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Abstract: In this paper, we present a nonlinear coordinated excitation and static var compensator
(SVC) control for regulating the output voltage and improving the transient stability of a synchronous
generator infinite bus (SGIB) power system. In the first stage, advanced nonlinear methods are
applied to regulate the SVC susceptance in a manner that can potentially improve the overall
transient performance and stability. However, as distant from the generator measurements are
needed, time delays are expected in the control loop. This fact substantially complicates the whole
design. Therefore, a novel design is proposed that uses backstepping methodologies and feedback
linearization techniques suitably modified to take into account the delayed measurement feedback
laws in order to implement both the excitation voltage and the SVC compensator input. A detailed
and rigorous Lyapunov stability analysis reveals that if the time delays do not exceed some specific
limits, then all closed-loop signals remain bounded and the frequency deviations are effectively
regulated to approach zero. Applying this control scheme, output voltage changes occur after the
large power angle deviations have been eliminated. The scheme is thus completed, in a second stage,
by a soft-switching mechanism employed on a classical proportional integral (PI) PI voltage controller
acting on the excitation loop when the frequency deviations tend to zero in order to smoothly recover
the output voltage level at its nominal value. Detailed simulation studies verify the effectiveness of
the proposed design approach.

Keywords: power system control; transient stability; nonlinear analysis; static var compensators;
SGIB power systems

1. Introduction

Power systems are nonlinear, large-scale, widely dispersed systems with many different
interconnected components. Typically, power systems controls are structured in several hierarchical
levels (primary, secondary, tertiary). The primary level control of power systems plays a central role
in maintaining transient stability and obtaining a desired system performance. Generator excitation
control is employed at the primary level in order to improve the power system stability, especially after
short-circuit faults or other major disturbances. This is achieved with the use of supplementary
excitation control devices called power systems stabilizers (PSSs). Conventional PSS are designed
using linear control approaches and are combined with the automatic voltage regulator (AVR) part to
result in a common form, known as an AVR/PSS controller. In the case of a synchronous generator
infinite bus (SGIB) power system, linear excitation controllers have been proposed in [1], which are
based on linearizations around the operating point. Nonlinear control theory, on the other hand,
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seems to provide a more reliable and robust tool for the analysis and design of power systems [2].
Under this view, several nonlinear excitation control methods have been proposed including feedback
linearization [3,4], adaptive control [4–7], and robust designs [8,9].

Beyond the traditional control of power systems through the excitation circuits of the rotating
generators, static power-electronic devices are proposed to be installed in the power transmission
system to support their transient behavior. Such static power-electronic components are the flexible
alternating current transmission system (FACTS) devices that are suitably controlled to increase the
power transfer capability and network stability [10,11]. Static var compensators (SVCs) are FACTS
devices that correct the power factor and the grid voltage at the point of connection [12–14]. In this
paper, we consider a widely used thyristor controlled reactor-fixed capacitor (TCR-FC) SVC [15,16].
Voltage is regulated at the SVC bus as follows: If voltage amplitude is needed to decrease (i.e., in case
of capacitive load conditions), the SVC uses TCRs to absorb vars from the system. If voltage amplitude
is needed to increase (in case of inductive load conditions), the capacitor banks are automatically
switched-in to inject vars to the system. In several studies [12–19], coordinated excitation and SVC
control has been considered for transient stability enhancement and voltage regulation.

Recent advances in wide-area measurement systems (WAMS) technology have initiated the use of
phasor measurement unit (PMU) devices for controlling power systems. Communication time-delays
are inevitably introduced during the transmission of wide-area signals. The effect of these delays
on the overall power system stability has attracted significant research interest [20,21] because they
constitute additionally negative factors in designing an effective control.

In this paper, we consider a single machine infinite bus power system with a TCR-FC SVC
connected in the tie-lines between the generator and the infinite bus. The synchronous generator
is represented by its third-order nonlinear model and the SVC dynamics from its first-order model.
A feedback linearization approach is used, resulting in a linear dynamic system representation with
two controlled inputs, the generator excitation input and the input of the SVC regulator. Both inputs
are used in conjunction to formulate a faster and effective feedback loop that can substantially improve
the overall system transient response and stability. Applying backstepping-based techniques and
using distant measurements from the generator side, an excitation and a nonlinear SVC controller
are designed. As the time delays in the measurements are essential for the whole design, a detailed
nonlinear theoretical analysis is conducted that considers this influence and, as shown in the paper,
proves that as long as the time delays are sufficiently small, then all closed-loop signals are bounded
and the power angle deviations exponentially converge to zero. The design is completed by a
coordinated frequency and voltage controller that utilizes a soft switching mechanism for both the
excitation input and the SVC compensator, which extends the fuzzy switching coordination approach
of [22]. The excitation input initially employs the proposed nonlinear control, while in the sequel,
after the large frequency deviations are mitigated, it switches in a smooth way to a classical automatic
voltage regulator and power system stabilizer (AVR/PSS). It is apparent that also in the case when
the delays are not sufficiently small, then a classical proportional integral (PI) voltage controller is
used. The simulation results indicate that the proposed approach yields better results than the simple
AVR/PSS and PI SVC control.

The main contributions and novelties of this work with respect to the related literature [13–19,22]
are summarized as follows:

• This work is the first to consider the use of SVC control laws with delayed measurements
from the generator in order to improve the overall transient stability and performance.
The proposed approach makes necessary a new theoretical analysis that takes into account
the effect of time-delays.

• The soft switching coordination approach of [22], which improves global transient stability and
voltage regulation, is extended to the SVC control case. New membership functions are considered
based on suitably defined fuzzy rules that consider not only the frequency variations, but also the
magnitude of the time delays.
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The rest of the paper is organized as follows. In Section 2, the mathematic model of the system is
outlined and the problem is formulated. The backstepping/feedback linearization method is used in
Section 3 to design the excitation and SVC controllers. In Section 4, a detailed stability analysis for
the closed-loop system is carried out. The coordinated frequency and voltage control is proposed in
Section 5. Simulation results are given in Section 6. Finally, in Section 7, some concluding remarks
are given.

2. Mathematical Model and Problem Formulation

A simplified model for a generator and an SVC system, which forms a three-bus system shown
in Figure 1, is considered. The SVC is connected to a bus located at an intermediate point of the
transmission line.

The classical third-order single-axis dynamic generator model [23] is used for the design of the
excitation controller, which neglects dynamics with very short time constants, and is given by the
following equations:

.
δ(t) = ω(t) −ω0 (1)

.
ω(t) = −

D
M

(ω(t) −ω0) +
ω0

M
(Pm − Pe(t)) (2)

.
E
′

q(t) =
1

T′d0

(
E f (t) − Eq(t)

)
(3)

where
Eq(t) = E′q(t) +

(
xd − x′d

)
Id(t) (4)

E f (t) = kcu f (t) (5)

In this model, the sub-transient and damper windings effects are neglected. Moreover, the flow
terms

.
λd and

.
λq in the stator voltage equations are omitted as they are considered negligible compared

with the speed voltage terms.
We consider a widely used TCR-FC SVC (see Figure 1), which consists of a fixed capacitor in

shunt with a thyristor-controlled inductor. Let BC be the susceptance of the capacitor in SVC and BL(t)
be the susceptance of the inductor in SVC. Let it be that BL(t) is regulated by the firing angle of the
thyristor. Then, the equivalent dynamic model of SVC can be written as [15–17]

.
BL(t) =

1
TB(t)

(−BL(t) + BL0 + kBuB(t)) (6)

where BL0 is the initial susceptance of the TCR, TB is the time constant of the SVC regulator, kB the gain,
and uB the input of the SVC regulator.

The coordinated control design for the generator and the static VAR compensator must take into
account the SVC controller effect on the generator dynamics. From the network topology depicted in
Figure 1, the active electrical power is given by

Pe =
E′q sin δ

X
(7)

where X is the total reactance value.
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Figure 1. Simplified generator and static var compensator (SVC) three-bus model. AVR/PSS, 
automatic voltage regulator and power system stabilizer; TCR, thyristor controlled reactor; FC, fixed 
capacitor. 

To examine the transient system response, a symmetrical three-phase short-circuit fault in the 
tie-line connecting the generator and the static VAR compensator is considered, as shown in Figure 
1. During the three-phase short-circuit fault, the total reactance value Χ changes. An analysis of the 
equivalent circuits pre-fault, during fault, and post-fault yields the respective values of X . These 
network configurations are shown in Figures 2–4, whereas the detailed calculations are given in 
Appendix A. 
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Figure 1. Simplified generator and static var compensator (SVC) three-bus model. AVR/PSS, automatic
voltage regulator and power system stabilizer; TCR, thyristor controlled reactor; FC, fixed capacitor.

To examine the transient system response, a symmetrical three-phase short-circuit fault in the
tie-line connecting the generator and the static VAR compensator is considered, as shown in Figure 1.
During the three-phase short-circuit fault, the total reactance value X changes. An analysis of the
equivalent circuits pre-fault, during fault, and post-fault yields the respective values of X. These network
configurations are shown in Figures 2–4, whereas the detailed calculations are given in Appendix A.
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Specifically, the total reactance value X before the fault is

X = x′d + xT1 +
xL1

2
+

xL2

2
+

xL2

2

(
x′d + xT1 +

xL1

2

)(
xT2 +

1
BL − BC

)−1

. (8)

During the fault, the total reactance is changed to

X =
[

xL1xL2
2 +

(k+1)xL2
2k

(
x′d + xT1

)]
×

×

 2
xL2

+ 2−k
(1−k)xL1

−
1

x2
L1

(
1

x′d+xT1
+ 1

k
k+1 xL1

)−1

+
(
xT2 +

1
BL−BC

)−1
. (9)

The constant k ∈ (0, 1) is determined by the fault position in the line between the generator bus
and the SVC bus. The smaller k is, the closer the the fault is to the generator bus. If k is close to one,
then the fault position is close to the SVC bus, whereas k = 0.5 denotes a fault at the middle of this line.

After the fault is removed (by opening the brakers), it takes the following form:

X = x′d + xT1 + xL1 +
xL2

2
+

xL2

2

(
x′d + xT1 + xL1

)(
xT2 +

1
BL − BC

)−1

(10)

To proceed with the control design, we differentiate (7) to obtain the rate of change of Pe as

dPe(t)
dt

=
E′q cos δ

X
∆ω+

dE′q
dt

sin δ
X
−

1
X

Pe
dX
dt

(11)

Considering (8)–(10), the time derivative of X for the three different modes can be computed as

dX(t)
dt

=
a

[xT2(BL(t) − BC) + 1]2
dBL(t)

dt
(12)

where a is a constant with the following values:

a =


xL2
2

(
x′d + xT1 +

xL1
2

)
, be f ore f ault

xL2
2

[
xL1 + (1 + 1/k)

(
x′d + xT1

)]
, during f ault

xL2
2

(
x′d + xT1 + xL1

)
, a f ter f ault

. (13)

Expressions (11), (12), and (13) are used in the following design procedure.

3. Control Design Based on Backstepping and Feedback Linearization Techniques

The control objective is to design the excitation input E f and the SVC controller uB such that
the angle deviations ∆δ converge exponentially fast to zero. To that end, we adopt a backstepping
approach in the control design for the transient stability enhancement similar to [3]. Let the first error
variable be z1 = ∆δ with dynamics

.
z1 = ∆ω. If we define the first virtual control law α1 = −c1∆δ with

c1 > 0, then for the new error variable, z2 = ∆ω − α1, and the nonnegative function, V1 = (1/2)z2
1,

we have that
.

V1 = −c1z2
1 + z1z2. The dynamics of z2 are given by

.
z2(t) =

(
c1 −

D
M

)
∆ω(t) −

ω0

M
∆Pe (14)

If we select the second virtual control law as

α2 =
M
ω0

[(
c1 −

D
M

)
∆ω+ z1 + c2z2

]
(15)



Energies 2020, 13, 2181 6 of 18

with the third error variable z3 = ∆Pe − α2, then the dynamics of z2 are
.
z2 = −z1 − c2z2 − (ω0/M)z3.

The overall error variable transformation is
z1

z2

z3

 =


1 0 0
c1 1 0

−
M
ω0
(1 + c1c2) −

M
ω0

(
c1 + c2 −

D
M

)
1




∆δ
∆ω
∆Pe

 (16)

Then, the dynamics of the z3 error variable are described by

.
z3 =

E′q cos δ
X ∆ω+ 1

T′d0

(
E f − E′q −

(
xd − x′d

)
Id
)

sin δ
X −

aPe(−BL(t)+BL0+kBuB(t))
TB(t)X[xT2(BL(t)−BC)+1]2

+ M
ω0

(
c1 + c2 −

D
M

)(
D
M ∆ω+ ω0

M ∆Pe
)
−

M
ω0
(1 + c1c2)∆ω

(17)

where expressions (11) to (13) are taken into account.
We then select a nonlinear feedback linearizing excitation control law of the following form:

E f = E f ,NC = E′q +
(
xd − x′d

)
Id −

T′d0E′q∆ω
tan δ +

T′d0E′q
Pe

[
M
ω0
(1 + c1c2)c3∆δ+

+ M
ω0

(
1 + c1c2 +

(
c3 −

D
M

)(
c1 + c2 −

D
M

))
∆ω−

(
c1 + c2 + c3 −

D
M

)
∆Pe

] (18)

and SVC control law

uB,NC(t) =
1
kB

BL(t) − BL0 +
cBTB[xT2(BL(t) − BC) + 1]2

Pe
z3(t− τ(t))

 (19)

with gain cB > 0. It is noticed that in (19), the time delay inserted from the z3 measurement and
feedback denoted by τ(t) is taken into account, and the following delayed ODE is obtained:

.
z3 = −c3z3(t) −

acB
X z3(t− τ(t))

z3(θ) = φ(θ), ∀θ ∈ E0
(20)

where φ : E0 → R is a continuous initial function with bounded norm defined in

E0 =
{
t ∈ R

∣∣∣η− τ(η) ≤ 0, η ≥ t0
}

The delay τ(t) is assumed to be bounded with the bounded rate of change, that is, τ ≤ τ(t) ≤ τ
and

.
τ(t) ≤ η for some τ, τ, η > 0. The delayed term in (19) is the result of the fact that the variable z3(t)

does not involve local SVC measurements, but uses distant, and thus delayed, measurements from the
generator. Thus, at time t, the z3(t− τ(t)) is available for use in the SVC controller.

4. Overall System Stability Analysis

An analysis will be carried out next to prove that, under certain conditions on the magnitude of
the time-delay, the error variable z3 converges exponentially fast to zero.

It is worth noting that all solutions of (20) are also solutions of

.
z3(t) = −

(
c3 +

acB

X

)
z3(t) −

acB

X

t∫
t−τ

(
c3z3(s) +

acB

X
z3(s− τ(s))

)
ds. (21)

The solution of (21) is given by

z3(t) = exp
[
−

(
c3 +

acB

X

)
t
]
φ(0) −

acB

X

t∫
0

e−(c3+
acB
X )(t−θ)

θ∫
θ−τ

(
c3z3(s) +

acB

X
z3(s− τ(s))

)
dsdθ (22)
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which in turn yields∣∣∣z3(t)
∣∣∣ ≤ exp

[
−

(
c3 +

acB
X

)
t
]
sup
θ∈E0

∣∣∣φ(θ)∣∣∣+
+ acB

X

t∫
0

exp
[
−

(
c3 +

acB
X

)
(t− θ)

] θ∫
θ−τ(θ)

(
c3

∣∣∣z3(s)
∣∣∣+ acB

X

∣∣∣z3(s− τ(s))
∣∣∣)dsdθ.

(23)

Consider now the functional differential equation

.
y(t) = −

(
c3 +

acB

X

)
y(t) + q(t)y(t− τ(t)) (24)

where

q(t) =
(
c3 +

acB

X
−

σ

τ(t)

)
exp

−σ
t∫

t−τ(t)

dθ
τ(θ)

 (25)

and 0 < σ < τ(c3 + acB/X). By direct substitution, one can see that the solution of (24) is

y(t) = C0 exp
(
−σ

∫ t

0

ds
τ(s)

)
. (26)

Using the mean value theorem repeatedly, one concludes that there exist constants 0 < θ2 < θ1 < 1,
such that

t∫
t−τ(t)

dθ
τ(θ)

=
τ(t)

τ(t− θ1τ(t))
=

τ(t)
τ(t) − θ1τ(t)

.
τ(t− θ2τ(t))

≤
1

1− η
. (27)

Thus, from (25) and (27), we arrive at

q(t) ≥
(
c3 +

acB

X
−
σ
τ

)
exp

(
−

σ
1− η

)
. (28)

We will prove next that, for a proper selection of C0, σ > 0, the function y(t) is an upper bound of∣∣∣z3(t)
∣∣∣. Alternatively, y(t) can be written as

y(t) = C0 exp
[
−

(
c3 +

acB

X

)
t
]
+

t∫
0

exp
[
−

(
c3 +

acB

X

)
(t− θ)

]
q(θ)y(θ− τ(θ))dθ. (29)

A comparison of
∣∣∣z3(t)

∣∣∣ with y(t) will yield the desired stability result. To this end, we define the
error variable as

e(t) :=
∣∣∣z3(t)

∣∣∣− y(t) (30)

For e(t), from (23) and (29), we have the following:

e(t) ≤ exp
[
−

(
c3 +

acB
X

)
t
]sup
θ∈E0

∣∣∣φ(θ)∣∣∣−C0


+ acB

X

t∫
0

exp
[
−

(
c3 +

acB
X

)
(t− θ)

] θ∫
θ−τ(θ)

(
c3

∣∣∣z3(s)
∣∣∣+ acB

X

∣∣∣z3(s− τ(s))
∣∣∣)dsdθ

−

t∫
0

exp
[
−

(
c3 +

acB
X

)
(t− θ)

]
q(θ)y(θ− τ(θ))dθ.

(31)
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The above inequality can be written equivalently as

e(t) ≤ exp
[
−

(
c3 +

acB
X

)
t
]sup
θ∈E0

∣∣∣φ(θ)∣∣∣−C0


+ acB

X

t∫
0

exp
[
−

(
c3 +

acB
X

)
(t− θ)

] θ∫
θ−τ(θ)

(
c3e(s) + acB

X e(s− τ(s))
)
dsdθ

+
t∫

0
exp

[
−

(
c3 +

acB
X

)
(t− θ)

] acB
X

θ∫
θ−τ(θ)

(
c3y(s) + acB

X y(s− τ(s))
)
ds− q(θ)y(θ− τ(θ))

dθ.

(32)

The integral term within (32) can be bounded as follows

acB
X

θ∫
θ−τ(θ)

(
c3y(s) + acB

X y(s− τ(s))
)
ds

= acBC0
X

θ∫
θ−τ(θ)

(
c3 exp

(
−σ

∫ s
0

dλ
τ(λ)

)
+ acB

X exp
(
−σ

∫ s−τ(s)
0

dλ
τ(λ)

))
ds

= acBC0
X

θ∫
θ−τ(θ)

(
c3 +

acB
X exp

(
σ
∫ s

s−τ(s)
dλ
τ(λ)

))
exp

(
−σ

∫ s
0

dλ
τ(λ)

)
ds

≤
acBC0

X

(
c3 +

acB
X exp

(
σ

1−η

)) θ∫
θ−τ(θ)

exp
(
−σ

∫ s
0

dλ
τ(λ)

)
ds

≤
acBC0

X

(
c3 +

acB
X exp

(
σ

1−η

))
τ(θ) exp

(
−σ

∫ θ−τ(θ)
0

dλ
τ(λ)

)
≤

acB
X

(
c3 +

acB
X exp

(
σ

1−η

))
τy(θ− τ(θ)).

(33)

Consider now the equation

acB

X

(
c3 +

acB

X
exp

(
σ

1− η

))
τ = exp

(
−

σ
1− η

)(
c3 +

acB

X
−
σ
τ

)
. (34)

The left hand side (l.h.s.) of (34) is a strictly increasing function of σ, whereas the right hand side
(r.h.s.) is a strictly decreasing function of σ in [0,∞). Thus, a unique, positive solution of (34) exists if
and only if the value of the r.h.s. is greater than the value of the l.h.s. for σ = 0. This condition yields

acB

X
· τ < 1 (35)

Hence, inequality (35) provides an upper bound on the time delays that can be allowed.
Furthermore, using (26) and (28), we can prove that

acB
X

θ∫
θ−τ(θ)

(
c3y(s) + acB

X y(s− τ(s))
)
ds

≤ exp
(
−

σ
1−η

)(
c3 +

acB
X −

σ
τ

)
y(θ− τ(θ)) ≤ q(θ)y(θ− τ(θ)).

(36)

If we choose the initial condition C0, such that

y(t) ≥
∣∣∣φ(t)∣∣∣, ∀t ∈ E0

C0 ≥ sup
θ∈E0

∣∣∣φ(θ)∣∣∣ (37)
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then from (32), (36), and (37), we have

e(t) ≤
acB

X

t∫
0

exp
[
−

(
c3 +

acB

X

)
(t− θ)

] θ∫
θ−τ(θ)

(
c3e(s) +

acB

X
e(s− τ(s))

)
dsdθ. (38)

while using (37) in (30) results in
e(t) ≤ 0, ∀t ∈ E0. (39)

A contradiction argument can be used to prove that e(t) ≤ 0, ∀t > 0. Assume the opposite, that is,
e(t) > 0 for some t > 0. Then, for some sufficiently small ε > 0, there exists t∗ε = inf

{
t > 0 : e(t) ≥ ε

}
,

for which e(t∗ε) = ε. From (38) and (35), we have that

e(t∗ε) ≤
acB
X

t∗ε∫
0

exp
[
−

(
c3 +

acB
X

)
(t− θ)

] θ∫
θ−τ(θ)

(
c3e(s) + acB

X e(s− τ(s))
)
dsdθ

≤ ε acBτ
X

(
c3 +

acB
X

) t∗ε∫
0

exp
[
−

(
c3 +

acB
X

)
(t− θ)

]
dθ ≤ε acBτ

X < ε

(40)

which yields the desired contradiction. Hence, e(t) ≤ 0, ∀t ≥ 0, and thus∣∣∣z3(t)
∣∣∣ ≤ C0 exp

(
−σ

∫ t
0

ds
τ(s)

)
≤M′sup

θ∈E0

{∣∣∣φ(θ)∣∣∣} exp
(
−σ

∫ t
0

ds
τ(s)

)
≤M′sup

θ∈E0

{∣∣∣φ(θ)∣∣∣} exp
(
−
σ
τ t

)
∀ t ≥ 0

(41)

that is, the error variable z3(t) converges exponentially to zero. Furthermore, if we define the
nonnegative function V2 = (1/2)z2

1 + (1/2)z2
2, then we have

.
V2 = −c1z2

1 − c2z2
2 −

ω0
M z2z3

≤ −c1z2
1 − c2z2

2 +
ω0M′

M sup
θ∈E0

{∣∣∣φ(θ)∣∣∣} exp
(
−
σ
τ t

)
|z2|

= −c1z2
1 − (c2 − ε)z2

2 − ε

|z2| −
ω0M′

2M sup
θ∈E0

{∣∣∣φ(θ)∣∣∣} exp
(
−
σ
τ t

)2

+ 1
4ε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2} exp
(
−

2σ
τ t

)
≤ −c1z2

1 − (c2 − ε)z2
2 +

1
4ε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2} exp
(
−

2σ
τ t

)
≤ −2cV2 +

1
4ε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2} exp
(
−

2σ
τ t

)
(42)

with c := min{c1, c2 − ε} > 0 for some 0 < ε < c2.
The above differential inequality can be set in integral form as follows:

V2(t) ≤ V2(0) +
τ

8σε

(
ω0M′

M

)2

sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2}(1− e−2σt/τ
)
− 2c

∫ t

0
V2(s)ds. (43)
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Applying the Gronwall–Bellman Lemma in (43), we obtain

V2(t) ≤ V2(0) + τ
8σε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2}(1− e−2σt/τ
)

−2c
∫ t

0 e−2c(t−s)

V2(0) + τ
8σε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2}(1− e−2σs/τ
)ds

= V2(0) + τ
8σε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2}(1− e−2σt/τ
)

−2c

V2(0) + τ
8σε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2}∫ t
0 e−2c(t−s)ds

+2c τ
8σε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2}∫ t
0 e−2c(t−s)e−2σs/τds

(44)

which yields

V2(t) ≤ V2(0)e−2ct + τ
8σε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2}(e−2ct
− e−2σt/τ

)
+2c τ

8σε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2}e−2ct
∫ t

0 e2(c−σ/τ)sds.
(45)

Hence, it holds true that

V2(t) ≤


V2(0)e−2ct + τ

8σε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2}(e−2ct
− e−2σt/τ + 2cte−2ct

)
, i f c = σ/τ

V2(0)e−2ct + τ
8(σ−cτ)ε

(
ω0M′

M

)2
sup
θ∈E0

{∣∣∣φ(θ)∣∣∣2}(e−2ct
− e−2σt/τ

)
, i f c , σ/τ

(46)

which guarantees exponential stability of the equilibrium z1 = z2 = 0. Thus, the following theorem
has been proven.

Theorem 1. Consider the SGIB with SVC system defined by (1)–(6), (11), and (12). If the generator excitation
input is selected as in (18) and the SVC control as in (19) with time varying delay bound satisfying (35), then all
closed-loop signals remain bounded and the power angle deviations exponentially converge to zero.

The previous analysis has clearly shown that distant delayed measurements can be used in the
static var compensator control law for improving the transient stability of SGIB power system.

5. Coordinated Frequency and Voltage Control

The proposed nonlinear feedback linearizing controls ensure convergence of the power angles
to their pre-fault values. However, this property is not desirable for a network changing topology
because, in this case, the steady state voltages might deviate from the nominal ones. To address
this issue, we adopt and modify the approach firstly used in [22], where a coordinated voltage and
frequency scheme was proposed. The coordinated control scheme retains the transient behavior of
the nonlinear controls (faster and better than the AVR/PSS), while ensuring voltage regulation similar
to an AVR/PSS. In the coordinated control scheme, the nonlinear controller takes over right after the
fault, switching to an AVR/PSS controller after the large frequency deviations have been eliminated.
This controller transition is implemented with a soft switching algorithm based on the frequency
deviations ∆ω. Specifically, the following simple Takagi–Sugeno–Kang fuzzy rules are employed for
the controller selection:

IF |∆ω| is LARGE THENE f = E f ,NC
IF |∆ω| is SMALL THENE f = E f ,AVR\PSS
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where
E f ,AVR\PSS = E f d0 +

Ka

Tas + 1

(
−∆Vt +

T1s + 1
T2s + 1

Trs
Trs + 1

KPSS∆ω
)

(47)

By choosing the membership functions

µ1(∆ω) =
1

1 + e−38(|∆ω|−0.253)
, µ2(∆ω) = 1−

1
1 + e−38(|∆ω|−0.253)

(48)

which represent the linguistic values LARGE and SMALL for the fuzzy variable ∆ω (see Figure 5),
the control input takes the following form:

E f = µ1(∆ω)E f ,NC + µ2(∆ω)E f ,AVR/PSS (49)
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This switching approach can also be utilized in the SVC compensator design.
Specifically, a coordinated control strategy can be used in the SVC, which ensures that, initially, the power
angle generator oscillations are rapidly damped, and then the SVC bus voltage is regulated towards its
nominal value. To this end, a soft switching approach is adopted. The controllers switch when the large
power angle deviations have been sufficiently mitigated so that the ancillary action of the SVC controller
is no longer needed. The magnitude of the frequency deviation can serve as a switching criterion.
In the new steady state, the SVC controller is transformed to a PI controller of the following form:

uB,V(t) = kP∆VB(t) + kI

∫ t

0
∆VB(τ)dτ (50)

and the combined control law is then

uB(t) = µ1(∆ω(t− τ(t)))uB,NC(t) + µ2(∆ω(t− τ(t)))uB,V (51)

Obviously, the control law that employs delayed generator measurements can improve the
transient stability only if the magnitude of the communication delays is small enough. After a careful
examination of the simulation studies and taking into account the fact that the first peak in the
oscillatory power angle response occurs at about 1 s after fault, a critical time of approximately 250 ms
after fault can be defined. All measurements after a fault and up to this time can be used in the scheme
we described above. Thus, the control law (51) should be modified to ensure that, for delays larger than
250 ms, a classical voltage PI is used, whereas, for delays smaller than or equal to 250 ms, the proposed
nonlinear controller is used.
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The following Takagi–Sugeno fuzzy rules implement the overall soft switching approach.

R1 : IF
∣∣∣∆ω(t− τ(t))∣∣∣ is LARGE AND τ(t) is SMALL THEN uB(t) = uB,NC(t)

R2 : IF
∣∣∣∆ω(t− τ(t))∣∣∣ is SMALL THEN uB(t) = uB,V(t)

R3 : IF τ(t) is LARGE THEN uB(t) = uB,V(t)

The membership functions

µ1(τ(t)) =
1

1 + e−100(τ(t)−0.25)
(52)

and
µ2(τ(t)) = 1− µ1(τ(t)) (53)

are selected for the linguistic values LARGE and SMALL of the fuzzy variable τ(t). Thus, the SVC
controller is given by

uB(t) =
µ1(∆ω(t− τ(t))) · µ2(τ(t)) · uB,NC(t) +

[
µ1(τ(t)) + µ2(∆ω(t− τ(t)))

]
· uB,V

µ1(∆ω(t− τ(t))) · µ2(τ(t)) + µ1(τ(t)) + µ2(∆ω(t− τ(t)))
(54)

It is obvious from the previous discussion that the magnitude of the communication delays
is crucial. If these are large, then the proposed overall control scheme cannot provide the desired
improvement as it will work only as a voltage controller. However, the latency times in current WLAN
communication networks (3G, 4G) do not exceed 100 ms. They are even smaller in ADSL and VDSL
Internet connections. Thus, both are viable options for communicating the distant measurements.

6. Simulation Studies

The simulation studies were performed in MATLAB/Simulink on an Intel Core i3-2348M PC
at 2.30 GHz with 4 GB RAM. For our simulation scenario, the system parameters are adopted
from [16], that is, D = 5.0 p.u., M = 4.0 s, xd = 1.863 p.u., x′d = 0.657 p.u., xT1 = xT2 = 0.127 p.u.,
xL1 = xL2 = 0.2426 p.u., T′d0 = 6.9 s, ω0 = 314.159 rad/s, BL0 = 1 p.u., Bc = 1 p.u., TB = 0.2 s,
and

∣∣∣kcu f
∣∣∣ ≤ 6. The operating point considered is δ = 41.7

◦

, Pe = 0.8 p.u., and Vt = 1.0 p.u.
The nonlinear excitation controller parameters are chosen as c1 = 4, c2 = 4, c3 = 50, and the gain in
the nonlinear SVC controller is taken as cB = 5. The AVR/PSS parameters are selected to be Ka = 21,
Ta = 0.05, T1 = 0.3, T2 = 0.1, Tr = 0.4, and KPSS = 0.1, and the gains of the PI voltage controller are
chosen as KP = 1 and KI = 10.

A symmetrical three-phase fault occurs at time t = 3 sec in the middle of one of the two lines
connecting the generator and SVC buses (k = 0.5). Breakers open after 200 ms and the line remains open.
Both the power angle response (Figure 6) and the terminal voltage response (Figure 7) demonstrate
the effectiveness of the SVC compensator in improving the transient stability of the power system.
Comparisons are made between three different cases. In particular, the proposed coordinated nonlinear
stabilizer with the AVR/PSS and PI SVC controller (case 1: C-NC-AVR/PSS+SVC PI) is compared with
the coordinated nonlinear stabilizer with the AVR/PSS controller (case 2: C-NC-AVR/PSS) and the
simple AVR/PSS (case 3) controller.
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Figure 6 shows that the power angle oscillations after the simulated large fault are significantly
reduced by the action of the proposed coordinated nonlinear stabilizer of case 1. For the other two,
it is seen that the case 2 controller provides a better response than that of case 3. Figure 7 indicates
the voltage response after the fault. The superiority of the proposed coordinated nonlinear stabilizer
is apparent, while in all cases, the inclusion of the AVR/PSS controller effectively eliminates the
steady-state deviation of the voltage amplitude.

For the case of a more severe fault closer to the generator bus (k = 0.21), which is again removed
after 200 ms, we compare the two control schemes: the coordinated nonlinear stabilizer with AVR/PSS
and PI SVC controller (C-NC-AVR/PSS+SVC PI) and the coordinated nonlinear stabilizer with AVR/PSS
and coordinated SVC control (C-NC-AVR/PSS+C-SVC).

Even though the PI SVC controller can help in reducing the undesired oscillations after a fault,
Figure 8 indicates that its action is not sufficient to avoid loss of synchronization for a fault that occurs



Energies 2020, 13, 2181 14 of 18

so close to the generator. The C-NC-AVR/PSS+C-SVC controller on the other hand can efficiently
return the system to the equilibrium point, avoiding loss of synchronism.

Figures 9–11 show the generator terminal voltage response, the SVC bus voltage response, and the
varying susceptance in the SVC compensator, respectively, under the proposed C-NC-AVR/PSS+C-SVC
and C-NC-AVR/PSS+SVC PI controllers. Unstable oscillations for Vt, VSVC occur under the
C-NC-AVR/PSS+SVC PI controller, whereas the C-NC-AVR/PSS+C-SVC controller can effectively
regulate voltages at the generator and SVC bus to their nominal values.
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7. Conclusions

A new coordinated excitation and SVC control is proposed for regulating the output voltage
and improving the transient stability of a synchronous generator infinite bus (SGIB) power system.
By regulating the SVC susceptance using distant from the generator, and thus delayed, measurements,
the SVC can potentially improve the overall transient performance and stability. The time delays
that further complicate the rigorous analysis conducted are taken into account and impose the limits
and conditions that are adequate for the proposed controller to be efficient and stable. The scheme is
completed by a soft-switching mechanism used to recover the output voltage level at the terminal bus
and the SVC bus after the large power angle deviations have been eliminated.
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Nomenclature

δ(t) power angle, in radian;
ω(t) rotor speed, in rad/sec;
ω0 synchronous machine speed, in rad/sec;
Pm mechanical input power, in p.u;
Pe(t) active electrical power, in p.u.;
D damping constant, in p.u.;
M inertia coefficient, in seconds;
E′q(t) transient EMF in the q-axis in p.u.;
Eq(t) EMF in the q-axis, in p.u.;
E f (t) equivalent EMF in excitation coil, in p.u.;
T′d0 d-axis transient short circuit time constant, in seconds;
Id(t) d-axis current, in p.u.;
kc gain of generator excitation amplifier, in p.u.;
u f (t) input of the SCR amplifier, in p.u.;
x′d d-axis transient reactance, in p.u.;

xd
d-axis reactance, in p.u.; ∆δ = δ− δ0; ∆ω = ω−ω0;
∆Pe = Pe − Pm.

Appendix A

Calculations of the total reactance value X of the network during the pre-fault, fault, and post-fault network
configurations are described by Figures 2–4.

For the pre-fault network configuration, shown in Figure 2, we apply Ohm’s current law on node 0 to obtain
the following:

I =
E′q∠δ−V0

j
(
x′d + xT1 +

xL1
2

) =
V0

j
(
xT2 +

1
BL−BC

) + V0 − 1
j xL2

2

which yields

V0 =
X(

x′d + xT1 +
xL1
2

)E′q∠δ+
X
xL2
2

with X =

 1
x′d + xT1 +

xL1
2

+
1

xT2 +
1

BL−BC

+
1

xL2
2

−1

After some further calculations, one obtains for the electric power

Pe = Re
[
E′q∠δ · I

∗
]
=

E′q sin δ
xL2

2X

(
x′d + xT1 +

xL1
2

) :=
E′q sin δ

X

where
X = xL2

2X

(
x′d + xT1 +

xL1
2

)
= x′d + xT1 +

xL1
2 + xL2

2 + xL2
2

(
x′d + xT1 +

xL1
2

)(
xT2 +

1
BL−BC

)−1
.

During the fault, the network topology is shown in Figure 3. Then, applying Ohm’s current law at node 0,
we have that

I =
E′q∠δ−V0

j
(
x′d + xT1

) =
V0

jkxL1
+

V0 −V1
jxL1

Similarly, for node 1, it holds that

V0 −V1
jxL1

= V1

 1
j(1− k)xL1

+
1

j
(
xT2 +

1
BL−BC

) + V1 − 1
j xL2

2
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The above equation yields

V1 =
X1
xL1

V0 +
X1
xL2
2

where X1 :=

 1
xL1

+
1

(1− k)xL1
+

1
xL2
2

+
1(

xT2 +
1

BL−BC

) 
−1

The voltage V0 can then be calculated as

V0 =
X2

x′d + xT1
E′q∠δ+

X1X2
xL1xL2

2
where X2 :=

 1
xL1

+
1

kxL1
+

1
x′d + xT1

−
X1

x2
L1

−1

After some further calculations, one obtains

I =
E′q∠δ−V0

j
(
x′d + xT1

) =

1−
X2

x′d + xT1

 E′q∠δ

j
(
x′d + xT1

) − 2X1X2

jxL1xL2
(
x′d + xT1

)
and then the electric power is

Pe = Re
[
E′q∠δ · I

∗
]
=

E′q sin δ
xL1xL2

2X1X2

(
x′d + xT1

) :=
E′q sin δ

X

where
X = xL1xL2

2X1X2

(
x′d + xT1

)
=

[
xL1xL2

2 +
(k+1)xL2

2k

(
x′d + xT1

)]
×

×

[
2

xL2
+ 2−k

(1−k)xL1
−

1
x2

L1

(
1

x′d+xT1
+ 1

k
k+1 xL1

)−1
+

(
xT2 +

1
BL−BC

)−1
]

The post-fault network topology is depicted in Figure 4. One can see that this is identical to the pre-fault case
with the exception of the jxL1 reactance in place of jxL1/2. Thus, the total reactance in this case is

X = x′d + xT1 + xL1 +
xL2
2

+
xL2
2

(
x′d + xT1 + xL1

)(
xT2 +

1
BL − BC

)−1

.
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