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Abstract: The paper introduces the artificial intelligence (AI) approach for modeling fluidized
adsorption beds. The idea of fluidized bed application allows a significantly increased heat transfer
coefficient between adsorption bed and the surface of a heat exchanger, improving the performance
of adsorption cooling and desalination systems. The Long Short-Term Memory (LSTM) network
algorithm was used, classified as a deep learning method, to predict the vapor mass quantity in the
adsorption bed. The research used an LSTM network with two hidden layers. The network used in
the study is composed of seven inputs (absolute pressures in the adsorption chamber and evaporator,
the temperatures in adsorption chamber and evaporator, relative pressure, the temperatures in the
center of adsorption bed and 25 mm from the bed center, the kind of the solids mixture, the percentage
value of the addition) and one output (mass of the sorption bed). The paper presents numerical
research concerning mass prediction with the algorithm mentioned above for three sorbents in fixed
ad fluidized beds. The results obtained by the developed algorithm of the LSTM network and the
experimental tests are in good agreement of the matching the results above 0.95.

Keywords: sorption processes; deep learning; neural networks; Long Short-Term Memory (LSTM)

1. Introduction

The process when chemical compounds are bound to a solid phase is generally known as sorption.
Adsorption occurs when adsorption of a substance takes place at the surface, while absorption occurs
when the substance is absorbed in the entire volume of the solid phase. These processes can apply to
volatile substances and particles dissolved in a liquid medium associated with the solid phase particles.
Molecules and atoms can attach to surfaces in two ways. In the process of physical adsorption process
between the adsorbate and the adsorbent, there are van der Waals interactions. In the process of
chemical adsorption, molecules or atoms join with the surface to form chemical bonds.

The adsorption chillers [1] (Figure 1) are quiet, non-corrosive, reliable, environmentally friendly,
and economical in operation appliances. They are consist of an evaporator, a condenser, separating valves,
and a sorption bed. In some solutions, more than one sorption bed may be used. Adsorption chillers
are capable of utilizing low-grade waste heat and renewable heat (e.g., solar energy) to produce cool
and/or desalinated water. The adsorption chiller with silica gel-water, powered by a waste heat source,
has been successfully commercialized in Japan [2]. Waste heat in the industry is rarely used and is
currently usually discharged into the environment. The article [2] presents a three-stage adsorption
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chiller and computer program to simulate the cycle to predict its operation. Most often, in scientific
studies, sorption processes are predicted using the nonlinear autoregressive network with exogenous
inputs (NARX) [2–4] or feed forward neural network (FFNN) [3].
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Neural networks (NNs) are used to predict various dependencies, among others, to predict the
traffic volume [5], the efficiency and generator power of a supercritical coal-fired power plant [6,7],
the hydrogen concentration in the syngas [8], in order to optimize a heat exchanger and adsorption
chillers [8–10]. They come in many variants, feed-forward NN [7,11] fuzzy NN [10,12], recurrent NN
(RNN) [13], and hybrid NN [14]. Recurrent Neural Networks (RNNs) by their chain-like structure
and internal memory with loops are widely used. Recently, the deep learning model, such as RNNs,
has been increasingly used [15]. The disadvantage of RNN is the vanishing gradient problem,
which prevents them from modeling time series with long-term relationships such as wind speed and
wind direction [16]. There have been several attempts to overcome the difficulty of training RNNs over
the years. These difficulties were successfully addressed by the Long Short-Term Memory networks
(LSTMs) [17], a type of RNN capable of learning long-term dependencies.

Long Short-Term Memory (LSTM) as a deep learning method can process sequential data [15]
and is applied in many real-world problems, such as image captioning [18], music composition [19],
predicting for COVID-19 [20], speech recognition [21], and human trajectory prediction in crowded
places [22]. The papers [23,24] show algorithms by which there is the time at the input of neural networks
and the data entered into the network are given in chronological order. In the presented article, no time
variable was given at the input of the network. In the last few years, LSTM has gained popularity due to
its ability to model long-term dependencies [25,26]. The long-term dependencies are typically learned
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from chronologically arranged input data, considering only forward dependencies, while dependencies
learned from randomly fed inputs data have never been explored. NARX, FFNN, and LSTM are neural
networks mainly dedicated to modeling time series cases. In this study, LSTM was used, which turned
out to be one of the best and easy to interpret neural networks suitable for time-series problems.

The architecture of the LSTM-based model sought to be capable of describing the dynamics
of sorption processes. Since most of the newly proposed LSTM-based prediction models are of one
hidden-layer shallow architecture [27–29], their performance is poorer than those with several hidden
layers models [30,31].

All time-series sets of data ought to be utilized during prediction by an LSTM model. Usually,
the model’s dataset is chronologically arranged from time epoch t−1 to t [32]. However, this may lead
to filtering out, or ineffectively passing through the network structure of useful information. Therefore,
it may be a good idea to consider randomizing data. Another reason for the sampling of data into
our study is the periodicity of sorption cycles. Analyzing time-series data periodicity, especially in
recurring patterns, will enhance the predictive performance from both forward and backward temporal
perspectives [33]. However, based on our literature review, the dataset fed to LSTM is chronologically
arranged, and the network itself uses forward and/or backward data prediction dependencies. The use
of chronological data in the LSTM network may cause the network to start learning training data and
incorrectly predict data, which is why it was decided that data would be entered into the network
randomly within the research.

Since the literature review has already reported the advantages of the LSTM approach over other
networks such as FFNN or NARX [34–36], the purpose of the paper is to use the LSTM network in
the novel field of application, i.e., for adsorption processes in innovative fluidized adsorption beds.
This work presents numerical research results related to predicting the adsorption bed mass using the
Long Short-Term Memory. Therefore, the considered issue corresponds to the innovative concept of
replacing the fixed adsorption beds in conventional adsorption chillers with fluidized beds described
in detail in [37,38].

Adsorption chillers are promising appliances allowing to use of low-grade thermal energy [39–41],
including renewable sources of energy such as solar heat, wastewater, underground resources, and waste
heat, instead of high valued energy sources, e.g., electricity and fossil fuels-driven appliances [42–44].

The idea of fluidized bed application [45–47] significantly increases the heat transfer coefficient
between the adsorption bed and the surface of a heat exchanger and the bed conductance of fluidized bed
adsorption chillers, improving the performance of adsorption cooling and desalination systems [48–50].
Moreover, the set of experimental data used is unique because the advanced test stand was utilized,
which allows for the fluidized state implementation into the adsorption bed under lowered pressure
conditions, even up to 1500 Pa.

The present work is the first in the literature, dealing with the deep learning method, such as
LSTM for modeling fluidized and fixed adsorption beds to the best of our knowledge. The data used in
the deep learning network was recorded within the experimental research related to sorption processes.
In the LSTM, the input dataset has been given in random order rather than in chronological order,
and the network itself uses forward dependencies. This paper deals with an innovative approach
consisting of a fluidized bed application. Such an idea allows for improving heat and mass transfer
processes, with helps increase adsorption chiller’ performance.

The second chapter contains a description of the test stand and research equipment,
experimental research results, and the discussion on the algorithms used during the numerical
research. The third section depicts the LSTM network hyperparameters and the structure of the LSTM
network inputs and outputs as well as the results and their discussion. The work is finalized with a
conclusion and proposal for further research.
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2. Problem Formulation and Solving

2.1. Experimental Test

The data needed to predict the adsorption bed’s mass comes from the previously conducted
experimental studies carried out on the innovative test stand.

The test stand (Figure 2) consists of an evaporator, adsorption chamber, vacuum pump, three valves
(V1, V2, V3), and sensors: P1—absolute pressure sensor in the adsorption chamber, P2—absolute
pressure sensor in the evaporator, P3—relative pressure sensor, T1—temperature sensor in the
adsorption chamber, T2—temperature sensor in the evaporator, T3—temperature sensor in the
adsorption bed (bed center), T4—temperature sensor in the adsorption bed (25 mm from the bed center).
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Figure 2. The testing stand and diagram of the test stand.

The first stage of work on the stand is to obtain the saturation pressure in the evaporator (P2) in
the temperature T2. After obtaining the appropriate pressure for the evaporator (P2) and the chamber
(P1), the water begins to boil, and the steam is released through the open valve (V3) to the sorption
bed, where the adsorption process takes place. The changes taking place in the bed are monitored
using temperature sensors T3, T4, and the relative pressure sensor P3 and mass sensors measuring the
sorption bed’s weight. In the test process, assumptions were made for the valve opening/closing time
(V3), according to Table 1. The table also shows the initial test conditions. Valves V1 and V2 are used to
maintain the appropriate pressure difference in the evaporator and the adsorption chamber to keep the
adsorbent’s fluidized and fixed beds.

Table 1. Initial research conditions.

No. Type of
Material

Additive to
the Mixture t0 [s] 1 tz [s] 2 P1 [bar] 3 P2 [bar] 4 State Mass of Sorbent

in the Bed [g]

1 100%SG 5 - 10 150 13 23 F 7 55
2 100%SG 5 - 10 150 21 23 S 8 55
3 95%SG 5 +5%Al 6 10 150 13 23 F 7 55
4 95%SG 5 +5%Al 6 10 150 21 23 S 8 55
5 85%SG 5 +15%Al 6 10 150 13 23 F 7 55
6 85%SG 5 +15%Al 6 10 150 21 23 S 8 55

1 the opening time of valve V3, 2 stabilizing time of conditions in the chamber (valve V3 state—closed), 3 pressure in
the chamber, 4 pressure in the evaporator, 5 silica gel, 6 aluminum, 7 fluidized state, 8 stationary state.
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Commercial silica gel from Fuji Silysia Chemical Ltd. (Greenville, USA) was employed for the research.
Using the Analysette 3 Spartan shaker (FRITSCH GmbH, Idar-Oberstein, Germany), the material was
separated to obtain granulation 250–300 µm. In the present study, aluminum (Al, granulation 45–450 µm)
particles were used as an additive to improve the thermophysical properties of a silica gel (SG)
adsorption bed, due to high thermal conductivity [51].

The exemplary results of the experiment are shown in Figure 3. They concern the tests of the
85% SG + 15%Al mixture for the stationary state. In this test and the other test variants (Table 1),
the valve V3 was open for 10 s. The figure below shows ten consecutive opening and closing cycles of
the valve V3.
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Based on Table 1, experimental studies were performed, and the data from these experiments
were used as inputs (P1, P2, P3, T3, T4, type of mixture, the percentage value of the additive) and
outputs (sorption bed mass) of the LSTM network. Exemplary data that is entered into the LSTM
network is shown in Figure 3; six such studies were performed as shown in Table 1. The test results
from the six experiments were fed into the LSTM network as outlined above.

2.2. Recurrent Neural Network (RNN)

A recurrent Neural Network is a deep learning model consisting of neurons. It is mainly useful
when considering sequence data, as each neuron can use its internal memory to store information
about the previous input. This action resembles a loop (Figure 4) in which the output of a neuron at
one specific stage is provided to the next neuron as an input. The RNN considers two inputs; the first
is the current input, and the second is the previous computation [32]. RNNs contain an input layer,
hidden layers, and; an output layer as with other neural networks.

All recurrent neural networks have the form of a chain of repeating modules of the neural
network. In standard RNNs, this repeating module has a straightforward structure, such as a single
tanh (hyperbolic tangent) layer (Figure 5).
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2.3. Long Short-Term Memory (LSTM)

Long Short-Term Memory networks (LSTMs) are a special kind of RNN, capable of learning
long-term dependencies. They were introduced by Hochreiter and Schmidhuber in 1997 [17] and
then refined and popularized by other researchers [52–54]. LSTMs have a chain-like structure show in
Figure 6; the repeating module has a structure shown in Figure 7 (where tanh-hyperbolic tangent).
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In order to implement the LSTM recurrent network, first, the LSTM cell should be implemented.
The LSTM cell has three gates and two internal states, which should be determined to calculate the
current output and current cell state. We distinguish the following LSTM cell gateways:

• forget gate ft –filters information from the input and previous output and decides which information
to remember or forget and discard,

• input gate it –controls the flow of activation to enter the cell,
• output gate ot –controls the output flow of cell activation.

In addition to these three gates, the LSTM cell contains a cell update usually activated by the
tanh function.

Three variables fall into each LSTM cell:

• input xt,
• previous output ht−1

• cell state Ct−1

Calculations for the LSTM cell in its individual layers can be described as follows.

• the forget gate ft (sigmoid layer):

ft = σ
(
W f ◦ [ht−1, xt] + b f

)
(1)

• the input gate it (sigmoid layer):

it = σ(Wi ◦ [ht−1, xt] + bi) (2)
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• the cell state Ct:
ĉt = tanh(Wc ◦ [ht−1, xt] + bc) (3)

Ct = ft·Ct−1 + it·ĉt (4)

• the output gate ot (sigmoid layer):

ot = σ(Wo ◦ [ht−1, xt] + bo) (5)

where: ĉt—the cell update; Wf, Wi, Wc, Wo—matrices of weights; bf, bi, bc, bo—bias vector.

The bias vector is specified as a numeric array. They are learnable parameters. When training the
network, the biases vector in the first iteration is refilled with zeros.

The matrices of weights are specified as a numeric array, they are parameters that can be learned.
The initial value of the weights in the algorithm is computed with the Glorot initializer [55] (also known
as Xavier initializer). The Glorot initializer independently samples from a uniform distribution with zero
mean and variance 2/(numIn + numOut) where numIn—number of inputs in i-th layer, numOut—number
of outputs i-th layer.

The final stage of the calculations in the LSTM cell is defining the current output ht. The current
output is calculated with the multiplication operation between the output gate layer and tanh layer of
the current cell state Ct:

ht = ot·tanh(Ct) (6)

The current output ht passes through the network as the previous state for the next LSTM cell or
as the input for the neural network output layer.

The structure of the LSTM network is shown in Figure 8. The same network settings were adopted
in all studies. Hyperparameters (Table 2) were selected on the basis of a series of studies not presented
in this article. From the LSTM network tests carried out earlier, the hyperparameters’ values were
selected based on the best fit. Every 30 epochs (the epoch is the full passage of the training algorithm
through the entire training set) the learning coefficient changed its value according to the equation:
ilr = 0.2 * lr (lr—current value of the learning coefficient).
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The network input layer comprises the following inputs: P1—absolute pressure in the adsorption
chamber, P2—absolute pressure in the evaporator, P3—relative pressure, T3—temperature in the
adsorption bed (bed center), T4—the temperature in the adsorption bed (25 mm from the bed center),
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type of the mixture, and the percentage value of the addition. The mass of the sorption bed constitutes
the output of the neural network.

Table 2. The values of the hyperparameters for the LSTM.

Hyperparameter Value

Number of epochs 200
Learning rate 0.005

Number of LSTM layers 2
Number of cells in layer 1 210
Number of cells in layer 2 190

Drop out layer 0.05

3. Results of Numerical Calculations

By adopting the assumptions, formulations, and experimental research results presented in
the previous chapters, the LSTM network algorithm and a computer program were developed,
which enabled predicting the sorption bed’s mass during the sorption process. The experimental test
results for the first ten valve V3 opening cycles (6 tests, see Table 1) have been normalized to a range of
0 to 100 and divided into three parts. The training data is presented to the network during the training
stage. Validation data is exploited to improve learning and possibly to stop training. Finally, the test
data do not affect training and validation, and thus, provide an independent measurement of network
performance after training. These data were randomized without duplication as follows:

(a) First numerical research (60-20-20):

• training data—60% of all data,
• validation data—20% of all data,
• test data—20% of all data,

(b) Second numerical research (70-15-15):

• training data—70% of all data,
• validation data—15% of all data,
• test data—15% of all data,

(c) Third numerical research (80-10-10):

• training data—80% of all data,
• validation data—10% of all data,
• test data—10% of all data.

Figures 9–11 show test data as the trend line (linear fit) for all studies and the 95% prediction
interval of LSTM network results.

The first analysis of the prediction of mass in the sorption bed using the LSTM network concerned
the division of data in the ratio of 60-20-20, the results of this study are shown in Figure 9 and Table 3.

Table 3. Coefficient of determination R2 for the Linear Fit (60-20-20).

R2

All Data 100%SG
(F)

100%SG
(S)

95%SG
+5%Al (F)

95%SG
+5%Al (S)

85%SG
+15%Al (F)

85%SG
+15%Al (S)

0.9515 0.8934 0.9218 0.9891 0.9732 0.9848 0.9505
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Figure 9 shows the LSTM network operation results compared to the values obtained during
the experiment. The LSTM network predicts the worst results for pure silica gel (100% SG) in a
fluidized state.

Table 3 shows the fit for all data and individual mixture. The coefficient of determination for all
data is 0.9515. The LSTM network predicts the worst values for pure silica gel (100% SG). In the case of
fluidization, the coefficient of determination is 0.8934, and for the fixed bed, it is 0.9218, which may be
the reason for the low repeatability of the cycles during the experiment. The network achieves the best
match for the mixture 95% SG + 5%Al, where the coefficient of determination for fluidized and fixed
bed was equal to 0.989, and 0.973, respectively.

The second analysis of mass prediction in the sorption bed using the LSTM network concerned the
data division in the ratio of 70-15-15. The results of this study are presented in Figure 10 and Table 4.

Table 4. Coefficient of determination R2 for the Linear Fit (70-15-15).

R2

All Data 100%SG
(F)

100%SG
(S)

95%SG
+5%Al (F)

95%SG
+5%Al (S)

85%SG
+15%Al (F)

85%SG
+15%Al (S)

0.9507 0.8404 0.9250 0.9788 0.9738 0.9800 0.9363

Figure 10 shows the result of the LSTM network in comparison with the values obtained during
the experiment. As in the previous study, the LSTM network predicts the worst results for pure silica
gel (100% SG) in a fluidized state.
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All datasets achieved a fit of 0.9507, and Table 4 also shows the coefficient of determination of the
individual mixture for the fit function. The coefficient of determination in this study is lower than
in the previous study. The LSTM network predicts the worst values for pure silica gel (100% SG) in
fluidized bed conditions. The coefficient of determination for fixed and fluidized bed was 0.9250 and
0.8404, respectively.

The model’s best accuracy, in this case, was achieved for the fluidized bed of 85% SG + 15%Al
mixture with R2 equal to 0.98.Energies 2020, 13, x FOR PEER REVIEW 11 of 17 
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The third analysis of the prediction of mass in the sorption bed using the LSTM network concerned
the distribution of data in the ratio of 80-10-10. The results of this study are presented in Figure 11 and
Table 5.

Table 5. Coefficient of determination R2 for the Linear Fit (80-10-10).

R2

All Data 100%SG
(F)

100%SG
(S)

95%SG
+5%Al (F)

95%SG
+5%Al (S)

85%SG
+15%Al (F)

85%SG
+15%Al (S)

0.9554 0.8670 0.9343 0.9915 0.9611 0.9874 0.9244
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Figure 11 shows the results of the LSTM in comparison with the values obtained during the
experiment. As in previous studies, the LSTM network predicts the worst results for pure silica gel
(100% SG), fluidized state. In this case, the network best predicts the results of the experimental research.

The coefficient of determination for all is equal to 0.9554. The accuracy of the developed model
is the best of the two previous ones. Only a slight decrease in R2 be seen for the 95% SG + 5%Al(S),
and 95% SG + 15%Al(S) blends. The LSTM network prediction is still worst for the fluidized bed of
pure silica gel (100% SG) with R2 equal to 0.867. However, the best prediction was achieved for the
fluidized bed of the mixture 95% SG + 5%Al with R2 = 0.9915.

4. Conclusions

This paper deals with an innovative concept of a fluidized bed instead of a fixed adsorption beds
application, currently employed in conventional adsorption chillers. The model, developed in the
study, correctly predicts the vapor mass adsorbed in the adsorption chillers.
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In this work, the Long Short-Term Memory networks, classified as a deep learning method,
were also used to predict the sorption bed’s mass. The LSTM network is one of the particular kinds of
recursive networks that are capable of learning long-term dependencies.

The solution to predicting the results was based on the most accurate mapping of the experimental
values by the LSTM network. In the mathematical model, all network inputs were normalized to the
range <0–100> due to the different units of parameters used in the study.

The analysis was performed by splitting the input data set into three parts (training data,
validation data, and test data), in three variants: 60-20-20, 75-15-15, 80-20-20. The LSTM network,
while increasing the amount of data used for training, better reproduced the experimental results.
By increasing the training data make it possible to increase the accuracy of LSTM. The division of data
into training data, validation data, and test data in deep learning networks are problematic because
increasing one of the above values reduces the other two. A better solution seems to be to increase
the amount of data entered into the network, but in this case, it was impossible due to the number
of sorption cycles that the adopted mixtures could perform. In order to increase the amount of data,
the mass of the mixture should be increased, as well as the initial conditions under which the tests
were performed, e.g., the absolute pressure in the adsorption chamber and evaporator.

The developed model using the LSTM network and the high accuracy of the obtained numerical
results confirm that the LSTM network is suitable for predicting sorption processes.

The LSTM network predicted the worst experimental test for pure silica gel (100% SG) in the
fluidized conditions where the coefficient of determination did not exceed the threshold of 0.9 since
these experimental tests are the least repeatable. The test results for 100% SG are more difficult
to predict because no additive in the mixture would stabilize the sorption processes during the
experimental test, so the sorption cycles for 100% SG are not very repeatable. Due to its high thermal
conductivity, aluminum’s addition to the silica gel stabilizes the mixture, improving the sorption bed’s
thermophysical properties. The LSTM network achieved the best accuracy for the mixture of 95%
silica gel with 5% aluminum of addition in the fluidized conditions. For data splitting of 80-10-10 the
highest coefficient of determination was equal to 0.9915.

Future research is planned to conduct comparative studies of several deep learning methods.
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Nomenclature

Al aluminum
F fluidized state corresponding to fluidized bed conditions
LSTM Long Short-Term Memory
m* normalized sorbent mass (experimental value), –
mp* normalized sorbent mass predicted by the LSTM, –
NN neural network
n% the percentage of the additive in the mixture, %
RNN Recurrent Neural Network
S stationary state corresponding to the fixed bed conditions
SG silica gel
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