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Abstract: The paper deals with the three-dimensional theoretical and numerical investigation of the
electrical performance of a Photovoltaic System (PV) with active fluid cooling (PVFC) in order to
increase its efficiency in converting solar radiation into electricity. The paper represents a refinement
of a previous study by the authors in which a one-dimensional theoretical model was presented to
evaluate the best compromise, in terms of fluid flow rate, of net power gain in a cooled PV system.
The PV system includes 20 modules cooled by a fluid circulating on the bottom, the piping network,
and the circulating pump. The fully coupled thermal and electrical model was developed in a
three-dimensional geometry and the results were discussed with respect to the one-dimensional
approximation and to experimental tests. Numerical simulations show that a competitive mechanism
between the power gain due to the cell temperature reduction and the power consumption of the
pump exists, and that a best compromise, in terms of fluid flow rate, can be found. The optimum
flow rate can be automatically calculated by using a semi-analytical approach in which irradiance
and ambient temperature of the site are known and the piping network losses are fully characterized.

Keywords: photovoltaic modules; thermal–electrical model; computational fluid dynamics (CFD);
solar energy; active cooling

1. Introduction

In order to improve the efficiency of photovoltaic (PV) cells, several research studies have recently
been carried out to investigate, both theoretically and experimentally, the possibility of increasing the
maximum power by reducing the cell temperature, thanks to the adoption of cooling systems [1–3].
In fact, the behavior of the PV efficiency can be confidently considered linear with respect to its
temperature [4–6] and, for crystalline silicon technology, efficiency variation coefficients with cell
temperatures range from −0.4%/◦C to −0.5%/◦C [1–6].

Typically, active and passive cooling systems [7] are adopted to reduce PV cell temperature,
and several designs have been proposed in literature [8–15]. The main advantage of active cooling
systems is a more efficient heat removal rate; for this reason, they are generally preferred to
passive systems, in which a cooling fluid circulates without needing additional power. In this case,
active cooling systems present an additional advantage related to the possibility of supplying an
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external thermal load, as in the case of the PV-T (Photovoltaic Thermal) or PV-SAHP (Photovoltaic
Solar Assisted Heat Pump) types [16–23]. The drawback of the additional power supply requested by
active cooling can be overcome by evaluating the optimum value of the flow rate of the cooling fluid
when irradiance, ambient temperature, and fluid losses are known. The authors proposed a theoretical
and numerical 1D thermal–electrical model [23–25], highlighting the possibility of finding the best
compromise between the electrical power gain due to the cell temperature reduction and the power
consumption of the circulating pump [24].

In the present work, the thermal model has been extended to a three-dimensional geometry and
thermo-fluid dynamic equations have been solved by means of a Computational Fluid Dynamic (CFD)
tool, fully coupled with the electrical model. The results have been compared with experimental
tests and with those obtained in the one-dimensional approximation, and comparisons have been
discussed in order to show the range of validity of the models. The algorithm is implemented in
the commercial software tool ANSYS/FLUENT, which offers the advantage of studying complicated
geometries, generating both structured and unstructured meshes, and of solving thermo-fluid dynamic
equations with customized source terms by means of a User-Defined Function (UDF), in which thermal
and electrical models have been fully coupled with the solver. In Section 2, a brief description of
the Photovoltaic System with active fluid cooling is provided, and references have been indicated
for further details. In Section 3, the three-dimensional CFD model is illustrated, including the
user-defined functions developed to fully couple the electrical and thermal models. Moreover,
the hydro-dynamic model to compute losses in the piping network is expressed in order to calculate
the power consumption of the circulating pump. Numerical results are presented and discussed
in Section 4, and comparisons with experimental tests and with the one-dimensional model are
carried out.

2. The Physical Model: The PVFC Module and the Case Study of the Hybrid
Photovoltaic-Thermal Plant

The system under investigation has been already described in previous works by the
authors [24,25]. In particular, in [25], the single photovoltaic system with active fluid cooling (PVFC)
was studied both theoretically and experimentally by using a one-dimensional thermal model. In the
following, a short description is reported and further details can be found in [25].

Regarding the cross-section of each PV module, the sandwich is composed of seven layers:
A polycarbonate (PC) front-sheet without glass, a first thermoplastic polyurethane (TPU) sheet, a thin
layer containing 40 series-connected monocrystalline silicon (m-Si) cells (4 columns of 10), a second
thermoplastic polyurethane sheet, an alveolar polycarbonate (PC) sheet, an air gap, and, finally,
an alveolar polycarbonate crossed by the coolant fluid. In Table 1, the thermal properties and thickness
are reported.

Table 1. Thermal properties and thickness of the photovoltaic system with active fluid cooling (PVFC)
module. More details can be found in [24].

k (W/m K) s (mm)

PC1 0.2 0.375
TPU1 0.2 1
TPU2 0.2 1.5

alveolar - 10
PC2 0.2

The layout of the PVFC plant, widely described in [24], is reported in Figure 1 and consists
of: Two PVFC strings, each composed of 10 modules (maximum power of 80 W at Standard Test
Conditions (STC) [26] and 40 cells/module) for a total peak power of 1.6 kW, a piping network, a fluid
tank (WT), and a circulation pump (P). The geometrical data of the piping network are reported in [24],
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where L1 represents the pipe length from the WT outlet to the inlet of the first PVFC module of the
bottom string; L2 is the pipe length from the PVFC module, mentioned above, to the first PVFC module
of the top string; L3 is the pipe length from the last module of the top string to the last module of the
bottom string; L4 is the total length of the alveolar-polycarbonate ducts, while the total height of the PV
module is 1.22 m; L5 is the pipe length from the last module of the bottom string to the WT; L6 is the
heat exchanger length inside the WT. In particular, in each module, the coolant fluid is a glycol/water
mixture (10%/90%) flowing into 60 alveolar polycarbonate ducts, each of them of L4 = 1.42 m (the
total number of ducts, Nd = 1200), while the length of the helicoidal coil heat exchanger (HX) inside
the tank is L6 = 8 m.

Figure 1. Layout of the PVFC plant, composed of 20 photovoltaic (PV) modules with a total peak
power of 1.6 kWp. The cold water inlet (blue pipe) and hot water outlet (red pipe) are reported.

3. The Three-Dimensional Thermal-Electric Fluid Dynamic Model

The investigation of the PVFC plant was carried out by means of a three-dimensional model,
where the thermal model of each single module was fully coupled with the electrical model, as the PV
electric efficiency is dependent on the spatial distribution of the cell temperature. For each module,
40 PV cells were considered, and an average cell temperature was consistently calculated by solving
the heat transfer equations with the surrounding ambient and with the coolant fluid. Piping network
losses were accounted for in order to calculate the net electric power gain. The assumptions made are
reported in the following.

About the thermal-fluid dynamic model:

• The heat transfer through the PV module is in steady-state conditions;
• the thermal conductivities of the layers are constant;
• the thermal contact resistances at the interfaces are negligible;
• the cell thickness is negligible;



Energies 2020, 13, 852 4 of 17

• the solar absorptivities for the thermoplastic polyurethane (TPU) and polycarbonate (PC) layers
are negligible;

• the working fluids are considered as incompressible.

About the hydro-dynamic model for the pressure losses:

• The total flow rate is uniformly distributed between the 20 PV-T modules;
• pipes are considered smooth and frictional losses are given by the Darcy equation, both for

laminar (friction factor given by the Darcy equation) and turbulent flows (friction factor given by
the Blasius expression).

Finally, about the electrical parameters:

• The electrical parameters, i.e., the series resistance, Rs, the shunt resistance, Rsh, the
spectral-response parameter, Kph, and the diode quality factor, m, were considered constant.

In the following, more details about the hypotheses and the geometries of the PV modules and of
the plant are given.

3.1. The PVFC Module: Structural, Thermal, and Electrical Model

Each module, as described in [25], was modeled considering seven layers, as reported in Figure 2.
The thermo-fluid dynamics of the PVFC module were investigated by solving continuity and energy
equations for the solid and continuity, momentum, and energy equations for the coolant fluid.
Each layer differs in thickness, density, thermal conductivity, and specific heat capacity according to
the geometries and properties given in [25]. In particular, the negligible m-Si cell thicknesses and
negligible absorption coefficients of the TPU and PC layers were considered. Moreover, radiative
thermal exchanges between the polycarbonate layers and the external environment were included.
Polycarbonate absorbance and emissivity are considered negligible in the visible spectrum, while, in
the infrared, their behaviors are totally different, as the surfaces have a high absorbance and high
emissivity: The PC layer absorbs the heat of the lower layers, which are conductive, and exchanges
heat with the atmosphere by radiation. The boundary thermal conditions (heat flux, temperature,
convection, radiative, and conductive transmission), absorbance, and transmittance coefficients are
considered according to [25], and inlet fluid conditions are imposed both in mass (kg/s) and in
temperature (K).

The alveolar polycarbonate sheet where the coolant flows is considered as a single channel instead
of 60 alveolar channels. This assumption is valid in the framework of the thermal–electrical model
and does not significantly affect the spatial distribution of the cell temperature. Instead, regarding
the pressure losses, all 60 of the alveolar polycarbonate ducts were accounted for, each of them of
L4 = 1.42 m. Moreover, the total flow rate is uniformly distributed between the 20 PV-T modules,
considering a balanced piping network characterized by one common inlet and one common outlet.
In PVFC plants with non-uniform flow rate distributions, the theoretical and numerical models can
still be applied by evaluating the cooling effects on each module.

The module was discretized by considering unstructured meshes for the m-Si cells and for
the cooling fluid and structured meshes for the other components of the module. In particular,
a grid sensitivity study was carried out to demonstrate grid-independent and grid-convergent results,
checking both solutions and residual values. In fact, in order to guarantee the solution accuracy,
numerical results obtained over a range of significantly different grid resolutions were obtained.
Relative errors of cell and fluid temperature fields and of integrated quantities such as average electric
efficiencies were calculated. The final grid selected (690,366 nodes and 408,960 elements) guarantees
the solution accuracy (maximum relative error of less than 2%). Figure 3 shows the scaled residuals [27]
of the continuity, momentum, and energy equations of a simulation when the steady-state solution is
reached for a case study during July in Catania (Southern Italy), with orientation SOUTH and tilt 33◦.



Energies 2020, 13, 852 5 of 17

(a)

(b)

(c)

Figure 2. (a) Sketch of the PVFC module (height of the module h = L4 = 1.42 m, i.e., the water
duct length; width of the water duct l = 0.6 m, height of the module s = 0.0363 m). (b) Layer of
40 series-connected m-Si solar cells with an anti-reflective coating. The PV cells are distributed over 4
columns and 10 rows for a total height of 1.22 m. (c) Particular alveolar polycarbonate ducts, each of
them of L4 = 1.42 m.

Regarding the modeling of the solar source, ANSYS/FLUENT allows one to choose between
different options by using the solar calculator function and selecting the geographical position (latitude,
longitude, and timezone) and the day of the year. In this paper, the solar ray tracing model [27] was
adopted by selecting the direct solar irradiation, which accounts for both infrared and visible band
radiation, and the diffuse solar component, which accounts for the hemispherical averaged spectrum.
The values for both type of irradiation are given according to the PVGIS database.

The thermal model was fully coupled with the electrical model according to the algorithm
proposed in [25] with the main difference that, in 3D simulations, cell temperature spatial distribution
is not averaged in the transverse direction. The source term for the energy equations of the
40 series-connected m-Si cells depends on the electrical performances of the PV cells, which, in turn,
are related to the cell temperature calculated by solving the heat transfer equations. By following
this approach, a rigorous calculation of the spatial distribution of the cell temperature is carried out,
considering the influence of the solar irradiance G and the ambient temperature Ta. Typically, simple
linear formulas are used to evaluate the cell temperature when irradiance and ambient temperature
are known and spatial distributions are neglected.



Energies 2020, 13, 852 6 of 17

0 50 100 150 200 250 300 350
iterations

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

re
si

du
al

s

Figure 3. Scaled residuals of continuity, momentum, and energy equations when v̇ = 30 L/h for an
average day of July in Catania (Southern Italy), with orientation SOUTH and tilt 33◦.

The model, inherently nonlinear, can be solved iteratively until the steady-state solution is
obtained. The PV module was modeled in a three-dimensional geometry (x, y, z), where z represents
the coordinate varying along the thickness of the module and (x, y) represent the coordinates of
the different layers. In particular, the electrical efficiency, η(Tc(x, y)), and the source term of the
energy equation of the m-Si cells, QC(x, y), are coupled as follows, considering that the fraction of the
irradiance η(Tc(x, y))G is converted into electricity:

QC(x, y) =
[(

τPC1 τTPU1 τARC
)
− η(Tc(x, y))

]
G

sc
, (1)

where τPC1 τTPU1 τARC is the product of the transmissivity of the first three layers (first polycarbonate
sheet τPC1 = 0.93, first thermoplastic polyurethane sheet τTPU1 = 0.90, anti-reflective coating
τARC = 0.85),sc is the cell thickness and η(x, y) represents the cell performance, as follows:

η =
Pmax(Tc(x, y))

GA
. (2)

An UDF was developed to calculate the internal heat generation of the of the m-Si cells and the
PV efficiency, and the external routine was fully coupled with the CFD solver. The electrical efficiency
was locally considered linearly dependent with respect to its temperature. For each cell, an average
(spatial) temperature was calculated in order to evaluate the electrical efficiency by using the Shockley
one-diode model, in which it depends on the solar irradiance G and the ambient temperature Ta.
The current I and the voltage V are related by the following equation [28]:

I = Iph − I0

(
e

qVD
mKT − 1

)
− V + IRs

Rsh
, (3)

where Iph = KphGA is the photogenerated current, ID = I0

(
e

qVD
mKTc − 1

)
the diode current, VD the

diode bias, I0 the saturation current, Rs the series resistance, Rsh the shunt resistance, m the diode
quality factor (between 1 and 2), and Tc the effective temperature of the cells. In this case, the slight
dependence of electrical parameters on the temperature was neglected [29,30].
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The thermal model, implemented in ANSYS/FLUENT, calculates the spatial distribution of
the temperature of each cell, while the electrical model, by using the UDF, calculates the electrical
performance of the cell (i.e., current I, voltage V, and maximum power of each cell), including the
efficiency of each PV cell. Due to the non-linearity of the model, the numerical procedure to evaluate
electric performance, cell temperature, and energy source terms is iterative. When the steady-state
solution is obtained, the model can calculate all of the hydraulic losses involved in the piping network in
order to evaluate the power consumption of the circulating pump. The competitive mechanism related
to these opposite effects is characterized by a maximum value of the net power gain, i.e., the power
gain due to the cell temperature reduction less the power absorbed by the circulating pump, and can
be reached at the best compromise of the fluid flow rate. Further details of the geometry, properties,
and of the hydro-dynamic model are given in the next section and in [24].

3.2. Pressure Losses in the Piping Network

The power consumption of the circulating pump is strictly related to the design of the piping
network, including all of the components producing local flow losses (valves, bends, elbows, inlets,
exits, tees, etc.). The present study was applied to the layout represented in Figure 1, but it can be
extended to any plant when a detailed analysis of the channel geometry and a complete list of elements
producing local pressure losses is carried out. In this case, the circulating pump can be selected and
the pressure drop can be analytically found as function of the flow rate [31].

The power absorbed from the circulation pump Pcp and partially transferred to the fluid is:

Pcp =
1

ηP
ρgv̇4Htot, (4)

where ρ is the fluid density, g is gravitational acceleration, v̇ the volume flow rate, ηP the pump
efficiency, and4Htot the total head losses (in meters of fluid) given by the sum of the local flow losses,
4HL, the frictional losses,4HR, and the static height of the system, H, as follows:

4Htot = 4HR +4HL + H (5)

The local flow losses 4HL are experimentally obtained by the manufacturers of the
components [32–36], and are given by the following equation:

4HL = zL
w2

2g
(6)

where zL is the (local) loss coefficient and w is the mean fluid velocity.
The frictional losses4HR are related to the roughness of the inner surface of the pipe and can be

computed by resorting to the Darcy equation, both for laminar and turbulent flow:

4HR = f
L
Di

w2

2g
(7)

where L is the total length of the pipe, Di is the inner diameter of the pipe, and f is the Darcy friction
coefficient, which depends mainly on the Reynolds number Re = wLν−1. In fact, in laminar flows
(Re < 2300) for a circular pipe, the friction factor f is related to the Reynolds number through the
Darcy expression ( f = 64Re−1), while for turbulent flows (Re > 4000) and for smooth pipes, f is given
by the Blasius expression ( f = 0.3164Re−0.25) [32]. Typically, the pressure drop of the exchanger is
given by the manufacturers, but can also be evaluated when the material and geometry is known.
In this work, a commercial helical HX was properly selected for the problem under investigation,
and the pressure drop, given by the manufacturer, was considered.
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3.3. The Competitive Mechanism and the Optimum Flow Rate

Flow rate affects both the power absorbed from the circulation pump Pcp and the power gained
due to the reduction of the cell temperature, PG, given by

PG = PR − PNC, (8)

where PR is the power produced in real conditions when the cooling is active and PNC is the power
without active cooling. Both the power Pcp and the power gain PG increase with the flow rate, and a
competitive mechanism arises for the net power gain NPG = PG− Pcp. In this framework, the flow
rate corresponding to the maximum value of the net power gain can be calculated by recurring to a
semi-analytical approach.

In fact, when the piping network is fully characterized, the electrical power absorbed by the
circulating pump, Pcp, can be expressed in analytical form as a function of the flow rate v̇ as follows:

Pcp =
N

∑
k=1

ck v̇ek , (9)

where N is the number of coefficients in the formula of Pcp, and ck are the coefficients which depend
on the geometry of the circulation loop system and the physical properties of the coolant (details are
given in [24]).

The power gain PG is strictly related to the spatial distribution of the cell temperature, which can
be obtained by solving the thermo-fluid dynamic equations of each PVFC module of the plant. In fact,
the principal parameter influencing the electrical efficiency is the cell temperature, which depends
on the irradiance G, the ambient temperature Ta, and the flow rate v̇. When the irradiance and the
ambient temperature are known, the net power gain can be calculated as a function of the flow rate,
suggesting the activation of the cooling system if positive. Moreover, the maximum gain during the
average day of a month can be calculated in a fixed site from statistical data (i.e., PVGIS database) and
can be obtained for different values of the flow rate. A polynomial expression of the maximum ideal
gain as a function of the flow rate can be obtained as follows:

PG =
NPG

∑
k=0

ak v̇k, (10)

where NPG is the polynomial degree which gives the best approximation of the analytical function PG,
and ak are the coefficients which multiply the flow rate v̇. Finally, by combining Equations (8) and (10),
the analytical expression of the net power gain NPG can be obtained:

NPG = PG− Pcp =
NPG

∑
k=0

ak v̇k −
N=4

∑
k=1

ck v̇ek , (11)

and the maximum value of the NPG can be calculated. The optimum flow rate obtained by using
this approach is based on the available statistical data of the time evolution of irradiance and ambient
temperature of a site. For each average day of the month, the maximum value of the net power gain
can be evaluated at different flow rates and the maximum value can be obtained. In the next Section,
some results are reported, highlighting both the opportunity of activating the cooling system and
the determination of the maximum value of the net power gain. Finally, a discussion of the real-time
evaluation of NPG is carried out by recurring to irradiance and ambient temperature measurements.

4. Numerical Results

In this section, a set of simulations were performed in order to investigate the behavior of the
PVFC plant described in the previous sections and represented in Figure 1. The PV modules were
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modeled by using ANSYS/FLUENT according to Sections 2 and 3 and to the geometry, the electrical
characteristics, and the thermal properties given in [24,25]. In particular, 40 solar cells are placed in
ten rows made of four cells per row and are connected in series (Figure 2). The coolant flows into
the duct and into the piping network with the hypothesis of laminar flow inside the PVFC modules
and turbulent flow from the fluid tank to the inlet of the PVFC modules and from the outlet of the
PVFC modules to the fluid tank. The simulations were performed during an average day of January
and July in Catania (Southern Italy), with orientation SOUTH and tilt 33◦ by using statistical average
climate data and with different flow rates (in the range 0–1000 L/h). The results, obtained with the
three-dimensional model presented in this work, were compared with the one-dimensional model
in [24,25] and with experimental values. Figure 4 shows the cell temperature of a single module
obtained in steady-state conditions for v̇ = 0 and 1000 L/h in Catania (July). Active cooling drastically
reducees the cell temperature by presenting a two-dimensional spatial distribution which affects the
electrical efficiency in a sort of cooling thermal mismatch. In particular, Figures 5–7 show the spatial
distribution of the cell temperature and of the electrical performance obtained for three different values
of v̇ = 0, 600 and 1000 L/h. The results show the effectiveness of the active cooling in improving the
electrical performance by reducing the cell temperature. In order to evaluate the energy source term
for the thermo-fluid dynamic equations, the average cell temperatures and electrical performance were
calculated for each cell in the ANSYS/FLUENT user-defined functions, and the spatial distribution of
the source term was self-consistently evaluated according to Equation (1).

Comparisons of the results obtained by solving the three-dimensional model with the
one-dimensional model presented in [25] and with outdoor experimental tests are reported in
Figures 8–11. In particular, outdoor experimental tests were carried out in Turin (Northern Italy)
in October. In these tests, after an accurate cleaning of the PV module to avoid the dirt and the
dust, the thermal equilibrium condition was reached for some minutes with constant irradiance,
ambient temperature, and wind speed. The experimental electrical characteristics were obtained
by the automatic data acquisition system described in [25], with uncertainties of measurement of
±1%,±0.1%, and ±1% in terms of current, voltage, and power, respectively. In particular, 1D and 3D
numerical results were compared with experimental steady-state test conditions when the cooling
was active (flow rates of 30 and 52 L/h for each module) and at G = 1023 W m−2, Ta = 287.45 K,
and G = 700 W m−2, Ta = 288.15 K. In both conditions, the measured water temperature Tin = 294.45 K.
Figures 8 and 9 show the I-V and P-V curves, respectively. From the results, the agreement with the
experimental values of the 3D model is improved with respect to the 1D model. The agreement is
mainly related to the more accurate evaluation of the spatial distribution of the cell temperature. In the
1D model, a single average column constituted by ten rows, each of them representing four PV cells,
is considered, and the thermal gradient on the transverse direction is neglected. On the other hand, in
the 3D model, the complete 3D cell temperature field is considered and lower cell temperatures can be
found, as confirmed in Figure 10.

The cell temperature profiles obtained for v̇ = 200 and 1000 L/h by solving 1D and 3D numerical
models are in good agreement, especially for higher flow rates and, in particular, with the profile in
the middle axis (y = Ly/2). The boundary effects and the spatial distribution of the cell temperature
produce a thermal mismatch between the cells in the same module. In fact, the one-dimensional model
does not take into account the y-dependence of the cell temperature and overestimates its value of
external columns, as confirmed by the measurements reported in Figures 8 and 9.

Figure 11 shows the spatial distribution of the cooling fluid temperature in the case of v̇ = 600 L/h
in Catania (in July). The results of the three-dimensional model are reported at different z in order to
show the thermal gradients inside the ducts, and are compared with the temperature profile obtained
with the one-dimensional model reported in [25]. The agreement between the results obtained by
solving the 1D and 3D numerical models for the case v̇ = 600 L/h is good.

The improvement of the energy production of a PVFC system with active cooling was investigated
in different conditions [25]. The difference between the no-cooling PV system and PVFC system
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represents the power gain PG. When the cooling is active, the pump consumption can be calculated
analytically by recurring to Equation (9), where the exponents ek depend on the piping network
under investigation (in this work, the system described in [24] was considered, and eks are:
e1 = 1, e2 = 2, e3 = 2.75, and e4 = 3). When the power absorbed by the circulating pump is
known, the model determines at what time the cooling system must be switched on and off, and the
net power gain, given by Equation (11), can be calculated.

(a)

(b)

Figure 4. Spatial distribution of the cell temperature when v̇ = 0 (a) and 1000 L/h (b). Simulations were
performed during an average day of July in Catania (Southern Italy), with orientation SOUTH and
tilt 33◦. z− and y−axes are swapped in CFD simulations.
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Figure 5. Spatial distribution of (a) the cell temperature, Tc, and of (b) the electrical performance, η, for
v̇ = 0 L/h.
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Figure 6. Spatial distribution of (a) the cell temperature, Tc, and of (b) the electrical performance, η, for
v̇ = 600 L/h.
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Figure 7. Spatial distribution of (a) the cell temperature, Tc, and of (b) the electrical performance, η, for
v̇ = 1000 L/h.
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Figure 8. Electrical characteristics of a single PV module obtained experimentally (black line) in Turin
(Northern Italy) and by solving the one- (dashed red line) and the three-dimensional (dotted blue
line) models when the cooling is active (flow rate of 30 L/h for each module) at G = 1023 W m−2,
Ta = 287.45 K, and inlet water temperature Tin = 294.45 K.
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Figure 9. Electrical power of a PV module obtained experimentally (black lines) in Turin (Northern
Italy) and by solving the one- (dashed red lines) and the three-dimensional (dotted blue lines) models
when the cooling is active (in (a) Flow rate of 30 L/h, G = 1023 W m−2, Ta = 287.45 K; in (b) Flow
rate of 52 L/h, G = 700 W m−2, Ta = 288.15 K). In both conditions, the measured water temperature
Tin = 294.45 K.
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Figure 10. Spatial distribution of the cell temperature for (a) v̇ = 200 and (b) 1000 L/h. Cell temperatures
obtained with the three-dimensional model at different y were compared with the cell temperature
profile obtained with the one-dimensional model (dashed line). Simulations were performed using an
average day of July in Catania (Southern Italy), with orientation SOUTH and tilt 33◦.
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Figure 11. Spatial distribution of the cooling fluid temperature for v̇ = 600 L/h. In (a), temperatures of
the three-dimensional model at different z and at y = Ly/2 are compared with the temperature profile
obtained with the one-dimensional model (dashed line). In (b), the (x, y) distribution of the cooling
fluid temperature in z = zcell − 0.5scell is reported. Simulations were performed during an average day
of July in Catania (Southern Italy), with orientation SOUTH and tilt 33◦.

The net power gain depends on the power consumption that, for the case considered here, ranges
between 65 W for 600 l/h to 130 W at 1000 L/h [24]. By using a statistical approach for climate
data (i.e., PVGIS), an optimum coolant flow rate can be estimated for every month by calculating the
maximum of the net power gain NPG = 4P− Pp, obtained by combining Equations (8) and (10).
Figure 12 shows that there is an optimal value of coolant flow rate for the NPG, which represents the
best compromise inside the competitive mechanism between the pump consumption and the power
gain due to the cell temperature reduction. The results obtained in Catania city show that, in July,
the optimum flow rate is reached at around 400 L/h (20 L/h for each module), while it is reached at
around 200 L/h in January due to the lower ambient temperature.

In a real case, the data of the average day can be considered only to evaluate the profitability
of installing an active cooling system. Climate conditions can be strongly variable over a single
day, and the activation of the cooling system must be evaluated considering irradiance and ambient
temperature on the PV generator site. Simulations can be performed to obtain a map where, starting
from the knowledge of irradiance G and ambient temperature Ta, the convenience of activating the
cooling system in real-time conditions can be deduced [24].
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Figure 12. Net Power Gain vs. coolant flow rate in January (a) and July (b) for Catania city.

5. Conclusions

5.1. Summary

In this work, a three-dimensional theoretical and numerical investigation of the electrical
performance of a photovoltaic system with active cooling was carried out. Starting from results
obtained in previous works [24,25] by using a one-dimensional thermal–electrical model, the fully
coupled 3D thermal and electrical model shows that a competitive mechanism exists between the
power gain due to the reduction of the cell temperature and the power absorbed by the circulating
pump; a best compromise, in terms of fluid flow rate, can be found. The optimum flow rate was
calculated by using a semi-analytical approach, in which irradiance and ambient temperature of the
site are known and the piping network losses are fully characterized. Comparisons between results
obtained by the one- and three-dimensional models and with experimental tests show the effectiveness
and the limits of the one-dimensional model and the advantages of using the three-dimensional model
to investigate the effect of the spatial cell temperature distribution in a PV module in order to evaluate
thermal mismatch effects.

5.2. Future Works

Finally, as a future development, the numerical model can be adopted to evaluate the opportunity
of activating the cooling system by also using data acquisition and elaboration systems in order
to achieve a higher electrical efficiency. Moreover, the effects of the thermal recovery of the PVFC
generator can be included.
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