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Abstract: We apply deep reinforcement learning to active closed-loop control of a two-dimensional
flow over a cylinder oscillating around its axis with a time-dependent angular velocity representing the
only control parameter. Experimenting with the angular velocity, the neural network is able to devise
a control strategy based on low frequency harmonic oscillations with some additional modulations to
stabilize the Kármán vortex street at a low Reynolds number Re = 100. We examine the convergence
issue for two reward functions showing that later epoch number does not always guarantee a better
result. The performance of the controller provide the drag reduction of 14% or 16% depending on the
employed reward function. The additional efforts are very low as the maximum amplitude of the angular
velocity is equal to 8% of the incoming flow in the first case while the latter reward function returns an
impressive 0.8% rotation amplitude which is comparable with the state-of-the-art adjoint optimization
results. A detailed comparison with a flow controlled by harmonic oscillations with fixed amplitude and
frequency is presented, highlighting the benefits of a feedback loop.

Keywords: flow control; ANN; DRL

1. Introduction

A well-known Kármán vortex street is typically formed in the wake of the flow over a bluff body
exerting an oscillating value of the force [1]. This unsteadiness may cause structural damages due to
the coupling of the body vibrations and pressure fluctuations of the fluid. Over time, many flow control
strategies have been proposed to influence and suppress these unwanted dynamical features [2]. The overall
classification includes passive and active methods due to the possible energetic input to the flow [3].
Active methods represent open- and closed-loop control, depending on the presence of a feedback from
sensors to actuators with a further update of a control signal. An appealing way to design new closed-loop
control strategies is to rely on the so-called data-driven and learning-based methods, which lately receive
well-deserved attention [4].

In fluid dynamics, machine learning techniques have been fruitfully applied to the issue of the
turbulence closure modelling within Large-eddy simulations and Reynolds-averaged Navier–Stokes
equations [5], estimating and reconstructing flow fields [6], recovering dynamical features [7] and
control [8]. In particular, closed-loop flow control extensively benefits from the application of genetic
algorithms to canonical turbulent flows, such as mixing layers, jets and wakes [9–19]. Contrary to the
typical gradient-based optimization techniques, these methods introduce a population of the control
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laws which are selected step-by-step according to the target objective function. Even more promising
is a combination of multilayer (deep) neural networks combined with the reinforcement learning (RL)
strategy [20] resulting in a deep reinforcement learning (DRL) paradigm succeeding in a large number of
multidisciplinary problems [21] as well as fluid dynamics in particular [22]. RL represents a self-learning
strategy introducing an agent who interacts with the environment through particular actions in order to get
a maximum reward. Recent examples mainly consider the manipulation of the flow over a cylinder using
multiple synthetic jets and numerical simulations at low Reynolds numbers delivering robust DRL-based
control strategies [23–28] as well as other applications [29–32].

In this work, we study a closed-loop control strategy for the flow over a cylinder rotating around
its axis with the time-dependent angular velocity being the only control parameter. The direct numerical
simulations (DNS) of the Navier–Stokes equations are employed coupled with the DRL method,
which relies on the proximal policy optimization algorithm [33] maximizing the expected reward.
The reward value is based on the lift and drag forces acting on the cylinder with the neural network
employing the information on the pressure field in the wake region. The particular focus of the work is on
the deviation of the control signal from the intuitive one typically considered as a harmonic oscillation.

The control method based on sinusoidal wall oscillations around the axis of the cylinder is known
to dramatically suppress the drag coefficient up to 85% for a certain parameters of the amplitude and
frequency for Re = 1.5 × 104 [34]. This experimental result has been qualitatively confirmed by a
series of numerical simulations extending the study to even higher Re = 1.4 × 105 demonstrating
that high-frequency and rather high-amplitude rotary oscillations lead to even larger decrease of the
drag [35–39]. These experiments also showed that the method is energetically efficient only for high
Reynolds numbers. However, at low Reynolds numbers, the drag reduction is not that impressive with
a decrease between 30% and 60% [40–45]. One way to improve this performance and neutralize the
effect of the fluid viscosity is to reduce the amplitude of oscillations also avoiding high-frequency rotary
motion. This fact indicates that the harmonic control signal at low Re is far from optimal. To stabilize the
vortex shedding, a closed-loop strategy has to be employed rather than a straightforward destruction of
the wake region by a high-frequency harmonic motion. A feedback optimization has already been used
for low Reynolds numbers, although constraining the control to sinusoidal-based forcing and its basic
extensions [41,45,46]. The optimal control approach relying on the adjoint optimization and control law of
the free waveform provided a reduction of up to 15% for Re = 150, obtaining the required low amplitude
rotary motion [43]. The results depend on the time horizon of the optimization procedure. Recently, it has
been shown that a significant increase of the time horizon leads to the drag reduction of 19% for Re = 100
together with a low-amplitude control law. Thus, the results of optimal control theory may serve as a
verification point for the fully data-driven DRL method with a reduced complexity of implementation.

2. Problem Formulation and Computational Details

We consider a cylinder of the diameter D in a fluid cross-flow with a uniform incoming velocity U∞

(see Figure 1). The considered Reynolds number Re = U∞D/ν = 100 representing a laminar flow regime
with a Kármán vortex shedding, where ν is the kinematic viscosity. The applied control strategy is based
on the rotation of the cylinder around its axis with the wall velocity Uw(t) = U∞Ω(t). The primary goal is
to find the optimal signal Ω(t) to influence drag and lift coefficients:

CD =
2Fx

ρU2
∞

, CL =
2Fy

ρU2
∞

, (1)

where Fx and Fy are the drag and lift forces acting on the cylinder per unit length and ρ is the fluid density.
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Figure 1. A rotary oscillating cylinder in a cross-flow.

2.1. Flow Computations

To describe the flow field, we solve the non-dimensional incompressible Navier–Stokes equations:

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p
∂xi

+
1

Re
∂2ui

∂x2
j

,
∂uj

∂xj
= 0, (2)

where ui and p are the velocity components and pressure field and all quantities are non-dimensionalized
using U∞ and D. We employ direct numerical simulations in a two-dimensional setup with the coordinate
system located in the center of the cylinder and x, y representing the streamwise and vertical coordinates,
respectively. The computations are performed using an open source unstructured finite-volume code
T-Flows below referred to as the CFD solver [47,48]. The code features second-order accurate discretization
in space and time. The SIMPLE algorithm is used to couple velocity and pressure fields. The dimensions
of the computational domain representing a rectangle are Lx × Ly = 30D× 20D in the streamwise and
vertical directions with the center of the cylinder placed 10D from the inlet boundary. The slip condition
is set at the top and bottom boundaries and convective outflow condition is prescribed at the outlet,
while control law representing the tangential velocity of the cylinder wall is described below. The mesh
contains 15, 140 hexahedral cells and the computational timestep is ∆tCFD = 10−2. We validate the
simulations of the stationary cylinder case. The typical quantities of interest are the time-averaged drag
coefficient CD = 1.33 and vortex shedding frequency fvs = 0.17, which are in excellent agreement with
available results [1].

2.2. Machine-Learning Architecture, Feedback Loop and Parallelization

Below, we describe a set of algorithms employed to obtain the angular velocity signal Ω(t) with
the closed-loop controller synthesized by training a fully connected neural network (FNN). The optimal
control strategy evaluation relies on the reinforcement learning (RL) approach [20] and a policy gradient
(PG) algorithm [33] with a maximization of a defined reward function. A schematic view of optimization
of the feedback control system is shown in Figure 2. In RL, the environment representing the CFD solver
interacts with the agent which is the FNN controller in our case. The agent takes a new action based on
the current state of the environment representing the data from 4× 3 array of pressure sensors placed in
the near wake beside the cylinder (see ‘inputs’ and the flow schematics in Figure 2). The FNN has two
hidden layers with 64 neurons each and a single output for the mean of the policy PDF of the cylinder
angular velocity during evaluation of the controller. The training employed two networks of the similar
structure for policy and value prediction including a trainable dispersion coefficient of the policy PDF for
a smooth transition from exploration to exploitation of the learned policy. The number of neurons was
determined experimentally observing the learning speed and the mean reward after convergence with a
fixed number of inputs and the reward function. The neurons in the hidden layers used the sigmoidal
activation function while the activation of the output neuron was linear. The action defined the next value
of Ω which was put forward to the CFD solver with a specific relaxation procedure in time. The action time
step Tac was set small enough compared to the characteristic time scale Tvs = 1/ fvs of the vortex shedding
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according to recommendations [24] (see Figure 3 for the hierarchy of timescales). We employed the value
Tac ≈ 0.05Tvs with Tac = 30∆tCFD = 0.3. After receiving a new target value of Ω, the angular velocity of
the cylinder was updated from the old value to a new target one linearly in time within the whole interval
Tac. We performed additional tests with the exponential relaxation scheme [24] as well as step-like change
of Ω; however, a better behavior of the linear one for a test harmonic control law was observed.

feedback reward

control
action

CFD
solver

flow field

optimization
algorithm

current state

output
hidden layers

feedforward neural 
network

inputs

× 12
× 2 × 64

× 1

Figure 2. Active closed-loop flow control optimization scheme.

FNN + DRL

CFD1 CFDnCFD2

...

time

Figure 3. (Left) Illustration of different time scales referred to in the text with the vortex shedding period
Tvs, action time step Tac and CFD time step ∆tCFD; and (Right) multi-environment scheme of the flow
control approach.

The parallelization strategy is twofold and represents a cornerstone of this research. The CFD code
employs a standard MPI-based decomposition of the computational domain with each subdomain treated
by a separate computational core. However, with the present low number of cells the speed-up is limited
by the number around 10 cores due to the necessary frequent data exchange between neighboring domains
sharing common cell faces. For RL algorithms, one needs a sufficient number of actions or control
steps for the optimization scheme to succeed. Recently, a successful multi-environment approach [25]
has been proposed where multiple independent CFD runs feed the data to one optimization algorithm
(see Figure 3). Following this approach, we used three independent CFD runs in parallel with a typical
wall time for training a controller using a blade server with two CPUs Intel(R) Xeon(R) CPU E5-2695 v2 @
2.40GHz with 24 cores in total taking around three days with full CPU utilization. This parallelization was
implemented through a vectorized environment feature provided in the OpenAI Baselines code [49] used
in this study. As a parameter for the control optimization algorithm, we chose the learning rate constant
of the value 3× 10−4, clip parameter ε = 0.2, GAE parameters with discount rate γ = 0.99 and λ = 0.95,
value coefficient c1 = 0.5 and entropy coefficient c2 = 0.01 [33]. The instantaneous reward value was
parameterized in the following form:
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r = R1 − (〈CD〉ac + R2|〈CL〉ac|), (3)

where the drag and lift coefficients were averaged over the action time step. For convenience, the constant
R1 was chosen so that the reward values per action were close to zero. The non-zero constant C2 is expected
to constrain the non-zero time-averaged lift, leading to the asymmetric flow regimes. With R2 = 0, in the
long run, the control law tended to return a rotating regime. We chose the final value as R1 = 3 and tried
two cases with R2 = 0.1 (Case 1) and R2 = 0.2 (Case 2) [24]. The code with the DRL agent adapted for the
CFD solver and the corresponding configuration can be found in a public Github repository [50].

3. Results and Discussion

We performed the training process for 80 epochs to test the convergence issue where the epoch
corresponds to the interval between control actions resulting in the overall time interval of nearly
40,000 time units in terms of D/U∞. Figure 4 shows a typical evolution of the reward value averaged over
the action time step 〈r〉ac reaching the saturation after around 50 epochs for Case 2 while still growing
for Case 1. The entropy function is expected to characterize the convergence of the training process and
decreases monotonically for both cases, indicating that the controller behaves more deterministic and less
exploratory with increasing the number of epoch [33].

0 20 40 60
0.00

0.04

0.08

Epoch

〈r〉ac

Case 1
Case 2

−0.25

−0.05

0.15

0 20 40 60

1.1

1.3

1.5

Epoch

ent

Figure 4. (Left) Evolution of the reward value averaged over the action time step 〈r〉ac during
training (random policy); and (Right) random policy entropy decrease during the optimization process.
Square points on both sets correspond to Epochs 37, 50 and 80.

However, as for the on-policy algorithm a new training set is generated before each policy update
using a recently obtained result, stabilization of the algorithm remains an issue [20]. Below, we demonstrate
this inherent instability due to a small change of a reward function altering the convergence and leading to
a situation with a better policy obtained in the middle of the training process. After accomplishing the
training process, we evaluated the performance of the neural controllers. Table 1 and Figure 5 summarize
the characteristics of the flow regimes with the applied DRL-based control scheme corresponding to
the number of epochs during the training process depicted in Figure 4 by square points below referred
to as ‘cXeY’, where ‘X’ stands for the case number (1 or 2) while ‘Y’ corresponds to the epoch number
(37, 50 or 80). We address the issue of the drag reduction as well as the change of the root-mean-square of
the lift coefficient in comparison with the stationary cylinder flow.

Note an opposite behavior of CD signal and other characteristics with the increase of the epoch
number for Cases 1 and 2. While c1e80 features a decrease of CD with ∆CD = 13.9% compared to
stationary cylinder regime and outperforms earlier epochs, c2e37 appears to be more optimal compared
to later epochs with ∆CD = 16.1%. We introduce ∆Ω = Ωmax −Ωmin to evaluate tangential velocity
amplitude with the value ∆Ω being averaged over a number of local maximum Ωmax and minimum Ωmin
values, respectively. The same cases, c1e80 and c2e37, return the lowest amplitude within each run with
∆Ω/2 = 8.2% and impressive 0.8% of U∞, respectively. Coming back to the reward value parameterization
as in Equation (3), we mention the possible asymmetric flow behavior due to DRL control. Indeed, Cases 1
and 2 (see Table 1) for different epoch numbers recover strategies displaying constant rotation of a fixed
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point on the surface of the cylinder θ(t) as αt combined with oscillatory perturbation θ′(t), i.e., θ = αt + θ′

with the angle expressed in degrees, even with CL being present in the reward expression. Although α

is nonzero for most of the regimes, it is relatively low for two out of three cases for each run with the
maximum value α = −17.1◦ and −20.6◦ for c1e37 and c2e80, respectively. Below, we proceed with the
analysis of c1e80 as the case where the outcome delivers an appealing slightly modulated harmonic control
strategy while better performing c2e37 represents a mixture of a few Fourier modes with close frequency
values and may be not very intuitive as an example.

Table 1. Characteristics of several flow regimes corresponding to the number of epoch during the training
process, as depicted in Figure 4 by square points.

c1e37 c1e50 c1e80 c2e37 c2e50 c2e80

∆CD (%) 8.1 11.3 13.9 16.1 13.7 14.7
∆(rms CL) (%) −50.5 −21.8 29.6 92.8 86.1 76.8

∆Ω/2 0.158 0.139 0.082 0.008 0.031 0.126
α (◦) −17.1 1.37 1.39 0.178 2.58 −20.6

1.00

1.25

1.50

t

CD Case 1

0 20 40 60 80
−0.5

0.0

t

Ω

unforced
Epoch 37

Epoch 50
Epoch 80

1.00

1.25

1.50

t

CD Case 2

0 20 40 60 80
−0.5

0.0

t

Ω

Figure 5. Evolution of CD and Ω for Cases 1 (Left) and 2 (Right) for different epoch number DRL-based
control schemes in comparison with the stationary cylinder flow.

Figure 6 shows the instantaneous streamwise velocity field around the cylinder for the case without
control and corresponding to the DRL-based scheme for c1e80 case after a new steady state is reached
with its evolution shown in Figure 7. As a result, the flow stabilizes close to the cylinder with a small
rotational input trying to balance this inherent instability. The length of the recirculation bubble becomes
larger with the local pressure minimum moving further downstream. This leads to a smaller pressure
difference between the front and rear of the cylinder with a final decrease of CD. Figure 7 shows the
evolution of several characteristics such as the angle θ, angular velocity Ω and drag and lift coefficients
CD and CL for different flow regimes. The case of a stationary cylinder is demonstrated as a reference
one with θ = Ω = 0. The drag coefficient exhibits sinusoidal behavior with a frequency 2 fvs around a
time-averaged value CD = 1.33 while CL fluctuates with a natural frequency fvs = 0.17, reflecting the
vortex shedding process, as mentioned above. The application of the DRL-scheme corresponding to c1e80
for control leads to a transient period of about 20 time units, resulting in a modulated harmonic signal
of the angular velocity Ω. However, the angle θ also evolves harmonically in time with a linear trend of
a relatively small slope α = 1.39◦ (see Table 1), corresponding to around 14◦ rotation within the period
T1 = 1/ f1 ≈ 10 where f1 ≈ 0.6 fvs represents the main peak of the Fourier spectrum of the CL signal.
Note also secondary peaks at higher and lower frequencies giving room for modulations of Ω (see the
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peaks at ≈ 0.2, 0.4 and 0.8 fvs). These modulations turn out to be essential for a drag reduction which is
demonstrated in a straightforward manner. We apply a modulated harmonic forcing to the cylinder with
Ω = Ω0[sin(2π f1t + ϕ1) + 0.15][1 + 0.1 sin(2π f2t + ϕ2)] where Ω0 = 0.09, f1 = 0.61 fvs, f2 = 0.22 fvs well
approximates the signal from a DRL-scheme. The outcome of this control strategy is a slight decrease
of CD = 1.28 compared to the stationary case and is far from a DRL-scheme. Thus, the feedback loop
is indeed gives a benefit for active flow control correctly responding to the instantaneous phase of the
vortex shedding process by tuning the angular velocity of the cylinder to stabilize the wake and decrease
the drag.

−2 0 2 4 6 8
−2

0

2

x/D

y/D
−0.2

ux/U∞
1.3

−2 0 2 4 6 8
−2

0

2

x/D

y/D

Figure 6. Typical instantaneous streamwise velocity field with streamlines: (Left) stationary cylinder;
and (Right) DRL-based control for c1e80 after sufficiently long time interval to establish a steady regime.
See also the Supplementary Material Video S1 (also available at: https://youtu.be/9X8XtHk0R84).
The array of 4× 3 white points corresponds to pressure sensors serving as the input for the neural network
(see Figure 2).

−90
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90
θ

0 20 40 60 80
−0.18
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0.18

t
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DRL c1e80
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harmonic

1.0

1.2
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−0.5

0.0

0.5

t

CL

0.5 1.0 1.5

FFT(CL)

f / fvs

Figure 7. Rotation angle and angular velocity (Left); and the drag and lift coefficients (Right). Three flow
regimes are shown: the stationary cylinder (blue line), with a DRL-scheme corresponding to c1e80 for
control (red line) and forced with harmonic-based oscillations with Ω(t) = Ω0[sin(2π f1t + ϕ1) + 0.15][1 +
0.1 sin(2π f2t + ϕ2)] where Ω0 = 0.09, f1 = 0.61 fvs, f2 = 0.22 fvs (green line). See also the Supplementary
Material Video S1 (also available at: https://youtu.be/9X8XtHk0R84). Several triangle points within
t = 65.1–69.9 interval are depicted on DRL-based results and are discussed below in the text.

As mentioned above, the DRL-scheme stabilizes the recirculation bubble suppressing the formation
of the Kármán vortex street and leading to the elongated bubble behind the bluff body with the reduced
value of CD. The mechanism behind the curtain represents the phasor control (see [51] for applications to
wake flows), when the appropriate value of almost harmonic variation of angular velocity of the cylinder
acts on the near-wall fluid. To get some additional insight into the control routine, Figure 8 shows the
instantaneous streamwise velocity field corresponding to four time instants highlighted with triangular
symbols in Figure 7 spanning half of the oscillation period of Ω.

https://youtu.be/9X8XtHk0R84
https://youtu.be/9X8XtHk0R84
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Figure 8. Instantaneous streamwise velocity field for c1e80 at particular time instants for t = 65.1, 66.9, 67.8
and 69.9, respectively, highlighted in Figure 7 by four triangles. Black arrow denotes the instantaneous
angular position of the rotating cylinder while the green circular arrow indicates the direction of the rotation.

At t = 65.1, the rotation amplitude reaches its local maximum while rotating counterclockwise
(see Figure 7). Previous time history shows that CD and CL are monotonically decreasing with time and
reward function increases. DRL-scheme continues the counterclockwise rotation while also stimulating
the growth of the attached eddy in the lower side of the cylinder. Reaching a certain size the eddy and its
asymmetric location lead to the increase of |CL| as for t = 67.8, which negatively affects the reward function
r. To counteract this trend, DRL-scheme switches the rotation direction producing new recirculation zone on
the upper side of the cylinder at t = 69.9, leading to a more symmetric bubble reversing the growth of CL.

4. Conclusions

We applied deep reinforcement learning to active closed-loop control of a two-dimensional flow
over a cylinder oscillating around its axis with a time-dependent angular velocity representing the only
control parameter. Probing different values of the angular velocity, the neural network was able to create
a control strategy based on low frequency harmonic oscillations with some additional modulations to
stabilize the Kármán vortex street at a low Reynolds number Re = 100. We examined the convergence
issue for two reward functions showing that later epoch number does not always guarantee a better result.
The performance of the controller provide the drag reduction of 14% or 16% depending on the employed
reward function comparable with a state-of-the-art control theory optimization routines based on adjoint
methods [52]. The additional input of energy to rotate the cylinder was very low as the maximum amplitude
of the angular velocity was equal to 8% of the incoming flow in the first case while the latter reward function
returned an impressive 0.8% rotation amplitude. A detailed comparison with a flow controlled by harmonic
oscillations with one frequency and a fixed amplitude is presented, highlighting the necessity of a feedback
loop. Further work will be focused on extending the DLR-schemes to higher Reynolds numbers keeping
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a computational setup two-dimensional as well as going with a three-dimensional configurations for
moderate Re.

Supplementary Materials: The following are available at http://www.mdpi.com/1996-1073/13/22/5920/s1,
Video S1: Control of a flow over a circular cylinder by DRL-algorithm. Re=100.
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