December 2019), we focused on this period for all variables. Finally,
we obtained a raw daily price data set with 7152 records. This data set enabled us to model contagion
dynamics and financial market interdependence across natural gas-related variables and over time.
In order to facilitate the reading of this paper, we named the professional items as exhibited in Table 2.

Table 2. Nomenclature for professional items.

Nomenclature

pt Natural Gas Daily Price
rt Natural Gas Daily Return
µt 1000-Day Moving and Expanding Window Average return at time t
σt 1000-Day Moving and Expanding Window Standard deviation at time t
NCt US Natural gas crises at time t
XGboost Extreme Gradient Boosting
SVM Support Vector Machines
LogR Logistic Regression
RF Random Forests
NN Neural Networks
G-mean The geometric mean
LP The positive likelihood ratio
LN The negative likelihood ratio
DP The discriminant power
BA Balanced accuracy
WBA The weighted balance accuracy
DM-test Diebold-Mariano Test

3.2. Data Processing

In Section 3.1, we described the raw data and the prices of the variables. Our goal was to predict
next-day crisis events in the US natural gas market using machine learning. Therefore, we needed to
define a “crisis event” for natural gas. We also wanted to apply the moving window and expanding
window methods in our model. We illustrate these two methods below (see Table 3) [26].

Table 3. Daily data set for the moving window and expanding window.

Variable Names Numerical Formula

Natural Gas Daily Price pt
Natural Gas Daily Return rt = ln(pt) − ln(pt−1)

1000-Day Moving Window Average µt+1000 =
∑t+999

t rt
1000 (t = 1, 2, . . . , 6151)

1000-Day Expanding Window Average µi+1001 =
∑i+1000

1 rt

i+1000 (i = 0, 1, . . . 6150, t = 1, 2 . . . . 6151)

1000-Day Moving Window Standard Deviation σt+1000 =

√
var(

t+999∑
t

rt) (t = 1, 2, . . . , 6151)

1000-Day Expanding Window Standard Deviation σi+1001 =

√
var(

i+1000∑
1

rt) (i = 0, 1, . . . 6150, t = 1, 2 . . . . 6151)

We set a 1000-day window, covering five years of daily data. First, we employed the logarithmic
difference method to compute the daily return of natural gas. Then, in the daily data set, we calculated
the initial empirical distribution of the return on 22 September 1994, based on the daily returns of the first
1000 observations (covering the period 11 June 1990–21 September 1994, which is a 1000-day window).
Next, for the moving window method, for each subsequent record, we fixed the number of days
(1000 days in the daily data set), and moved the window forward by one day. Then, we recalculated
the empirical distribution of the returns based on the new period. Thus, for the last observation in
the daily data (18 December 2019), the empirical distribution of the returns was based on the period
23 November 2015 to 17 December 2019 (i.e., 1000 days). In contrast, for the expanding window
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method, for each subsequent record, we increased the size of the window by one day. Then, we again
recalculated the empirical distribution of the returns, including the new observation. Hence, for the
last observation in the daily data (18 December 2019), the empirical distribution of the returns was
based on the period 11 June 1990, to 17 December 2019 (i.e., 7150 days).

Thus, we obtained the preliminary processed data from which to calculate the “crisis events.”
Bussiere and Fratzscher [17] developed an EWS model based on a multinomial logit model to forecast
financial crises, using EMPi,t to define a currency crisis for each country i and period t. Patel and
Sarkar [27], Coudert and Gex [28], and Li et al. [29] used CMAXt, defined as the ratio of an index level
at month t to the maximum index level for the period up to month t. Here, we employed the return of
natural gas, defined as follows:

rt = ln(pt) − ln(pt−1), (1)

where pt is the price of natural gas on day t. Next, as in Bussiere and Fratzscher [17], we defined NCt as
a crisis event when the natural gas return rt is less than two standard deviations below its mean value:

NCt =

{
1, i f NCt ≤ µt − 2σt

0, otherwise
, (2)

where µt and σt were calculated based on Table 3. The former is the mean value calculated by the
moving window or expanding window on day t. Similarly, the latter denotes the standard deviation
calculated by the corresponding methods. We plotted the crises processing procedure, as shown in
Figure 2. After processing these data, we obtained two predicted/dependent variables in the daily
data set. These constitute binary indicators that take the value of 1 when a crisis occurs in the US
natural gas market on the following day, and 0 otherwise. Based on these formulae, Table 4 and
Figure 3 summarize the crisis events between 22 September 1994 and 18 December 2019.

Table 4. Crisis events in the US natural gas market.

Year Number of Crises

Moving Window Expanding Window
1994 2 2
1995 6 6
1996 16 18
1997 6 8
1998 3 4
1999 2 3
2000 6 7
2001 13 14
2002 3 3
2003 8 8
2004 3 5
2005 1 1
2006 7 8
2007 2 2
2008 7 5
2009 9 9
2010 0 0
2011 1 0
2012 3 2
2013 1 0
2014 10 4
2015 6 2
2016 7 0
2017 4 2
2018 10 7
2019 4 3

Total 140 123
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We have outlined the exploratory binary variables in the daily data set using the moving window
and expanding window methods. Next, we constructed the independent variables for our machine
learning model. In particular, to capture the subtle dynamics and correlations, we performed the
following transformation:

1. We calculated the average number of crises during the previous five working days, based on the
total number of crisis events.

2. We used the logarithmic difference method to derive the continuously compounded daily return
for the prices of natural gas, crude oil, bond yield, gold, canola, cocoa, sugar, rice, corn, and wheat.

3. We calculated the lagged variables for each crisis indicator, for one to five days. Specifically,
we considered these lags (lag1 to lag5) for the crisis itself, the returns on all variables except the
VIX index, and the returns on all variables including the VIX index.

After the above processing, we obtained two summary tables of daily data for the period
28 February 1994 to 18 December 2019, yielding 6146 records and 121 predictors. The first
table determines crises using the moving window method, and the second uses the expanding
window method.

4. Model Development

As already discussed, we combined the moving window method, expanding window method,
and machine learning to predict crisis events. In addition, we used a moving window and expanding
window in the data processing step. Therefore, we employed corresponding methods to develop our
model using machine learning. By doing so, we derived dynamic results and improved the accuracy
of the model prediction [25]. To maintain the initial number of windows, we employed 1000 days as
the initial number of days for the moving window (fixed) and the expanding window (increasing by
one day). In order to combine machine learning with the two window methods, we inserted loop
statements into the machine learning model to perform 5146 iterations. For both methods, we set all
data in the window as the training data set, and set the day following the final day in the training data
set as the test data set. For example, in the final loop calculation, the training data set for the moving
window method covers the period 19 November 2015 to 17 December 2019 (1000 days), and the test
data is that of 18 December 2019; for the expanding window method, the training data set covers the
period 29 September 1994 to 17 December 2019 (6145 days), and the test data is that of 18 December
2019. Therefore, we derived a confusion matrix for crisis prediction once the loops were complete.

Next, we chose our methods following Chatzis et al. [23], deciding on the following: XGboost [30],
SVM [31], LogR [32], RF [33–35], and NN [36]. We split the explanatory variables into two types to
compare the predictions: A natural gas-related variable (the average number of crises during the
previous five working days, lags 1 to 5 of crises, and lags 1 to 5 of the prices and returns of natural
gas, yielding 16 predictors), and all variables (121 predictors, including natural gas-related variables).
In the following section, we describe the development process and the parameter tuning for each model.

4.1. Extreme Gradient Boosting

XGboost is not only an improvement algorithm on the boosting algorithm based on
gradient-boosted decision trees, and the internal decision tree uses a regression tree, but also an efficient
and prolongable development of the gradient boosting framework [37]. It supports multiple kinds of
objective functions, like regression, classification, ranking, and so on. Furthermore, in terms of model
accuracy, efficiency, and scalability, XGboost outperforms RFs and NNs [23]. In our study, we employed
the XGboost R package developed by Chen and He [30].

In order to increase the accuracy of the model prediction, we employed a (five-fold) cross-validation
method to debug a series of vital hyperparameters. In order to build the classification tree, we determined
the maximum depth of the tree, minimum number of observations in a terminal node, and size of
the subsampling for both window methods. We also tuned the hyperparameter γ, which controls the
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minimum reduction in the loss function required to grow a new node in a tree, and reduces overfitting
the model. In addition, we tuned α (the L1 regulation term on the weights) and λ (the L2 regulation
term on weights). Because of the binary nature of our dependent variable, we applied the LogR
objective function for the binary classification to train the model. We also calculated the area under the
curve (AUC) of our model, which is equal to the probability that the classifier ranks randomly selected
positive instances higher than randomly selected negative instances. In our model training, when we
employed the moving window method, the AUC values were above 0.8, regardless of whether we
used 16 natural gas-related explanatory variables or 121 explanatory variables, indicating a very good
performance. However, we derived an AUC of only 0.67 when applying the expanding window
method, indicating a poor performance for the combination of this and the XGboost method.

Because we used the moving window and expanding window methods in our study, we cannot
show every XGboost variable importance plot, because there were more than 5000 plots after the
loop calculation. Therefore, we present the plots for the last step of the loop in the Appendix A.
Here, Figures A1 and A2 show that lag5 of the natural gas price is the most important variable in
the moving window method. However, lag2 of the natural gas return is the most important in the
expanding window method.

4.2. Support Vector Machines

Erdogan [38] applied an SVM [31] to analyze the financial ratio in bankruptcy, finding that the
SVM with a Gaussian kernel is capable of predicting bankruptcy crises. This is because the SVM has
a regularization parameter, which controls overfitting. Furthermore, using an appropriate kernel
function, we can solve many complex problems. An SVM scales relatively well to high-dimensional
data. Therefore, it is widely used in financial crisis prediction, handwriting recognition, and so on.

In our study, we used sigmoid, polynomial, radial basis function, and linear kernels to evaluate
a soft-margin SVM, finding that the sigmoid function performs optimally. In order to select the
optimal hyperparameter (e.g., γ, the free parameter of the Gaussian radial basis function, and c,
the cost hyperparameter of the SVM, which involves a trading error penalty for stability), we applied
cross-validation. We selected the optimal values of these hyperparameters using the grid-search
methodology. We implemented the SVM model using the e1071 package in R, employing the tuning
function in the e1071 package to tune the grid-search hyperparameter.

Unlike the XGboost methodology, we could tune the parameters γ and c of the daily data set before
executing the loop calculation. The plots of the parameter tuning for the SVM model are provided
in the Appendix A. Figures A3 and A4 show the hyperparameters γ (x-axis) and c (y-axis) using the
grid-search method in the SVM model. The parameter c is the cost of a misclassification. As shown,
a large c yields a low bias and a high variance, because it penalizes the cost of a misclassification.
In contrast, a small c yields a high bias and a low variance. The goal is to find a balance between
“not too strict” and “not too loose”. For γ, the parameter of the Gaussian kernel, low values mean “far”
and high values mean “close”. When γ is too small, the model will be constrained and will not be able
to determine the “shape” of the data. In contrast, an excessively large γ will lead to the radius of the
area of influence of the support vectors only including the support vector itself. In general, for an SVM,
a high value of gamma leads to greater accuracy but biased results, and vice versa. Similarly, a large
value of the cost parameter (c) indicates poor accuracy but low bias, and vice versa.

4.3. Logistic Regression

In statistics, the LogR algorithm is widely applied for modeling the probability of a certain class
or event existing, such as crisis/no crisis, healthy/sick or win/lose, and so on. The LogR is a statistical
model, which applies a logistic function to model a binary dependent variable in its basic form.
Ohlson [32] employed a LogR to predict corporate bankruptcy using publicly available financial data.
Yap et al. [39] employed a LogR to predict corporate failures in Malaysia over a 10-year period, finding
the method to be very effective and reliable. In our study, we employed the glm function in R, following
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Hothorn and Everitt [40]. In addition, because the output of a LogR is a probability, we selected
optimistic thresholds for the two window methods separately when predicting crises. We also employed
a stepwise selection method to identify the statistically significant variables. However, this did not
result in a good performance. Therefore, we did not consider the stepwise method further.

As before, we summarize some of the outcomes of our analysis in the Appendix A. Here, Tables A1
and A2 exhibit some of the outcomes of our analysis and we also present the plot of the final step of
the loop calculation, showing only the intentionality of some of the variables. As shown, whether in
the partial variables case or the all variables case, the lagged value and the average of five days of
crisis are the most intentional.

4.4. Random Forests

An RF [33–35] is an advanced learning algorithm employed for both classification and regression
created by Ho [41]. A forest in the RF model is made up of trees, where a greater number of trees
denotes a more robust forest. The RF algorithm creates decision trees from data samples, obtains
a prediction from each, and selects the best solution by means of voting. Compared with a single
decision tree, this is an ensemble method. Because it can reduce overfitting by averaging the results.
RFs are known as bagging or bootstrap aggregation methods. By identifying the best segmentation
feature from the random subset of available features, further randomness can be introduced.

In RF, a large number of predictors can provide strong generalization; our model contains
121 predictors. In order to improve the accuracy of model prediction, we must obtain an optimal
value of m, the number of variables available for splitting at each tree node. If m is relatively low,
then both the inter-tree correlation and the strength of each tree will decrease. To find the optimal
value, we employed the grid-search method. In addition to m, we tuned the number of trees using the
grid-search method. To reduce the computing time, we applied the ranger package in R to construct
the prediction model, employing the tuneRF function in the randomForest package.

We provide the RF variable importance plots in the last loop calculation in Appendix A.
In Figures A5 and A6, we present the importance of each indicator for the classification outcome.
The obtained ranking is based on the mean decrease in the Gini. This is the average value of the total
reduction of variables in node impurities, weighted by the proportion of samples that reach the node in
each decision tree in RF. Here, a higher mean decrease in the Gini indicates higher variable importance.
We found that in the partial variables case, the lags of the natural gas price and the natural gas return
are relatively important; however, in the case of all variables, this was not the case.

4.5. Neural Networks

In the field of machine learning and cognitive science, an NN [34] is a mathematical or
computational model, which imitates the structure and function of a biological neural network
(animal central nervous system, especially the brain), employed to estimate or approximate functions.
Like other machine learning methods, NN have been used to solve a variety of problems, such as
credit rating classification problems, speech recognition, and so on. The most usually considered
multilayer feedforward network is composed of three types of layers. First, in the input layer, many
neurons accept a large number of nonlinear input messages. The input message is called the input
vector. Second, the hidden layer, which is the various layers composed of many neurons and links
between the input layer and output layer. The hidden layer can have one or more layers. The number
of neurons in the hidden layer is indefinite, but the greater the number, the more nonlinear the NN
becomes, so that the robustness of the neural network is more significant. Third, in the output layer,
messages are transmitted, analyzed, and weighed in the neuron link to form the output. The output
message is called the output vector.

In order to increase the accuracy of the model prediction, we employed the grid-search method to
find the best parameter size and decay. The parameter size is the number of units in the hidden layer
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and parameter decay is the regularization parameter to avoid over-fitting. We used nnet package in R
to develop the model prediction.

5. Model Evaluation

In this section, we evaluate the robustness of our methods by performing a comprehensive
experimental evaluation procedure. Specifically, we use several criteria to evaluate the aforementioned
models in terms of crisis event prediction.

5.1. Verification Methods

Accuracy is measured by the discriminating power of the rating power of the rating system.
It is the most commonly used indicator for classification, and it estimates the overall effectiveness
of an approach by estimating the probability of the true value of the class label. In the following
section, we introduce a series of indicators that are widely employed to quantitatively estimate the
discriminatory power of each model.

In machine learning, we can derive a square 2 × 2 matrix, as shown in Table 5, which we used as
the basis of our research.

Table 5. Confusion matrix for two classes classification.

Predicted 0 Predicted 1

Actual 0 TN (number of True Negatives) FP (number of False Positives)
Actual 1 FN (number of False Negatives) TP (number of True Positives)

Notes: 0 refers to “No crisis”; 1 refers to “Crisis”; Predicted 0 refers to a predicted value of 0, Predicted 1 refers to
a predicted value of 1; Actual 0 refers to a true value of 0; Actual 1 refers to a true value of 1; TN = True Negative:
the number of negative cases (i.e., no crisis) correctly identified as negative cases; FP = False Positive: the number of
negative cases (i.e., no crisis) incorrectly identified as positive cases; FN = False Negative: the number of positive
cases (i.e., crisis) misclassified as negative cases; TP = True Positive: the number of positive cases (i.e., crisis) correctly
identified as positive.

Bekkar et al. [42] state that imbalanced data learning is one of the challenging problems in data
mining, and consider that skewed classes in the level distribution can lead to misleading assessment
methods and, thus, bias in the classification. To resolve this problem, they present a series of alternatives
for imbalanced data learning assessment, which we introduce below.

Bekkar et al. [42] defined sensitivity and specificity as follows:

Sensitivity (or Recall) =
TP

TP + FN
; Speci f icity =

TN
TN + FP

. (3)

Sensitivity and specificity assess the effectiveness of an algorithm on a single class for positive
and negative outcomes, respectively. The evaluation measures are as follows:

• G-mean: The geometric mean is the product of the sensitivity and specificity. This metric can
indicate the valance between the classification performance of the majority and minority classes.
In addition, the G-mean measures the degree to which we avoid overfitting on the negative class,
and the degree to which the positive class is marginalized. The formula is as follows:

G−mean =
√

Sensitivity× Speci f icity. (4)

Here, a low G-mean value means the prediction performance of the positive cases is poor, even if
the negative cases are correctly classified by the algorithm.
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• LP: The positive likelihood ratio is that between the probability of predicting an example as
positive when it is really positive, and the probability of a positive prediction when it is not
positive. The formula is as follows:

LP =
TP/(TP + FN)

FP/(FP + TN)
=

Sensitivity
1− Speci f icity

. (5)

• LN: The negative likelihood ratio is that between the probability of predicting an example as
negative when it is really positive, and the probability of predicting a case as negative when it is
actually negative. The formula is as follows:

LN =
FN/(TP + FN)

TN/(FP + TN)
=

1− Sensitivity
Speci f icity

. (6)

• DP: The discriminant power, a measure that summarizes sensitivity and specificity. The formula
is as follows:

DP =

√
3
π

(
log

Sensitivity
1− Sensitivity

− log
Speci f icity

1− Speci f icity

)
. (7)

DP values can evaluate the degree to which the algorithm differentiates between positive and
negative cases. DP values lower than one indicate that the algorithm differentiates poorly between the
two, and values higher than three indicate that it performs well.

• BA: Balanced accuracy, calculated as the average of the sensitivity and specificity. The algorithm
is as follows:

BA =
1
2
(Sensitivity + Speci f icity). (8)

If the classifier performs equally well in both classes, this term reduces to the conventional
accuracy measure. However, if the classification performs well in the majority class (in our study,
“no crisis”), the balance accuracy will drop sharply. Therefore, the BA considers the majority class and
minority class (in our study, “crisis”) equally.

• WBA: The weighted balance accuracy. Under the weighting scheme 75%: 25%, the WBA
emphasizes sensitivity over specificity, and is defined by Chatzis et al. [23] as follows:

WBA = 0.75 ∗ Sensitivity + 0.25 ∗ Speci f icity. (9)

• Youden’ s γ: An index that evaluates the ability of an algorithm to avoid failure. This index
incorporates the connection between sensitivity and specificity, as well as a linear correspondence
with balanced accuracy:

γ = Sensitivity− (1− Speci f icity) = 2 ∗ BA− 1. (10)

• F-measure: The F-measure employs the same contingency matrix as that of relative usefulness.
Powers [43] shows that an optimal prediction implies an F-measure of one. The formula is
as follows:

F−measure =
TP

TP +
(FP+FN)

2

. (11)

• DM-test: The Diebold–Mariano test is a quantitative approach to evaluate the forecast accuracy
of US natural gas crises predicting models in our paper [44]. In our paper, the DM-test can help
us to discriminate the significant differences of the predicting accuracy between the XGboost,
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SVM, LogR, RF, and NN models based on the scheme of quantitative analysis and about the loss
function. We employed the squared-error loss function to do the DM-test.

To simplify the explanation of its values, the F-measure was defined such that a higher value of γ
indicates a better ability to avoid classifying incorrectly.

After a series of illustrations of the algorithm above, we derived a variety of methods to evaluate
the model prediction ability. Here, we used all of the methods to derive a comprehensive and accurate
view of the models’ performance. Lastly, we calculated an optimal US natural gas market collapse
probability critical point for each fitted model, thus obtaining the optimal sensitivity and specificity
measures. We focused on false negatives rather than false positives, because the goal of our work was
to construct a supervised warning mechanism, which can predict as many correct signals as possible
while reducing the incidence of false negatives.

5.2. Models Prediction Results

We identified 121 predictors and 6146 records for the period 29 September 1994 to 18 December 2019.
In addition to using the two window methods, we determined the performance of the models when
predicting US natural gas crises using natural gas-related predictors only (16 predictors) and all
predictors (121 predictors) separately. In the following, we refer to the combination of the moving
window method and the natural gas-related predictors as the “partial variables with the moving
window” method. Similarly, we have the “partial variables with expanding window” method.
When we combined the moving window method with all variables, we have the “all variables
with a moving window” method and, similarly, we have the “all variables with an expanding
window” method.

As shown in Tables 6 and 7, when we applied the partial explanatory variables (16 variables) to
develop the machine learning models, XGboost provided the best empirical performance for both
window methods, followed by the LogR in the moving window method and NN in the expanding
window method since the Youden’s γ of XGboost was the highest in both two window methods,
which means that XGboost has a better ability to avoid misclassification. Furthermore, the BA and WBA
of XGboost was also the highest, which means that XGboost performs well in both crises’ prediction
and no-crisis forecasting. When we employed all explanatory variables (121 variables), XGboost clearly
still performed best in both dynamic methods, followed by the SVM in the moving window and LogR
in the expanding window from Youden’s γ values. Similarly, the BA and WBA of XGboost was also
the highest in the all variables situation.

Table 6. Verification methods: Dependent variable concerns a US natural gas crisis (partial variables).

Partial Variables

Moving Window Method Expanding Window Method

XGboost SVM LogR RF NN XGboost SVM LogR RF NN

G-mean 0.617 0.353 0.460 0.328 0.377 G-mean 0.589 0.419 0.493 0.300 0.489
LP 2.523 4.556 3.032 5.384 4.427 LP 2.912 4.135 3.215 3.877 4.618
LN 0.653 0.897 0.834 0.908 0.882 LN 0.694 0.854 0.802 0.930 0.790
DP 0.745 0.896 0.712 0.981 0.889 DP 0.791 0.870 0.766 0.787 0.973
BA 0.641 0.550 0.577 0.545 0.557 BA 0.632 0.570 0.591 0.534 0.599

WBA 0.555 0.339 0.403 0.327 0.352 WBA 0.517 0.377 0.428 0.313 0.426
Youden 0.282 0.100 0.154 0.090 0.114 Youden 0.264 0.139 0.182 0.068 0.198

F-measure 0.093 0.106 0.097 0.107 0.110 F-measure 0.085 0.098 0.087 0.074 0.114

Notes: “Partial variables” refers to 16 natural gas-related explanatory variables. G-mean (geometric mean), LP
(positive likelihood ratio), LN (negative likelihood ratio), DP (discriminant power), BA (balanced accuracy), weighted
balanced accuracy (WBA), Youden (Youden’s γ), F-measure.

In addition, because Tables 6 and 7 show that the forecasting performances of XGboost are great
and far exceed the other four models, when implementing the DM-test, we only evaluated the forecast
accuracy between XGboost and the other four models. From Tables 8 and 9, we can see from the results
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of DM-test that in both the partial variables and all variables situations and whether by the moving
window method or expanding window method, according to the DM-test based on the squared-error
loss, all the DM-test values >1.96, the zero hypothesis is rejected at the 5% level of significance; that is
to say, the observed differences between XGboost and other four models are significant and XGboost
in US natural gas crises prediction accuracy is best between the five models used in our paper.

Table 7. Verification methods: Dependent variable concerns a US natural gas crisis (all variables).

All Variables

Moving Window Method Expanding Window Method

XGboost SVM LogR RF NN XGboost SVM LogR RF NN

G-mean 0.605 0.374 0.387 0.325 0.357 G-mean 0.541 0.460 0.448 0.278 0.330
LP 1.958 2.993 1.797 2.705 1.858 LP 2.742 1.948 2.682 2.035 2.092
LN 0.684 0.897 0.919 0.928 0.931 LN 0.759 0.866 0.851 0.957 0.937
DP 0.580 0.664 0.369 0.590 0.381 DP 0.708 0.447 0.633 0.416 0.443
BA 0.619 0.549 0.537 0.535 0.532 BA 0.606 0.559 0.568 0.520 0.530

WBA 0.553 0.348 0.351 0.322 0.335 WBA 0.470 0.400 0.393 0.300 0.322
Youden 0.238 0.098 0.073 0.069 0.064 Youden 0.212 0.117 0.137 0.041 0.060

F-measure 0.075 0.086 0.061 0.074 0.060 F-measure 0.079 0.057 0.073 0.048 0.053

Notes: “All variables” refers to all 121 explanatory variables. G-mean (geometric mean), LP (positive likelihood
ratio), LN (negative likelihood ratio), DP (discriminant power), BA (balanced accuracy), weighted balanced accuracy
(WBA), Youden (Youden’s γ), F-measure.

Table 8. The results of the Diebold–Mariano test (partial variables).

Partial Variables

Moving Window Method

XGboost&SVM XGboost&LogR XGboost&RF XGboost&NN
DM-test 30.138 22.655 24.383 25.848
p-value p < 2.2 × 10−16 p < 2.2 × 10−16 p <2.2 × 10−16 p < 2.2 × 10−16

Expanding Window Method

XGboost&SVM XGboost&LogR XGboost&RF XGboost&NN
DM-test 20.483 13.871 23.793 21.684
p-value p < 2.2 × 10−16 p < 2.2 × 10−16 p <2.2 × 10−16 p < 2.2 × 10−16

Notes: DM-test means Diebold–Mariano test. We employ the squared-error loss function to do the DM-test.

Table 9. The results of the Diebold–Mariano test (all variables).

All Variables

Moving Window Method

XGboost&SVM XGboost&LogR XGboost&RF XGboost&NN
DM-test 31.334 20.68 29.858 23.673
p-value p < 2.2 × 10−16 p < 2.2 × 10−16 p < 2.2 × 10−16 p < 2.2 × 10−16

Expanding Window Method

XGboost&SVM XGboost&LogR XGboost&RF XGboost&NN
DM-test 8.4212 15.986 23.138 20.041
p-value p < 2.2 × 10−16 p < 2.2 × 10−16 p < 2.2 × 10−16 p < 2.2 × 10−16

Notes: DM-test means Diebold–Mariano test. We employ the squared-error loss function to do the DM-test.

Summarizing the results across the five model evaluations in the test sample, it is evident that
XGboost outperforms the other machine learning models. So far, there are very few papers related to
forecasting US natural gas crises through machine learning. Thus, our research has made a certain
contribution to the prediction of US natural gas crises.
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5.3. Confusion Matrix Results

Referring to Chatzis et al. [23], we computed the final classification performance confusion
matrices for the evaluated machine learning models (see Tables 10 and 11). Here, a false alarm means
a false positive rate, and the hit rate denotes the proportion of correct crisis predictions in the total
number of crises. For the best performing model, XGboost, we found that the false alarms do not
exceed 25%, and the highest hit rate is 49%. Thus, our US natural gas crisis prediction accuracy can
reach 49% using all variables with the moving window method.

Table 10. Confusion matrix results: Partial variables.

Partial Variables

Moving Window Method Expanding Window Method

XGboost Predict Predict
TRUE 0 1 Signal TRUE 0 1 Signal

0 4103 934 False alarm 19% 0 4360 699 False alarm 15%
1 58 51 Hit rate 47% 1 52 35 Hit rate 40%

SVM Predict Predict
TRUE 0 1 Signal TRUE 0 1 Signal

0 4895 142 False alarm 5% 0 4834 225 False alarm 6%
1 95 14 Hit rate 13% 1 71 16 Hit rate 18%

LogR Predict Predict
TRUE 0 1 Signal TRUE 0 1 Signal

0 4656 381 False alarm 9% 0 4643 416 False alarm 9%
1 84 25 Hit rate 23% 1 64 23 Hit rate 26%

RF Predict Predict
TRUE 0 1 Signal TRUE 0 1 Signal

0 4934 103 False alarm 4% 0 4939 120 False alarm 4%
1 97 12 Hit rate 11% 1 79 8 Hit rate 9%

NN Predict Predict
TRUE 0 1 Signal TRUE 0 1 Signal

0 4870 167 False alarm 5% 0 4782 277 False alarm 7%
1 93 16 Hit rate 15% 1 65 22 Hit rate 25%

Table 11. Confusion matrix results: All variables.

All Variables

Moving Window Method Expanding Window Method

XGboost Predict Predict
TRUE 0 1 Signal TRUE 0 1 Signal

0 3786 1251 False alarm 25% 0 4444 615 False alarm 13%
1 56 53 Hit rate 49% 1 58 29 Hit rate 33%

SVM Predict Predict
TRUE 0 1 Signal TRUE 0 1 Signal

0 4790 247 False alarm 7% 0 4432 627 False alarm 13%
1 93 16 Hit rate 15% 1 66 21 Hit rate 24%

LogR Predict Predict
TRUE 0 1 Signal TRUE 0 1 Signal

0 4574 463 False alarm 11% 0 4647 412 False alarm 9%
1 91 18 Hit rate 17% 1 68 19 Hit rate 22%

RF Predict Predict
TRUE 0 1 Signal TRUE 0 1 Signal

0 4832 205 False alarm 6% 0 4859 200 False alarm 5%
1 97 12 Hit rate 11% 1 80 7 Hit rate 8%

NN Predict Predict
TRUE 0 1 Signal TRUE 0 1 Signal

0 4664 373 False alarm 9% 0 4781 278 False alarm 7%
1 94 15 Hit rate 14% 1 77 10 Hit rate 11%



Energies 2020, 13, 2371 16 of 22

6. Conclusions

We proposed a dynamic moving window and expanding window method that combines XGboost,
an SVM, a LogR, an RF, and an NN as machine learning techniques to predict US natural gas crises.
We proposed the following full procedure. First, we selected the most significant US natural gas
financial market indicators, which we believe can be employed to predict US natural gas crises.
Second, we combined the aforementioned dynamic methods with other methods (e.g., the returns and
lags of the raw prices) to process the daily data set, and defined a crisis for the machine learning model.
Third, we used the five machine learning models (XGboost, SVM, LogR, RF, and NN) with dynamic
methods to forecast the crisis events. Finally, we evaluated the performance of each model using various
validation measures. We demonstrated that combining dynamic methods with machine learning
models can achieve a better performance in terms of predicting US natural gas crises. In addition,
our empirical results indicated that XGboost with the moving window method achieves a good
performance in predicting such crises.

Our main conclusions can be summarized as follows. From the various verification methods,
DM-test results, and confusion matrix results, XGboost with a moving window approach achieved
a good performance in predicting US natural gas crises, particularly in the partial variables case.
In addition, LogR in the moving window method and NN in the expanding window method did not
perform badly in the partial variables situation whereas SVM in the moving window and LogR in
the expanding window did not perform badly in the all variables situation. Our conclusions can help
us to forecast the crises of the US natural gas market more accurately. Because financial markets are
contagious, policymakers must consider the potential effect of a third market. This is equally important
for asset management investors, because diversified benefits may no longer exist during volatile times.
Therefore, these findings can help investors and policymakers detect crises, and thus take preemptive
actions to minimize potential losses.

The novel contributions of our study can be summarized as follows. First, to the best of our
knowledge, this study is the first to combine dynamic methodologies with machine learning to predict
US natural gas crises. A lot of the previous studies are about the currency exchange crises, bank credit
crises, and so on. So far, there are very few papers related to forecasting US natural gas crises through
machine learning. Second, we implemented XGboost, a popular and advanced machine learning model
in the financial crisis prediction field. Additionally, we found that XGboost outperforms in forecasting
US natural gas crises. Third, we employed various parameter tuning methods (e.g., the grid-search) to
improve the prediction accuracy. Fourth, we used novel evaluation methods appropriate for imbalanced
data sets to measure the model performance and we also employed the DM-test method and found
that the forecasting performance of XGboost is significant. Finally, we employed in-depth explanatory
variables that cover the spectrum of major financial markets.

Before combining the dynamic methodologies with machine learning techniques, we performed
ordinary machine learning, in that 70% of the data was used as training data and 30% was used as
test data. However, the prediction performance of this method was not so satisfactory. Although
our research is the first to combine machine learning techniques with dynamic methodologies for US
natural gas crisis prediction, the prediction accuracy of our model can be improved. This is left to
future research. Lastly, because economic conditions change continuously and crises continue to occur,
predicting crisis events will remain an open research issue.
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Figure A6. RF variable importance plots: all variables with the moving window and the expanding
window methods. (a) RF variable importance plot of all variables with the moving window method in
the final loop calculation; (b) RF variable importance plot of all variables with the expanding window
method in the final loop calculation.
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Table A1. Estimated LogR model result: Partial variables.

Partial Variables

Moving Window Method Expanding Window Method

Estimate Std. Error z-Value Pr(>|z|) Estimate Std. Error z-Value Pr(>|z|)

(Intercept) −7.91 1.19 −6.65 2.91 × 10−11 *** (Intercept) −1.88 × 103 1.12 × 106 −0.002 0.999
crisis_ave5days 2.77 6.50 0.43 0.6698 crisis_ave5days −8.71 × 102 7.42 × 105 −0.001 0.999

crisis_lag1 2.61 1.56 1.67 0.0942 crisis_lag1 2.19 × 102 1.23 × 105 0.002 0.999
hen_return_lag1 39.25 18.85 2.08 0.0373 * hen_return_lag1 2.90 × 103 1.31 × 106 0.002 0.998

Notes: *** < 0.001 p-value; * < 0.05 p-value.

Table A2. Estimated LogR model result: All variables.

All Variables

Moving Window Method Expanding Window Method

Estimate Std. Error z-Value Pr(>|z|) Estimate Std. Error z-Value Pr(>|z|)

(Intercept) −4.56 0.21 −21.87 2 × 10−16 *** (Intercept) −5.48 1.73 −3.17 0.00153 **
crisis_ave5days 8.75 2.34 3.73 0.000190 *** crisis_ave5days 7.30 2.58 2.83 0.00465 **
hen_return_lag5 7.31 2.21 3.31 0.000944 *** hen_return_lag5 6.60 2.39 2.76 0.00582 **
hen_return_lag2 9.19 4.07 2.26 0.023885 * gold_return_lag5 2.61 9.88 2.64 0.00835 **

Notes: *** < 0.001 p-value; ** < 0.01 p-value; * < 0.05 p-value.
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