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Abstract: Solid-state photon-enhanced thermionic emission (PETE) solar energy converters are newly
proposed devices that can directly convert solar energy into electrical power at high temperatures.
An analytical model based on a one-dimensional steady-state equation is developed to analyze
the temperature-dependent performance of the solid-state PETE converter. The treatment used to
derive the reverse saturation current density (J0) and open-circuit voltage (Voc) of the solid-state
PETE converter is similar to that used in photovoltaic cells. Thus, their performances at elevated
temperatures can be compared. Analysis results show that J0 of the solid-state PETE converter
with a GaAs absorption layer is approximately three orders of magnitude lower, and the decrease
rate of open-circuit voltage (−dVoc/dT) is smaller than that of a practical GaAs photovoltaic cell.
The improved performance of the solid-state PETE converter at high temperatures is attributed to the
simultaneous use of diffusion and ballistic transport to harvest photo-generated electrons. The results
presented in this paper demonstrate that, besides using wide bandgap materials and increasing
doping density, harvesting solar energy via PETE effect can effectively improve the performance of
solar cells at elevated temperatures.

Keywords: photon-enhanced thermionic emission; temperature dependence; solid-state device;
solar cell; III–V semiconductors

1. Introduction

For concentrator photovoltaic systems and solar arrays of near-solar space probes, solar cells are
generally exposed to high temperatures [1,2]. Unfortunately, the performance of solar cells degrades
with the increase in temperature [3]. Efficiency degradation is primarily due to the decrease in
open-circuit voltage (Voc) with the increase in temperature [1–5]. The reverse saturation current density
(J0) is a critical parameter because it exponentially increases with increasing temperature and decreases
Voc rapidly [1,4]. J0 is a material-dependent parameter that relies on the bandgap and doping level
of the material [4,5]. Wide bandgap solar cells, including photovoltaic cells made from GaInP [6],
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GaP [7], GaN [8], and SiC [9], were developed for high-temperature near-solar operations to improve
the efficiency at high temperatures.

Recently, a novel high-temperature solar conversion concept called photon-enhanced thermionic
emission (PETE) has been proposed, in which carrier separation is achieved by thermionic emission of
photo-generated electrons from a hot cathode to a cold anode [10]. PETE can simultaneously utilize
photon and thermal energy to achieve a conversion efficiency higher than 40% at a temperature of
200 ◦C. However, the vacuum gap that separates the cathode and anode results in numerous challenges
in fabricating practical devices [11–13]. Diamond-based PETE cathodes with nanotexturing light
receiving surfaces and hydrogenation emitting surfaces have been designed for high temperature
operation [14,15]. A solid-state PETE solar energy converter has been proposed, to avoid the complicated
fabrication and encapsulation of vacuum PETE devices [16]. The vacuum gap is replaced by a wide
bandgap semiconductor layer. Carrier separation in the solid-state PETE converter is due to the internal
PETE effect at the interface of the absorber and barrier layers, rather than the built-in electric field of
a p–n junction in photovoltaic cells [17]. The conversion efficiency of the solid-state PETE converter
exceeds 30% at a temperature of 600 K and a flux concentration of 1000. However, the temperature
dependence of parameters, such as J0 and Voc, and the performance of the solid-state PETE converter
at elevated temperatures, need to be further studied in detail.

In this paper, an analytical model is proposed to investigate the temperature-dependent
performance of the solid-state PETE converter. The critical parameters J0 and Voc are derived
on the basis of a one-dimensional steady-state continuity equation, which is a similar method for
photovoltaic cells. We compare the temperature-dependent performance of the GaAs-based solid-state
PETE converter and GaAs photovoltaic cells. Previous studies suggested that solar cells using wide
bandgap and heavy doping materials would have better performance at high temperatures. The results
presented in this study demonstrate that utilizing the PETE effect as a carrier separation mechanism is
another effective method for reducing voltage degradation and improving the performance of solar
cells at elevated temperatures.

2. Materials and Methods

In this study, for the single-junction photovoltaic cell and solid-state PETE converter, the effect
of series resistance and shunt resistance is ignored, to simplify the problem. For a single-junction
photovoltaic cell under steady state illumination, the current density–voltage (J–V) characteristics can
be described by solving the one-dimensional steady-state continuity equation [18]:

J(V) = Jph − Jdark(V) (1)

where Jph represents the photogenerated current density, and Jdark is the junction current density
without illumination, which can be described as follows [18]:

Jdark(V) = J0[exp(qV/nkBT) − 1] (2)

where J0 is the reverse saturation current density, kB is Boltzmann constant, T is absolute temperature,
and n is the ideality factor. Jdark is determined by several mechanisms. For high-quality materials,
carrier recombination in the depletion region can be neglected. Thus, the ideality factor n is close to
unity [4,5]. Voc can be obtained from Equation (1) when J = 0 [1]:

Voc =
kBT

q
ln

(
Jsc

J0
+ 1

)
(3)

where Jsc is the short-circuit current density, and Jsc ≈ Jph. For simplicity, Jsc can be described as
follows [1]:

Jsc = q
∫
∞

Eg

Iph

dhν
d(hν) (4)
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where Iph is the initial photon flux, and Eg is the bandgap of the absorber material. Eg decreases with
the increase in temperature, which leads to a slight increase in Jsc with increasing T.

For a single-junction photovoltaic cell, J0 can be represented as follows [19]:

J0 = q
(

Dn

LnNA
+

Dp

LpND

)
ni

2 (5)

where ni is the intrinsic carrier density, and Dn and Dp are diffusion constants of minority carriers in p
and n regions, respectively. NA and ND are the densities of the acceptor and donor, respectively. Ln

and Lp respectively denote the diffusion lengths of minority carriers in p and n regions.
The solid-state PETE converter consists of a heavy doped p-type narrow bandgap semiconductor

as the absorber, a wide bandgap semiconductor as the barrier, and metal electrodes. Figure 1 shows the
band structure of the converter. From the perspective of thermionic emission, the absorber is treated
as a cathode with a barrier of VC, whereas the electrode is treated as an anode with a barrier of VA.
Eg1 and Eg2 are the bandgaps of the absorber and barrier layer, respectively. S1 and S2 are the interface
recombination velocity at the front and emission interfaces, respectively. d is the absorber thickness.
The carriers are generated in the absorber and diffused to the hetero-junction interface. The conduction
band offset (∆Ec) at the interface is considerably smaller than the valence band offset (∆Ev). In this
condition, only photo-generated electrons can overcome the barrier by thermionic emission, whereas
the transportation of photo-generated holes is blocked [20]. The barrier width is in the range of
10–100 nm to prevent electron diffusion and tunneling [21].
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Figure 1. Band schematic of the solid-state photon-enhanced thermionic emission (PETE) converter.

The J0 and Voc of the solid-state PETE converter are derived based on the one-dimensional
steady-state continuity equation. We assume that the voltage difference is mainly across the barrier
layer. Thus, the applied electron field inside the absorber is zero. The photo-generated carriers are



Energies 2020, 13, 1554 4 of 10

assumed to support the local charge neutrality approximation. In the steady state, the continuity
equation for photo-generated electrons is as follows [18]:

d2∆n(x)
dx2 −

∆n(x)
Ln2 +

G
Dn

= 0 (6)

where ∆n is the concentration of photo-generated electrons, and G is the photon generation function.
The boundary conditions for excess electrons are as follows [17]:

Dn
d∆n(x)

dx

∣∣∣∣∣∣
x=0

= ∆n(0)S1 (7)

−qDn
d∆n(x)

dx

∣∣∣∣∣∣
x=d

= q∆n(d)S2 + Jem − Jrev (8)

At the hetero-junction interface, the emission current from the absorber at a positive voltage V is
described as follows [22]:

Jem = qn

√
qkBT
2πmn

exp
(
−

∆Ec

kBT

)
, when V ≤ (VC −VA)/q. (9)

Jem = qn

√
qkBT
2πmn

exp
(
−

∆Ec + (VA + qV −VC)

kBT

)
, when V > (VC −VA)/q. (10)

Here, n is the total conduction band concentration, and mn is the electron effective mass. The reverse
current from the electrode to the absorber can be calculated as follows [22]:

Jrev = AT2exp
(
−

VC − qV
kBT

)
, when V ≤ (VC −VA)/q. (11)

Jrev = AT2exp
(
−

VA
kBT

)
, when V > (VC −VA)/q. (12)

Here, A is Richardson’s constant, and 120 A/cm2K2 is used in the calculation. The output current
of the solid-state PETE converter is given as follows:

JSPETE = Jem − Jrev. (13)

By solving the continuity equation with the boundary conditions derived above, the output
current can be obtained. The output current of the solid-state PETE converter can be rewritten as
Equation (1). When G is set to zero, the dark current of the solid-state PETE converter is expressed as
follows [23]:

Jdark(V) =
qDnneq

βLn

[
exp

(
qV
kBT

)
− 1

]
(14)

where

β =
qDnNc

LnAT2 exp
(∆Ec

kBT

)
+

1
a

[
cosh

(
d

Ln

)
+

LnS1

Dn
sinh

(
d

Ln

)]
a = sinh

(
d

Ln

)
+

LnS1

Dn
cosh

(
d

Ln

)
+

bLnS2

Dn

b = cosh
(

d
Ln

)
+

LnS1

Dn
sinh

(
d

Ln

)
.
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A comparison of Equations (14) and (2) demonstrates that J0 of the solid-state PETE converter
differs from that of photovoltaic cells, as expressed by the following:

J0 =
qDnneq

βLn
. (15)

The mechanism that determines Jsc of the solid-state PETE converter is the same as that of
photovoltaic cells. Hence, Jsc of the solid-state PETE converter can be calculated using Equation (4),
and Voc of the solid-state PETE converter can be calculated using Equations (3) and (15).

The conversion efficiency is computer as follows:

η =
JmVm

Psolar
(16)

where Psolar is the power received from the sun, and Jm and Vm are the optimum operating current and
voltage, respectively.

3. Results and Discussion

In this study, GaAs with a doping density of 1× 1019cm−3 was used as the absorber, and AlGaAs
was used as the barrier layer in the solid-state PETE converter [17]. The model described above was
implemented and solved numerically in MATLAB. For simplicity, diffusion lengths and diffusion
coefficients were assumed to be temperature-independent in the simulation, following the same
assumption as [11] and [24]. When simulating the performance of the solid-state PETE converter,
the absorber thickness and conduction band offset took the optimal values. The surface recombination
velocities of the front and emission interfaces were set to 103 cm/s, which can be achieved in a high-quality
heterostructure or a passivated surface [25,26]. For comparison, the temperature-dependent
performance of a GaAs photovoltaic cell was also calculated. The temperature dependence curves of
J0 for the solid-state PETE converter and photovoltaic cell were obtained using Equations (14)–(15)
and Equation (5), respectively. Combining Equations (3)–(5) and (15), the temperature dependence
of Voc was calculated. The conversion efficiencies were obtained using Equation (16) under different
temperatures and solar concentrations. For both the solid-state PETE converter and photovoltaic cells,
the temperature dependence of the bandgap of GaAs was considered. The calculations used the AM1.5
global solar spectrum.

Figure 2 shows the temperature dependence curve of J0 for the solid-state PETE converter with
the GaAs absorption layer and GaAs photovoltaic cell with different doping concentrations. J0 of
all devices increased exponentially with the increase in temperature. The solid-state PETE converter
achieved the minimum J0 in the temperature range of 300–600 K. At the same temperature, J0 of the
photovoltaic cell with high doping concentration was small, which is consistent with the previous
study [4]. This result is mainly due to the increase in doping concentration that causes a reduction
in the equilibrium carrier concentration in the material, which is beneficial for reducing J0 according
to Equation (5). Figure 2 demonstrates that J0 of the solid-state PETE converter was approximately
one order of magnitude smaller than that of the GaAs photovoltaic cell with a doping density of
1× 1019 cm−3. Given that the absorption material of the solid-state PETE converter had the same band
gap (GaAs) and doping density (1× 1019 cm−3), only the difference in their working mechanisms can
explain the difference in J0. In photovoltaic cells, the photo-generated carrier transport mainly involves
diffusion. Thus, the expression of J0 included only the diffusion parameters [1]. For the solid-state PETE
converter, the carriers generated in the absorber diffused to the hetero-junction interface. Given that the
barrier thickness was less than the mean free path of the carrier in the barrier material, photo-generated
carriers traversed over the barrier by thermionic emission, which is a ballistic transport process [17].
The carrier separation and extraction in the solid-state PETE converter occurred via both diffusion
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and ballistic transport. Hence, its J0 was determined by diffusion and thermal emission parameters,
as shown in Equations (14) and (15).
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Figure 2. Temperature dependence of J0 of the solid-state PETE converter with a GaAs absorption layer
and GaAs photovoltaic cells with different doping concentrations.

Heavily doped semiconductor bulk materials are unsuitable to make p–n homo-junction for
practical photovoltaic cells. Carrier transport in photovoltaic cells mainly occurs through diffusion.
With an increase in doping density, additional impurities and defects are introduced into semiconductor
bulk materials, which leads to a decrease in carrier mobility, diffusion coefficient, minority carrier
life, and diffusion length. These conditions affect the transport and collection of photo-generated
carriers and reduce their efficiency [27–29]. Therefore, the doping density of practical photovoltaic cells
is usually less than 1× 1018 cm−3. Increasing the doping density is ineffective in further improving
the performance of photovoltaic cells at high temperatures. Compared with the practical GaAs
photovoltaic cell with a doping density of 1× 1017 cm−3 [1,30], J0 of the solid-state PETE converter was
approximately three orders of magnitude lower, as shown in Figure 2.

The temperature dependence of Voc is determined by J0. For the device with low J0, the decrease
rate of Voc with temperature, that is, −dVoc/dT, was small. Figure 3 shows Voc of the solid-state PETE
converter with GaAs absorption layer and practical GaAs photovoltaic cell as a function of operating
temperature under different flux concentrations (i.e., the concentration ratios of the incident solar
radiation flux). At a flux concentration of 1 sun, Voc of the solid-state PETE converter decreased less
with the increase in temperature, compared with that of practical GaAs photovoltaic cell, and −dVoc/dT
of the solid-state PETE converter was approximately 70% that of the photovoltaic cell. Figure 3 shows
that Voc of the solid-state PETE converter was higher than that of photovoltaic cells, which is due to the
use of heavily doped material as absorber layer, which suppresses the equilibrium carrier concentration.
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layer and practical GaAs photovoltaic cell under different flux concentration levels.

Increasing the irradiance concentration increased Voc and decreased −dVoc/dT for photovoltaic
cells [31,32]. This trend was also valid for the solid-state PETE converter. Figure 3 shows that as the flux
concentration increased from 1 sun to 1000 sun, Voc at a certain temperature increased, and −dVoc/dT
decreased from 1.60 mV/K to 1.01 mV/K. Notably, Voc and −dVoc/dT of the photovoltaic cell at 1000 sun
were similar to those of the solid-state PETE converter at 1 sun. This result shows that by utilizing
the novel conversion mechanism of PETE effect, the performance of solar energy converters can be
effectively improved at high temperatures.

Since Jsc increased slightly with increasing temperature, the degradation of conversion efficiency
is mainly due to a decrease in Voc. The conversion efficiencies of the solid-state PETE converter with
GaAs absorption layer and practical GaAs photovoltaic cell as functions of temperature and incident
solar radiation concentration are shown in Figure 4. The efficiency decreased as temperature increased,
and increased as incident light intensity increased, which is consistent with the change trend of Voc

with temperature and flux concentration. Under the same temperature and concentration conditions,
the efficiency of the solid-state PETE converter with GaAs absorption layer was higher than that of
GaAs photovoltaic cell. The conversion efficiency of the solid-state PETE converter was 28% at 600 K
and a flux concentration of 1000.

Solid-state PETE converters are suitable for working conditions under high temperatures and
high light intensity. For concentrator solar systems, replacing photovoltaic cells with solid-state PETE
converters can achieve increased efficiency. For concentrator hybrid systems combining solar cells
and secondary thermal converters, solid-state PETE converters can function at high temperatures.
Thus, additional heat energy can be delivered to the thermal cycle, boosting the total efficiency.
For near-solar space missions, solar cells with improved performance at high temperatures are
desirable over techniques, such as off-pointing array, increasing reflection, and active cooling, to reduce
the temperature, but at the expense of losing total performance [2]. Harvesting solar energy via the
PETE effect, combined with the use of wide bandgap and heavily doped materials, is a feasible strategy
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to achieve such high-temperature solar cells. Hetero-junction materials such as GaAs/AlGaAs and
Si/diamond can be potential candidate materials.Energies 2020, 13, x FOR PEER REVIEW 3 of 10 
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4. Conclusions

An analytical model based on one-dimensional steady-state continuity equation is presented to
investigate the temperature-dependent performance of the solid-state PETE solar energy converter.
The treatment to derive J0 and Voc of the solid-state PETE converter in this study is similar to that
used in photovoltaic cells. The analysis results show that compared with the photovoltaic cells,
the performance of the solid-state PETE converter at elevated temperatures is remarkably improved,
due to its simultaneous use of diffusion and ballistic transport to harvest photo-generated electrons.
J0 of the solid-state PETE converter with GaAs absorption layer is approximately three orders of
magnitude lower than that of the practical GaAs photovoltaic cell. At 1 sun, −dVoc/dT of the solid-state
PETE converter is approximately 70% that of photovoltaic cell. As the flux concentration increases
from 1 sun to 1000 sun, Voc of the solid-state PETE converter at a certain temperatures increases,
and −dVoc/dT decreases from 1.60 mV/K to 1.01 mV/K. The results presented in this paper show the
feasibility of the solid-state PETE converter as a candidate device for concentrator solar systems and
solar array of near-solar space probes to further improve their performances at high temperatures.
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