
energies

Review

Recent Advances in Thermochemical Energy Storage
via Solid–Gas Reversible Reactions at
High Temperature

Laurie André 1 and Stéphane Abanades 2,*
1 Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne

Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France; Laurie.Andre@u-bourgogne.fr
2 Processes, Materials and Solar Energy Laboratory, PROMES-CNRS, 7 Rue du Four Solaire,

66120 Font-Romeu, France
* Correspondence: stephane.abanades@promes.cnrs.fr; Tel.: +33-(0)4-68-30-77-30

Received: 12 October 2020; Accepted: 6 November 2020; Published: 10 November 2020
����������
�������

Abstract: The exploitation of solar energy, an unlimited and renewable energy resource, is of prime
interest to support the replacement of fossil fuels by renewable energy alternatives. Solar energy
can be used via concentrated solar power (CSP) combined with thermochemical energy storage
(TCES) for the conversion and storage of concentrated solar energy via reversible solid–gas reactions,
thus enabling round the clock operation and continuous production. Research is on-going on efficient
and economically attractive TCES systems at high temperatures with long-term durability and
performance stability. Indeed, the cycling stability with reduced or no loss in capacity over many cycles
of heat charge and discharge of the material is pursued. The main thermochemical systems currently
investigated are encompassing metal oxide redox pairs (MOx/MOx−1), non-stoichiometric perovskites
(ABO3/ABO3−δ), alkaline earth metal carbonates and hydroxides (MCO3/MO, M(OH)2/MO with
M = Ca, Sr, Ba). The metal oxides/perovskites can operate in open loop with air as the heat transfer
fluid, while carbonates and hydroxides generally require closed loop operation with storage of the
fluid (H2O or CO2). Alternative sources of natural components are also attracting interest, such as
abundant and low-cost ore minerals or recycling waste. For example, limestone and dolomite
are being studied to provide for one of the most promising systems, CaCO3/CaO. Systems based
on hydroxides are also progressing, although most of the recent works focused on Ca(OH)2/CaO.
Mixed metal oxides and perovskites are also largely developed and attractive materials, thanks to
the possible tuning of both their operating temperature and energy storage capacity. The shape of
the material and its stabilization are critical to adapt the material for their integration in reactors,
such as packed bed and fluidized bed reactors, and assure a smooth transition for commercial use and
development. The recent advances in TCES systems since 2016 are reviewed, and their integration in
solar processes for continuous operation is particularly emphasized.

Keywords: thermochemical energy storage; solid-gas reaction; redox systems; carbonate; hydroxide;
perovskite; concentrated solar power

1. Introduction

The enthalpy of solid-gas chemical reactions stored in chemical materials can be used to generate
heat when necessary via endothermal/exothermal reversible reactions. The stored and released heat
can be used for example to run power cycles or more generally in industrial processes operating at
high temperatures and thus requiring high amounts of energy that are usually provided by fossil
fuel combustion. Thus, thermochemical energy storage (TCES) has potential to lower fossil fuel
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consumption and related greenhouse gas emissions [1]. A high potential also exists in the combination
of TCES systems with renewable energy systems. Thermal energy storage is indeed particularly
suitable for being combined with concentrated solar energy that relies on an intermittent resource,
with the aim to operate the process continuously (day and night as well as stable operation during
fluctuating solar energy input) (Figure 1). Indeed, solar energy is variable and can fluctuate a lot in
nature due to clouds and weather conditions, thus requiring a storage system for smooth and stable
operation under fluctuating solar irradiation conditions. TCES is thus attractive since continuous
operation allows a strong increase in the capacity factor of the solar plant, while it can further contribute
to eliminating transient effects due to start-up/shutdown periods and unstable/variable solar conditions.
The possible envisioned applications are pertaining to electricity production by concentrated solar
power (CSP) plants or more generally high temperature chemical processes requiring an external
energy input as the process heat supply (e.g., cement and concrete production, minerals calcination,
metallurgical processes, fuel production processes or chemical industrial processes). Most industrial
energy-intensive processes require a high temperature heat source generally provided by fossil fuel
burning. In such high temperature processes, the required high temperature heat for running power
cycles or driving endothermal reactions can be generated with solar concentrating systems (parabolic
dish, trough, linear Fresnel systems or solar tower receivers with heliostat field). This is the case of CSP
plants for electricity generation and solar thermochemical processes for fuels (syngas production via
reforming, gasification of carbonaceous feedstocks, H2O and CO2 splitting via thermochemical cycles,
etc.) or chemical commodity production (cement, metals, etc.). Thus, the interest in TCES integration
in such processes for continuous operation is constantly growing. Another possible application is the
utilization of TCES for the recovery and storage of waste heat of various energy and industrial processes
at different temperature levels in order to increase process efficiencies or to produce additional extra
heat/electricity.
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Figure 1. Scheme of the solar power plant main components integrating buffer thermal energy
storage system.

The TCES integration within a solar power plant implies the utilization of a heat transfer fluid
(HTF) (Figure 2). During on-sun hours, the HTF flows inside the solar receiver and is used to store heat
in the TCES system (heat charge, endothermal). The TCES system can be combined with or integrated
into the solar receiver (direct storage) or separated (indirect storage). The exiting HTF is then used to
run the turbine of the power block. During off-sun hours, the HTF directly flows through the TCES
system for heat recovery (discharge step, exothermal) in order to increase its temperature and provide
heat to the downstream process, thereby enabling continuous operation.
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Figure 2. Flow diagram and operating principle of thermochemical energy storage system integrated
with solar thermal power plant for continuous power production.

In contrast to other energy storage systems including sensible and/or latent energy storage,
thermochemical storage offers the possibility of high energy densities in the form of chemical bonds as
well as long-term storage and long-range transport in the form of stable and safe materials (Table 1).
In addition, the operating conditions can be tuned in a wide range of temperatures and pressures
depending on the used TCES system and involved chemical reactions, thus offering the possibility
of being combined with various processes. In contrast to sensible or latent heat storage systems that
have been developed and optimized, and are even commercially available and applied at large scale,
thermochemical energy storage is a new research area in which many aspects are still unknown and are
still to be discovered [2]. Research advances are thus needed for potential industrial implementation,
while also taking into account the energy consumption by auxiliary equipment and feedstock cost that
impact the system capital cost [3]. The main fields in which strong efforts are necessary to develop
practical TCES systems and bridge the gap from fundamental research to application are the discovery
of cost effective, abundant and affordable chemical materials with high energy densities, cycle stability
and fast kinetics for heat storage and release [1]. Furthermore, additional research and technological
developments are needed in the optimal design of heat storage-chemical reactor systems for maximum
heat transfer between the storage medium and the high temperature solar process, and the complete
system integration in large scale plants (optimization of heat and mass flows, dynamic simulation
during transient events and fluctuating solar conditions, techno-economics, etc.) [4,5].

This study reviews the most advanced and potentially attractive TCES systems currently under
development (including hydroxides, carbonates, metals oxides redox pairs, perovskites) with emphasis
on their characteristics for practical implementation, and on their suitability for potential application
and integration in solar processes for continuous operation. A comprehensive screening of TCES
systems based on solid–gas reversible reactions for high temperature solar thermal energy storage was
published by the authors in 2016 [8]. Since this date, much effort has been provided in this research field
to investigate thermochemical systems for concentrated solar energy applications. Special attention is
paid in this work to the active research developed in the most recent years by focusing on the latest
advances in the field.
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Table 1. Comparison of the main options for thermal energy storage using concentrated solar power
(CSP), adapted with permission from [6,7], Elsevier, 2020.

Storage Type Sensible Heat Storage (SHS) Latent Heat Storage (LHT) Thermochemical
Energy Storage (TCES)

Gravimetric energy
density ~0.02–0.03 kWh/kg ~0.05–0.1 kWh/kg ~0.5–1 kWh/kg

Volumetric energy
density ~50 kWh/m3 ~100 kWh/m3 ~500 kWh/m3

Storage temperature Charging step temperature Charging step temperature Room temperature

Technology development Industrial scale Pilot scale Laboratory and pilot
scale

Energy storage period Limited (Thermal loss) Limited (Thermal loss) Theoretically unlimited

Theoretical energy
transport Very short distance Very short distance Very long distance

(>100 km)

Technology complexity Simple Medium Complex

Drawbacks
Important thermal losses over time
Large quantity of storage material

required

Important thermal losses over time
Corrosive materials Low heat

conductivity

Expensive investment
cost Complex technique

2. TCES Systems Based on Hydroxides

Ca(OH)2/CaO has been demonstrated to date to be the most interesting studied thermochemical
energy storage system based on metal hydroxides and has prompted tests in lab-scale reactors and
thermogravimetry analysis (TGA) (Equation (1), Figure 3) [3,7,9–13]. However, the enhancement
of material stability is required to reduce the sintering effect. Ca(OH)2 particles were shown to
agglomerate faster than CaO particles in the presence of H2O, and the presence of H2O would
accelerate the agglomeration of CaO particles [14].

CaO(s) + H2O(g) � Ca(OH)2(s)

(∆H◦ = −109.2 kJ/mol)
(1)
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Figure 3. TGA of CaO/Ca(OH)2 showing excellent reversibility during charge/discharge cycles under
21 mol% H2O(g). CaO was first obtained from calcination of commercial CaCO3 to CaO at 850 ◦C under
pure Ar.

The rehydration step is slower than the dehydration step [15], and the hydration of CaO
agglomerated lump proved to be more difficult than that of fresh particles, which hindered
the cycling stability of the material. Due to particle agglomeration, CaO/Ca(OH)2 powder bed
and pellets used in packed bed reactors suffer from a loss in reactivity and a change in bulk
volume. Powdered Ca(OH)2/CaO was recently evaluated under reactor conditions [16]. During the
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hydration/dehydration cycles, the temperature was uneven between the middle of the packed bed and
the outside. During the first part of the heating, the outside of the packed bed remained at a higher
temperature than the middle for at least one hour (70 min). Afterwards, the opposite was observed,
with the outer part of the packed bed being at a lower temperature than the center. Under experimental
conditions, the highest temperature reached was 475 ◦C. In fact, the study underlines the unevenness
of the heat release rate and the poor thermal conductivity as main issues. To address the improvement
of heat transfer through CaO/Ca(OH)2 in a packed bed reactor, a composite material using silicon
carbide/silicon (SiC/Si) foam to support CaO/Ca(OH)2 in its pores (400 µm) was investigated [17].
Over ten cycles, the composite material retained a high reactivity and good stability of the bulk
volume during dehydration/hydration reactions. A study was recently accomplished on CaO/Ca(OH)2

supported on ceramic honeycomb composed of silicon carbide and silicon (SiC-Si) [18]. The pellets
of composite material were tested in a lab-scale packed bed reactor and were shown to enhance
the heat transfer through the reaction bed. The inert honeycomb support did not form any side
product during the tests; however, cracks and deformations appeared over the course of ten cycles.
This approach is promising for the dispersion and shaping of packed beds using hydroxides for TCES.
A CaO/Ca(OH)2/Na2CaSiO4 composite was synthesized using sodium silicate to bind CaO/Ca(OH)2

fine particles for fluidized or fixed beds [19]. This work noted the effect of the anisotropic expansion of
Ca(OH)2 being the cause of the reduction in the crushing strength of the pellets.

The adaptation/integration of powdered material systems to CSP irradiated reactors such as
fluidized bed is necessary for an effective exploitation of the TCES system in a continuous flow
over time. To this end, calcium hydroxide was modified with nanostructured flow agents such as
nanostructured silicon and/or aluminum oxide [20]. The study focused on the modification of calcium
hydroxide powder using nanostructured agents, in order to enhance the flowability of the material in
dynamic energy storage systems. However, the mixtures all presented lower flowability than pure
Ca(OH)2/CaO powder, as the agglomeration of the pure particles led to bigger particles with better
flowability. In addition, the samples from the mixture generated side products such as calcium silicate
and aluminate phases which contributed to the reduction in the total heat release measured for the
material. With this conclusion, it is recommended to rather improve the stability of moderately bigger
particles of pure material rather than mix them with additives as a means to enhance the flowability of
the material. As the low thermal conductivity and cohesiveness of powder bulk material are ill-suited
for moving bed reactors, studies usually aim for granular materials for such application. To answer
this issue, a recent study investigated the effect of the encapsulation of CaO granules in ceramic and of
Ca(OH)2 granules coated with Al2O3 nanostructured particles [21]. Both encapsulated materials could
retain their shape after six hydration/dehydration cycles, but the ceramic shell of CaO was sometimes
cracked or lost. On the one hand, the reaction performances of Ca(OH)2 encapsulated in Al2O3 proved
to be similar to that of unmodified Ca(OH)2 granules, but the expansion of the material during the
hydration step tended to clog the reactor tubes. On the other hand, CaO granules encapsulated in
ceramic flowed freely through the reactor, but their reaction performances were reduced and they
could not reach full conversion. As a maneuver to answer industrial requirements—e.g., for a moving
bed reactor, with appropriate material size and stability, a composite based on calcium oxide was
synthesized for TCES application, using the CaO/Ca(OH)2 system [22] mixed with carboxymethyl
cellulose sodium (CMC) and vermiculite. When compared to the performances of pure Ca(OH)2 tablets,
the composite tablets better retained their structural integrity over several hydration/dehydration
cycles. Within the material, vermiculite provided enough space for the CaO/Ca(OH)2 reaction, with an
average pore diameter between 11 and 16 nm depending on the synthesis conditions for the composite
material. In addition, the backbone structure of the composite possessed abundant micropores and
mesopores for the gas transport during the cycles. Furthermore, the decomposition temperature of
Ca(OH)2 within the composite material was reduced, which is attributed to the generation of activated
carbon during the carbonization of CMC. Finally, the gravimetric storage density of the granular
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composite material was reduced (71% of the value obtained for pure Ca(OH)2), while the volumetric
storage density was higher than that of Ca(OH)2 powder.

The enhancement of the reaction properties of the Ca(OH)2/CaO system was studied via KNO3

addition to Ca(OH)2, which reduced the dehydration reaction duration and decreased the dehydration
temperature of the system due to a nitrate–hydroxide interaction as KNO3 melts during the dehydration
step [23]. The influence of the amount of added KNO3 on the reaction temperature was then investigated
and showed that the minimum dehydration onset temperature (459 ◦C, instead of 494 ◦C for pure
Ca(OH)2) was reached with 5 wt% of KNO3 added, with the material losing only 7% of its energy storage
capacity, down to 1280 kJ/kg. Additional information on the system is available, as a kinetic study of
the effect of KNO3 addition to Ca(OH)2/CaO was conducted [24]. The optimum amount of KNO3 was
determined to be around 10 wt% to reduce the charging temperature to 428.49 ◦C and accelerate the
reaction with little loss in energy storage density. The cycling stability of the mixture was tested under
air and under nitrogen atmosphere. The KNO3-doped calcium hydroxide fared poorly under air, due to
the presence of CO2 and carbonation of the sample, but results revealed a good cycling stability under
nitrogen atmosphere. SEM observations showed that within the Ca(OH)2/10 wt% KNO3 mixture,
the once dehydrated material changes to a flower-like structure when rehydrated. When dehydrated
again, the flower-like structure shrinks back into a blocky structure. This modification of the material
morphology is attributed to the addition of KNO3 and contributes to enhancing the mass transfer
during the storage cycles. Another example of reaction enhancement via doping is the improvement
of reduction kinetics of Ca(OH)2 via Li doping [25]. The enhancement of the Ca(OH)2/CaO system
was also approached via a modification of the structure of the material, for example with the synthesis
of hexagonal boron nitride (HBN)-doped calcium hydroxide composite [26]. The material was tested
in TGA/DSC (thermogravimetry analysis/differential scanning calorimetry) and showed better cycling
stability than pure calcium hydroxide, showing 67% rehydration after ten dehydration/hydration
cycles, with an optimum amount of HBN added at 15 wt%, and the dehydration kinetics were also
enhanced. In addition, the composite material exhibited higher thermal conductivity and reaction
enthalpy as compared to pure calcium hydroxide. Another studied approach to modify the properties
of the system is the modification of the structure of the pure material. Ca(OH)2 nanomaterials with
spindle and hexagonal structure were synthesized by a deposition-precipitation method and compared
to commercial nanoparticles [27]. The spindle-shaped Ca(OH)2 demonstrated the highest specific
surface area in BET and the energy storage density among the tested nanomaterials. In addition,
the dehydration/hydration kinetics were improved with the spindle-shaped material and it presented
the best cycling stability over ten cycles, as it retained a conversion rate above 70%.

Mg(OH)2/MgO is another potential system for TCES which is currently getting attention.
Mg(OH)2 was considered at reactor scale, and an economical study was conducted [28]. However,
the material suffers from slow and incomplete rehydration, as stated by Müller et al. (2019) [29].
The authors recently studied the rehydration mechanism of MgO and of natural magnesite in order
to assess the effect of impurities on the reaction. The enhancement of the TCES system consisting
of MgO/Mg(OH)2 was studied via the addition of LiNO3 with 1, 3, 6 and 10 wt% added [30].
The dehydration temperature of the LiNO3-Mg(OH)2 composites was lower, from 289 down to 269 ◦C
for 1 wt% and 10 wt% doping, respectively, than that of pure Mg(OH)2 which was measured at
325 ◦C. The dehydration temperature of the LiNO3-Mg(OH)2 composite may then be tuned via the
addition of an adequate amount of LiNO3, and the composite materials could sustain more than
ten dehydration/rehydration cycles without losing thermal efficiency. In addition, the calculated
dehydration rate constant was higher with LiNO3 doping, but the composite material presented lower
released heat from the reaction. The mixture LiNO3/Mg(OH)2 was also studied explicitly for TCES at
a lower temperature (<300 ◦C) since the addition of LiNO3 to Mg(OH)2 decreases the dehydration
temperature of Mg-based system (76 ◦C difference) [31,32].
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3. TCES Systems Based on Carbonates

Metal carbonates present the advantage of being cheap and largely available materials. Several of
them have demonstrated attractive performances for TCES application, such as CaO/CaCO3, SrO/SrCO3

or BaO/BaCO3 [33]. Calcium-Looping (CaL) technology in particular, coupled with CSP, is being
thoroughly studied for adaptation to TCES power plant (Equation (2)) [3,12,34–38]. This reversible
cycle requires operating temperatures between 850 and 950 ◦C.

CaO(s) + CO2(g) � CaCO3(s)

(∆H◦ = −178.2 kJ/mol)
(2)

However, due to sintering, the material gradually loses its porosity and facility for the reactive
gas to access the active sites within the material [39,40]. To address this issue, the addition of an inert
material for structure stabilization and sintering inhibition is a proven approach (Figure 4). For example,
CaO/SiO2 composites were synthesized using rice husk as support [41]. The composites containing 70
and 90% CaO retained the morphology of rice husk and showed enhanced conversion, as compared
to limestone, and decreased pore-plugging effect. Pure CaO and nano silica doped systems (molar
ratio 1:1) were compared, and a shift in reaction temperature was observed [42]. The pure material
performed better between 750 and 925 ◦C, while for the silica-doped samples the decarbonation
happened at lower temperatures, between 700 and 800 ◦C. Al2O3 has been demonstrated to efficiently
stabilize CaO/CaCO3 [43]. Thanks to using a space-confined chemical vapor deposition (CVD) method,
Han et al. [43] presented a new way to synthesize a Al2O3 (5 mol%)-CaO composite which demonstrated
high stability over 50 calcination/carbonation cycles as compared to samples using SiO2 or TiO2 as inert
additives. The space-confined CVD method allowed CaO crystalline grains to be coated with inert
oxide nanoparticles, as high contribution to thermal stability of the composite material. Further work
was carried out by the same team on CaO-based materials, using the same method, and resulted
in the synthesis of dense CaO grains using calcium formate as precursor, with Al2O3 deposited on
the surface [44]. The resultant composite, optimized with 10 mol% Al, presented high volumetric
energy storage density (2.07 GJ/m3) after 20 cycles. The properties of the Al2O3-doped CaO system
were compared to CeO2-doped CaO and to a novel Al2O3/CeO2 co-doping [45]. The Al2O3/CeO2

co-doped CaO-based material was synthesized via a wet-mixing method and comprised a mixture
of CaO, Ca12Al14O33 and CeO2. Co-doping of CaO using 5 wt% of Al2O3 and 5 wt% of CeO2 gave
the best results in terms of energy storage capacity, and the material proved to retain a good stability
over 30 cycles with 7% conversion rate loss. The Al2O3/CeO2 co-doping of CaO/CaCO3 then also
showed the benefit of enhancing the carbonation reactivity of the material, attributed to the presence of
Ce3+ ions on its surface. ZrO2 was also considered as a stabilizing agent and compared to Al2O3 [46].
CaCO3 doped, via ball-milling, with ZrO2 (40 wt%) or Al2O3 (20 wt%) both presented excellent cyclic
stability. The CaCO3-Al2O3 system managed to retain more than 80% of its cyclic stability over the
course of 500 calcination/carbonation cycles. SiO2 also proved to be an interesting dopant to stabilize
CaCO3 as it improved the system’s energy storage capacity, enhanced the calcination kinetics and
stabilized CaCO3 over TCES cycles [47]. The stabilization of CaO/CaCO3 was also attempted via the
synthesis of composites composed of CaCO3 nanoparticles and antioxidative graphite nanosheets [48].
Graphite nanosheets impregnated in H3BO3 showed higher antioxidant property. The porous structure
of the composite helped to enhance CO2 transportation within the material and to obtain a higher
thermal conductivity. With only a 3 wt% graphite nanosheet, the composite was capable of cycling for
50 cycles under CO2 and of maintaining a high heat storage capacity (1333 kJ/kgcomposite), while pure
CaCO3 was deactivated after 50 cycles and the released heat decreased (down to 452 kJ/kgCaCO3 ).
The stabilization of CaO was also studied through the use of sodium sulphate covering the surface
of CaO particles at high temperatures. The molten salt was used to form a performant screen on
the surface of reactive particles to prevent sintering during TCES cycles [49]. Another approach to
hinder the agglomeration of CaO powder was proposed by Raganati et al. (2020) [50] who presented a
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sound-assisted fluidization method of the reactive powder bed. Fine natural limestone (<50 µm) was
used in a lab-scale fluidized bed reactor and the effect of sound-assisted fluidization on the carbonation
conversion of the material was studied for TCES using CSP conditions. The acoustic perturbations
applied to the fine limestone particles proved to hinder the agglomeration of the particles and enhanced
the carbonation performances of the material. The fluidization quality was enhanced together with a
better solid–gas contact. In addition, the acoustic perturbation decreased the deactivation rate.
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improvement of carbonates via the addition of MgO as inert additive [33]. (a) SrCO3/SrO (a. commercial
SrCO3, b. commercial SrCO3 with 20 wt% MgO, c. SrCO3 synthesized with 20 wt% MgO, d. commercial
SrCO3 with 32 wt% MgO), and (b) BaCO3/BaO (a. commercial BaCO3 with 44 wt% MgO, b. synthesized
BaCO3 with 30 wt% MgO, c. 30 wt% MgO presenting low porosity, d. 30 wt% MgO presenting
high porosity).

The solar absorption efficiency of the reactive material itself was recently questioned. An innovative
approach using the CaO/CaCO3 system proposed to use dark calcium carbonate particles, instead of
the naturally white material, by doping the material with Cu, Fe, Co or Cr via a sol-gel method [51,52].
The energy storage density of the material was significantly increased by the binary doping using
Cu and Mn, reaching 1952 kJ/kg, while the energy storage density of pure CaO/CaCO3 is around
1061 kJ/kg. A variation in the solar absorptance of the material was noted depending on the doping
metal. For example, when doped with Cu only, the CaCO3 particles had a higher solar absorptance
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in the visible range while a full-spectrum absorption of solar energy was achieved with Cr doping.
An impact on the cycling stability of the material was also observed, as it was enhanced via Mn and
Al doping, but reduced with the addition of Cr. The solar absorption capacity of CaCO3 was also
addressed via the doping of the system with Mn-Fe oxides [53]. Porous CaCO3 was synthesized using
calcium gluconate (Ca(C6H11O7)2), and it was doped with Mn-Fe using two different methods—wet
grinding using MnFe2O4 powder with ethanol, and adding Fe3+ (Fe(NO3)3) and Mn2+ (Mn(NO3)2)
to Ca(C6H11O7)2 in solution to produce Ca-Mn-Fe oxides (Ca:Mn:Fe mole ratio: 100:2:4, 100:4:8 and
100:6:12). The best results were obtained with the mixed oxide containing Ca:Mn:Fe = 100:6:12 mole
ratio, which demonstrated a solar absorptance of 90.15% against 11.23% for pure CaCO3. This material
also retained above 93% of its heat release capacity over 60 cycles, with over 1438 kJ/kg energy storage
density. A similar study also recently reported the synthesis of Ca2FeMnO5/CaCO3 to improve the
direct solar energy absorption of the material [54]. The material presented excellent cycling stability
and high energy density (2.51 MJ/kg after 20 cycles) and improved the optical absorption up to seven
times higher than pure CaCO3.

Cheaper sources of calcium carbonate are being researched along with ways to improve their
efficiency, in order to recycle waste and provide a cheap source of material for TCES based on calcium
looping (CaL). For example, limestone was used for the development of new models of fluidized
bed reactors for TCES application at high temperatures, reaching a maximum stable temperature
state at 1175 ◦C [55]. Other natural CaCO3 minerals were also evaluated for TCES such as chalk and
marble [56]. The various materials possess similar composition but present different cycling stability
in CaL-CSP conditions, which is attributed to differences in particle size and microstructure. However,
pure CaCO3/CaO material suffers from pore-plugging and the addition of an inert material has proved
to help reduce the sintering effect. As an example, the cycling stability of CaO derived from limestone
and from pure CaCO3 both suffers from pore-plugging mechanism, but the reaction of CaO derived
from dolomite is not limited by this mechanism due to the presence of inert MgO which helps with the
diffusion of CO2 into the material [57]. The durability of CaO pellets synthesized from CaO powder
with MgO added and from the mixture of limestone and dolomite were compared. Porous CaO powder
stabilized with MgO was synthesized, using citric acid as sacrificial template, starting from a solution of
calcium and magnesium nitrates [58]. The porous CaO powder showed optimum stability over 20 cycles
of calcination/carbonation with 10 mol% of MgO added, greatly enhancing the resistance of the material
to sintering. The other synthesis approach using dry mixing of citric acid with limestone–dolomite
mixtures was used to make MgO-stabilized CaO porous pellets. The pellets demonstrated negligible
capacity losses over the course of 20 cycles as compared to pure CaO powder. However, the pellets
made from the limestone–dolomite mixture presented a slightly lower initial thermal energy released
than MgO-stabilized CaO powder made from the nitrates reagents, and this difference was attributed
to the sintering of impurities present in the limestone–dolomite mixtures. Well-dispersed MgO
nanoparticle coating CaO/CaCO3 grains were obtained using calcium and magnesium acetate as
precursors [59]. The obtained porous material presented an enhanced resistance to pore-plugging
and sintering, together with long-term effective conversion after 30 calcination/carbonation cycles.
Samples originating from mined dolomite were also studied, and they demonstrated good qualities as
energy storage materials, because they contain impurities, such as quartz, which prevents the grain
agglomeration during the calcination/carbonation cycles [60]. The mined samples also had a high
porosity which favors gas transport within the material. In this study, the dolomite samples, commercial
with and without impurities and mined dolomite, were mixed with molten salt, NaCl:MgCl2 mixture,
which was considered to serve as catalyst. The studied mixtures of dolomite and molten salt could
sustain over 10 cycles at around 50% capacity between 450 and 550 ◦C without further loss in
capacity. A different cheap and renewable option presented recently is the use of biomineralized
CaCO3 from waste [61]. Eggshell and snailshell from food waste were investigated as potential
precursors for CaL applications. The study revealed that the results obtained on the multicyclic
conversion of the biomineralized CaCO3 were comparable to the results reported for limestone,
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with the precision that biomineralized CaCO3 required a lower temperature than limestone to reach full
calcination. Again, in comparison to limestone, the shells presented better carbonation performances
and faster decarbonation. Another waste material, carbide slag, was studied and compared to
limestone [62]. The measured optimum carbonation temperature range for energy storage using
carbide slag carbonated under 1.3 MPa was 800–850 ◦C, against slightly higher temperature for
limestone, 850–900 ◦C. Under these operating conditions, the carbonation conversion of carbide slag
was slower than that of limestone. However, the carbonated carbide slag showed higher cyclic stability
than limestone, under high pressure. Oil shale ash was also proposed to be repurposed for TCES,
as their main components are calcium, magnesium and silica, but it presented little potential for
TCES [63]. The disposal of fly ash, a hazardous material resulting from solid waste incineration and
containing CaO, was considered for its use in TCES application [64]. The analysis of the material
revealed the presence of different heavy metals, and fly ash particles would agglomerate and be
subjected to sintering when heated to 1150 ◦C. The fly ash particles could store energy, and one of the
samples could release the stored energy (240 kJ/kg) (when compared to two other fly ash samples,
it contained a higher amount of SiO2, but less Na2O and Cl−). Another work aimed to investigate the
physical and chemical characterization of six fly ash samples obtained from different municipal solid
waste incinerators, namely grate furnaces, rotary kiln and fluidized bed reactor, to determine their
potential for CO2 storage and TCES [65]. Other materials such as a calcium-rich steel and blast furnace
slags, treated with acetic acid, were considered and compared to limestone [66]. The various studied
CaO-based samples featured a complex elemental composition including Si, Al, Fe, Mg, Mn and
Cr. The study revealed the attractiveness of calcium and calcium magnesium acetates. However,
the presence of Si was reported to enhance the mesoporosity of the sample after calcination, and to
promote pore plugging. Moreover, the presence of Al was also reported to hinder the performance of
the blast furnace slag samples due to leading to the formation of calcium aluminates.

Among metal carbonates, strontium carbonate is also a very attractive material and is also
considered for implementation in solar power plants (Equation (3)) [67,68]. A recent kinetic study
focused on the investigation of the degree of the reaction, reaction rate constant, activation energy and
diffusion coefficient of carbon dioxide through a series of experiments conducted between 800 and
1000 ◦C and under a CO2 concentration of 5–40 vol% [69]. The stability of the material over several
cycles was improved by the addition of inert materials such as MgO (Figure 4). The stability of the
SrCO3/SrO system was also enhanced through the addition of Al2O3 (34 to 50 wt%), inhibiting the
sintering of the material as well as enhancing the flow of particles, and it was studied in a lab-scale
fluidized bed reactor [70]. The optimal amount of 34 wt% of Al2O3 to SrCO3 was determined to limit
the sintering. The dispersion of SrO particles before carbonation using polymorphic spacers such as
CaSO4 and Sr3(PO4)2 was used in order to answer the issue of sintering in the SrO/SrCO3 system [67].
When using Sr3(PO4)2 contents between 25 and 50 wt% the system could go through multiple TCES
cycles (10 to 30) with a stable energy storage density around 500 kJ/kg. While both calcium sulfate
and strontium phosphate seemed to hinder sintering, strontium phosphate proved to be superior
to calcium sulfate, showing higher gravimetric energy density at similar weight percentage added.
The addition of MgO to SrCO3/SrO proved to greatly enhance the cycling stability performances [33].
MgO was used to stabilize SrO-based materials using different synthesis methods: co-precipitation,
sol–gel, wet-mixing and dry-mixing [71]. The wet-mixing method, using strontium acetate hemilydrate
and porous magnesium oxide as precursors, produced the sample showing the highest performances
between 1000 and 1100 ◦C. From this method, the sample containing 40 wt% SrO exhibited a high
cycling stability (100 cycles), at 1000 ◦C with a gravimetric energy density of 0.81 MJ/kg.

SrO(s) + CO2(g) � SrCO3(s)

(∆H◦ = −241.5 kJ/mol)
(3)

A new concept of composite material based on BaO/BaCO3 was recently introduced for application
in TCES (Equations (4) and (5)) [72]. The study focused on the destabilization of BaCO3 (which is
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thermally stable up to high temperatures, 1150–1400 ◦C), for using this system at lower temperatures
(700–1000 ◦C). The material was synthesized from a BaCO3-BaSiO3 mixture and could be reduced
at a temperature 350 ◦C lower than pure BaCO3 while retaining about 60% of the energy storage
capacity. Furthermore, the material benefited from the addition of a catalytic amount of CaCO3

which improved the reaction kinetics through the formation of Ba2−xCaxSiO4 intermediate compounds.
Indeed, this improvement was attributed to the formation of Ba2−xCaxSiO4 facilitating Ba2+ and O2−

mobility through induced crystal defects. Due to the part of inactive material, the conversion rate of
BaCO3-BaSiO3 mixture with CaCO3 was about 60%, which closely relates to the expected amount of
active material.

BaO(s) + CO2(g) � BaCO3(s)

(∆H◦ = −272.5 kJ/mol)
(4)

BaCO3(s) + BaSiO3(s) � Ba2SiO4(s) + CO2(g)

(∆H850 ◦C = 126.9 kJ/mol)
(5)

Application of lithium silicate for TCES at high temperatures was proposed by Takasu et al. [73].
The carbonation/decarbonation of the system (Equation (6)) was tested in TGA under various CO2

pressures and presented a gravimetric energy density of 780 kJ/kg at around 400–700 ◦C, under 100%
CO2, with good durability over the course of 5 cycles.

Li4SiO4(s) + CO2(g) � Li2CO3(s) + Li2SiO3(s) + ∆Hr

(∆Hr = −94 kJ/mol)
(6)

The carbonation of transition metals was also considered to provide new materials for TCES at
temperatures below 500 ◦C [74]. The carbonation of CoO, MnO, PbO and ZnO was studied, to obtain
CoCO3, MnCO3, PbCO3 and ZnCO3, respectively, under high CO2 pressure (8–50 bar), along with
the effect of moisture and temperature (25–500 ◦C). Among these, only ZnCO3 could not be obtained.
At temperatures between 50 and 500 ◦C, in the presence of moisture under 8 bar CO2, the corresponding
ternary oxides of CoO and MnO were obtained. In the same conditions, PbO reacted to give both
PbCO3.PbO and PbCO3.2PbO, and the latter was successfully cycled by varying the pressure between
8 and 2 bar. The carbonation of MnO and PbO was also observed in a reactor, under 50 bar in the
presence of water.

4. TCES systems Based on Metal Oxides

Metal oxide based TCES systems are especially attractive as they permit working with an open
cycle, using air (Equation (7), Figure 5). For this reason, the study of metal oxide systems in similar
conditions with control of oxygen partial pressure (pO2) is important. As a common trend, it can be
observed that the reduction temperature decreases together with lower partial pressure of the reactive
gas (O2). The variation of the temperature as a function of pO2 was illustrated using a Van’t Hoff

diagram for several metal oxide pairs (Figure 6).

MOred(s) + O2(g) �MOox(s) + ∆Hr (7)

The potential of CuO/Cu2O, Co3O4/CoO, Mn2O3/Mn3O4 and Pb3O4/PbO was investigated under
isotherms while varying pO2 between 0.5 and 0.8 bar [75]. The copper and cobalt oxides showed good
reversibility, but manganese oxide showed a beginning of sintering and lead oxide was eliminated as
it showed no potential under these operating conditions. The Cu2O/CuO system is also interesting
as it possesses high reaction enthalpy and reacts at high temperatures [76]. This system was studied
between 800 and 930 ◦C and focused on the effect of partial pressure variation on the reaction kinetics
with pO2 = 0.1, 0.2, 0.5 and 1.0 bar. The Avrami-Erofeev’s two-dimensional nucleation model (A2)
was determined as the best fitting conversion model and gave an activation energy of 233 kJ/mol,
with a frequency factor of 5 × 109 1/s. The potential of liquid multivalent metal oxides was tested in
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liquid chemical looping thermal energy storage (LCL-TES) [77]. The free Gibbs energy of PbO/Pb,
MnO2/Mn and BaO2/Ba, were determined using the Ellingham diagram, and these oxides were
eliminated for TES application as their ∆G◦ were found to be positive. Conversely, the negative ∆G◦

of PbO2/PbO, PbO2/Pb3O4, Pb3O4/PbO, CuO/Cu2O and Sb2O5/Sb2O3 validated them as potential
candidates. CuO/Cu2O presented the highest total enthalpy of 404.67 kJ/mol, but formation of the
molten phase occurred at very high temperatures (~1200 ◦C), and the corrosiveness of the system when
molten would make the implementation difficult. Pb oxides were noted as easier to implement since
lead’s melting temperature is below 1000 ◦C even though the associated total reaction enthalpy is lower
(250.09 kJ/mol) and toxicity may be a barrier. The integration of CuO/Cu2O to TCES processes was
considered, and the reaction kinetics and stability of the material was studied in a fixed-bed reactor [78].
Kinetic models were derived for the charging and discharging steps using isokinetic and isothermal
measurement. The cycling of Fe2O3/Fe3O4 was studied using pressure-swing by performing the
reduction under vacuum and the re-oxidation using compressed air stream [79]. The study of BaO2/BaO
revealed its capacity to undergo several redox cycles without deactivation (Equation (8)), using a
thermal pre-treatment at high temperatures to enhance the oxidation conversion of the material [80].
Since the high temperature pre-treatment eliminated impurities in the sample, it is speculated that a
high purity of BaO2 would show better redox performances.

2BaO(s) + O2(g) � 2BaO2(s)

(∆H◦ = −86.3 kJ/mol BaO)
(8)

Moreover, it was demonstrated that mixed metal oxides (e.g., Mn-Fe-O) can exhibit higher reaction
enthalpy and cycling durability than the related pure metal oxide (Mn2O3) [81–83]. Other parameters
can be tuned via metal oxide doping, such as the reaction kinetics and the gap in temperature between
the charging and discharging steps of the system, and the cost of the energy storage material must also
be taken into account for future system implementation [8,84–88]. In addition, for specific systems,
such as Co-Fe-O, a linear correlation between the variation of the oxygen mass loss/gain and the
reaction enthalpy was observed (Figure 5) [84]. Several mixed oxide systems were reported for their
high potential for TCES by several studies, such as cobalt oxide/iron oxide, copper oxide/cobalt oxide,
copper oxide/manganese oxide and manganese oxide/iron oxide [82,84–86].
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Mn2O3/Mn3O4 is a largely studied redox system for TCES application (MnO2 was eliminated
because of no reversibility [8]), due to the relatively high gravimetric energy storage density of the
material and its availability, low toxicity and cost. However, the stability of this system decreases greatly
over several oxidation/reduction cycles due to sintering and to the formation of the hausmannite phase
which decreases the reversibility [84]. The doping of Mn2O3 with silicon oxides is a recently investigated
option to answer the reversibility issues of manganese oxide-based TCES systems. The reactivity
and stability of Mn/Si particles were studied in a packed-bed reactor using 2 to 10 wt% added silica,
with an interest for Si-doping potential to help spontaneous O2 release and increase the stability
of the material over several reduction/oxidation cycles [89]. In both TGA and packed-bed reactor,
the sample composed of 6 wt% SiO2 and 94 wt% Mn3O4 presented the highest amount of oxygen
release. In addition, MnSiO3 particles demonstrated a good physical stability under air at high
temperatures. The effect of Si4+ doping to Mn2O3 on the reactivity and stability of the Mn2O3/Mn3O4

system was also studied, over 40 reduction/oxidation cycles [90]. The re-oxidation of Mn3O4 was
improved with the introduction of Si cations, especially for a sample synthesized via a sol-gel method
using 1 mol% Si-doping. The segregation of Si4+ on Mn2O3 grain surfaces was observed and proved to
help control and reduce the diffusivity at the grain boundaries. A method based on a combination of
drop calorimetry and acid-solution calorimetry was used to measure the total enthalpy and standard
enthalpy of materials forming at high temperatures, Mn-Mg oxides, involving tin (II) chloride as a
reducing agent to increase their dissolution rate [91,92]. With this method, the chemical energy storage
found for Mn-Mg-O systems (1000–1500 ◦C, pO2 = 0.2 atm) with different molar ratios of Mn/Mg
(2/1, 1/1, and 2/3) was 565.3 ± 54.8, 586.3 ± 55.0 and 590.9 ± 62.5 kJ/kg, respectively. The volumetric
energy density of the 1/1 composition under pO2 = 0.2 atm was measured at 1813 ± 175 MJ/m3 during
the reduction [93]. The study concludes that the manganese ratio should not be raised above 2/1.
The study also investigated further doping of the manganese-magnesium oxide system with cobalt,
iron, zinc or nickel oxides, which did not improve the reactivity, energy density nor stability of the
system. Among the investigated metal doping for the enhancement of manganese oxide cycling
performances, the addition of iron was demonstrated to yield especially good results. A study focusing
on the mixed oxide (Mn0.7Fe0.3)2O3 investigated the improvement of the particle stability via the
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addition of either 20 wt% TiO2, ZrO2 or CeO2 [94]. All the tested additives permitted an improvement
against the manganese oxide particle agglomeration. However, the addition of TiO2 showed to have a
negative effect on the chemical reactivity of the oxide, while the addition of ZrO2 brought the best
enhancement towards increasing the attrition resistance of the particles. The effect of the addition of
Al2O3, Fe2O3 and ZrO2 to manganese oxide spray-dried particles on their energy storage capacity,
flowability and physical and chemical stability was studied [95]. The samples mixed with zirconia and
alumina allowed the individual particles to better retain their structure; however, the sample containing
iron performed better during redox cycles. A reaction enthalpy of 175.7 kJ/kg was measured for the
mixture with Mn2O3 and 67 wt% Fe2O3 prepared by intensive mixing, which then performed better
than the spray-dried sample with similar composition (contaminated with sodium). The formation of
a spinel MnFe2O4 was obtained through the reduction of a mixture of 2:1 Fe2O3:Mn2O3. The reaction
of re-oxidation was described through two reaction mechanisms, starting with a diffusion-controlled
reaction mechanism with no phase change, and followed by a nucleation-growth reaction mechanism,
with activation energies of 192 and 181 kJ/mol for each reaction, respectively. A similar mixed
oxide with Fe/Mn (2:1) was studied in a packed-bed reactor using small particles (0.5–1.0 mm) of
iron-manganese oxide [96]. This work also presents a model comparing heat transfer, mass transfer and
the thermochemical reaction with experimental data. Tests in a lab-scale tube reactor, between 800 and
1040 ◦C in air, were conducted on a previously validated Fe/Mn 1/3 granular mixture which showed
no degradation over the course of 17 cycles [97,98]. The experiment demonstrated the presence of
characteristic temperature profiles along the bed height, which were shown to be dependent on the
thermodynamic properties and kinetic behavior of the redox reaction. The tuning of the reaction
temperatures of oxides is very important to optimize the system energy storage since the gap in
temperature between both charge and discharge steps can be reduced. Co-doping, using Fe and Cu,
on manganese oxide was used to reduce this gap in temperature [83]. Indeed, the incorporation of Fe
to the system was used to increase oxidation temperature, and Cu addition was used to reduce the
reduction temperature. The gap in temperature was decreased from 225 ◦C for pure manganese oxide,
to 81 ◦C for a composition with 20 mol% Fe and 5 mol% Cu. However, the addition of Cu induced a
decrease in the reduction rate and a gradual decrease in the oxidation rate, which was attributed to the
formation of segregated mixed Mn–Cu spinel.

Cobalt oxide based TCES systems have demonstrated the best performances among pure metal
oxides, with high enthalpy and excellent cycling stability (Figure 7a), and are attracting attention for pilot
scale tests [99]. However, this still leaves room for improvement and attempts to reduce the material cost
and toxicity via the synthesis of mixed oxides [81,85–87,100]. In addition, the temperature gap between
the reduction and oxidation step could be reduced with the same approach (Figure 7b). Storage material
made from inert honeycomb supports (cordierite) and coated with cobalt oxide was studied at
pilot-scale [99]. A large amount of redox material (88 kg) was cycled for 22 charging/discharging
cycles with absence of degradation. The Co-Mn-O system demonstrated good reversibility for low
amounts of manganese, and an increase in temperature compared to the pure oxides [81]. The reaction
temperature of various Co-Mn mixed oxides, Co3−xMnxO4 (0 ≤ x ≤ 3), was investigated between 850
and 1700 ◦C [101,102]. The measured reaction temperatures for Co2.5Mn0.5O4, Co2MnO4, Co1.5Mn1.5O4,
CoMn2O4 and Co0.5Mn2.5O4 were (red-ox) 980–910, 1129–1050, 1230–1162, 1320–1260 and 1428–1410◦C,
respectively. The phase transition from the cubic-to-tetragonal phase within 1.2 < x < 1.9 was thoroughly
examined. The mixed oxides presented higher enthalpies than the respective pure oxides, with the
Co1.5Mn1.5O4 sample showing the highest enthalpy (1264 kJ/kg). The mixed oxides have higher
reduction temperatures than pure Co3O4, reaching up to 1428 ◦C for Co0.5Mn2.5O4.
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5. TCES Systems Based on Perovskites

Perovskites have also been considered as an innovative option for TCES application. Taking advantage
of oxygen vacancies in perovskites structures and their oxygen ion conducting properties, ABO3 perovskites
can be used to store energy via O2 exchange (Equation (9)). Some perovskites offer the interesting ability
to store and release oxygen in a continuous way following the variation in temperature [103] (Figure 8).
Different perovskites with Fe, Co or Mn on the B site were studied, and Co-based perovskites showed
the highest O2 exchange capacity together with high reaction enthalpies [103]. The enhancement of
O2 exchange capacity in these systems was achieved with the presence of Ba on the A site (BaCoO3,
BaFeO3 and Ba0.5Sr0.5CoO3), as compared to the presence of Sr. However, only BaCoO3 could be
re-oxidized completely under 20% O2 atmosphere.

ABO3−δ� ABO3-δ-∆δ + 1/2 ∆δO2 (9)

The BaySr1−yCoO3−δ system was also studied, along with LaxSr1−x (Mn, Fe, Co)O3−δ, by Gokon
et al. [104]. The study concluded on the suitability of Ba0.3Sr0.7CoO3−δ and Ba0.7Sr0.3CoO3−δ for
TCES above 600 ◦C in air stream. It was noted that no direct correlation was observed between
the oxygen storage capacity and the tendency of the heat storage capacity for these systems.
For comparison, it is mentioned that the charging/discharging capacity of Ba0.3Sr0.7CoO3−δ is higher
than that of Fe-doped manganese oxides, which have been shown to be a promising system for TCES.
The LaxSr1−x(Mn, Fe, Co)O3−δ system was studied further with focus on the LaxSr1−xCoyMn1−yO3−δ

(LSCM) and LaxSr1-xCoyFe1−yO3−δ (LSCF) series [105,106]. TGA and structural investigation revealed
that the systems with low La content presented the highest redox activity, with an optimum reached
for x = 0.3, while the perovskites adopted a cubic structure, or tetragonal structure for LSCM. Higher
La content led to a higher distortion in the perovskite structure, related to a decrease in redox activity.
Among all the systems studied, the LSCM3791 composition presented the highest gravimetric energy
density (250 kJ/kg-ABO3). Very recently, dual-phase La0.65Sr0.35MnO3−xCeO2 composites (with x = 0,
5, 10, 20, 50, and 100%) were investigated for oxygen exchange and CO2 splitting, via thermochemical
redox reactions, for the purpose of fuel production [107]. This work demonstrated the enhancement in
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oxygen exchange obtained for the La0.65Sr0.35MnO3 type perovskite material using the addition of ceria.
The composite material presented higher oxygen release and high CO2 conversion for solar-to-fuel
production. Another Co-based perovskite, YBaCo4O7+δ, was recently investigated for its suitability for
thermochemical cycles and solar thermochemical fuel production, although at medium temperature
(275–400 ◦C) [108]. The material, studied with TGA and within a small-scale vacuum test, presented
low kinetics at low pO2 level. Along with the influence of pO2, the temperature and the particle size
also showed an impact on the oxygen uptake capacity and kinetics of YBaCo4O7+δ.
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The Ca-Mn-based perovskite system has also attracted strong attention for TCES, for example
with the doped calcium manganite CaBxMn1−xO3−δ (with x = 0.2 and B = Al or Ti) [109].
This class of perovskite offers the highest reaction enthalpy (390 kJ/kg) among perovskites systems
studied for this application. When compared to La0.3Sr0.7Co0.9Mn0.1O3−δ, the materials require a
higher reduction temperature and then present a higher reaction enthalpy for the reduction step.
In addition, CaBxMn1−xO3−δ possesses a reduced molecular weight (35% less), reducing the cost of
potential implementation as the storage capacity is increased per mass of material, and reaction
enthalpy extraction can be carried out at up to 1250 ◦C (pO2 = 0.001 atm). Systems such as
Ca1−xSrxMnO3−δ have also demonstrated interesting properties while being studied for TCES [110–112].
Similar variations were observed among different compositions for Sr-doped CaMnO3−δ materials—e.g.,
Ca0.9Sr0.1MnO3−δ—such as an improved conversion efficiency (solar-to-electric) with higher reduction
temperature and higher pO2, during the reduction and with no reduction in the specific energy
storage capacity [111]. A thorough screening of A-site doped Ca1−xSrxMnO3−δ and B-site doped
CaMeyMn1−yO3−δ (with Me = Cr, Ti, and Fe and y ≤ 0.1) was conducted. The study investigated
the oxygen non-stoichiometry (δ) of the various systems according to temperature and pO2 [113].
The compositions Ca1−xSrxMnO3−δ (x = 0.05 and 0.10) and CaCryMn1−yO3−δ (y = 0.05 and 0.10) were
selected for further characterization. Among them, the Sr-doped Ca1−xSrxMnO3−δ compositions
exhibited the highest specific energy storage capacity with a thermodynamic limit of ≈700 kJ·kg−1

(900 ◦C, pO2 = 10−4 bar). The CaCr0.1Mn0.9O3−δ composition also showed good potential for TCES,
with close performances to CaMnO3−δ in terms of oxidation temperature, mass-change and reaction
enthalpy, and in addition, the B-site chromium doping raised cycling durability of the perovskite
material [114]. Recently, CaMnO3−δ and CaCr0.1Mn0.9O3−δ were identified as the most promising
compositions out of different Ca-Mn-based perovskites studied for oxygen atmosphere control in solar
thermochemical processes [115]. Aluminum-doped calcium manganite CaAl0.2Mn0.8O3−δ particles
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were synthesized and tested in a 5 kWth scale (seven-lamp high-flux solar simulator) reactor under
vacuum for TCES via reversible point defect reactions [116,117]. The material was introduced to the
reactor in the form of particle flow using temperatures up to 900 ◦C to avoid particle agglomeration.
The performances of the reactor were assessed for particle flow varying between 230 and 300 g/min,
reactor inclination angle from 31◦ to 35◦ and radiative heat flux of 4.3 to 5.2 kWth. The study of the
Cu-doped perovskite system SrFeO3−δ, SrFe1-xCuxO3−δ, demonstrated that with x = 0.05 both Cu
and Fe are reduced, while for x = 0.15, the reduction occurs with a change in Fe oxidation state [118].
The re-oxidation of the material is fast around 150 ◦C, and the system is considered for oxygen
storage application.

6. Conclusions

The most developed TCES systems were reviewed as this energy storage approach offers interesting
prospects in view of future integration in solar processes for the aim of continuous round-the-clock
operation. The relevant solar processes for high temperature energy storage application are the power
production via thermodynamic cycles in CSP plants, but also the thermochemical processes requiring
high temperature process heat to drive endothermal reactions (such as industrial processes for cement
or iron/steel production, as well as chemical and fuel production processes). The main benefits of
thermochemical energy storage over the other commonly-used and more developed storage systems
(sensible or latent) are the possible long-term storage in the form of stable chemical materials, the high
energy storage densities accessible and the heat storage at high temperatures in a wide range (from 400
to above 1000 ◦C). The main targeted benefits offered by TCES are the possible 24/7 operation and
continuous production under fluctuating and intermittent solar irradiation conditions. This review
shows that research is currently active in the fields of hydroxides and carbonates (mainly Ca-based),
but also metal oxides and perovskites that allow operating in open loop under air as both the heat
transfer fluid and the gaseous reactant (oxygen) during the heat charge/discharge steps. Strong research
efforts and strategies are deployed to optimize the materials reactivity/stability over multiple cycles
and avoid any loss in performance. Alternative materials are also being searched, such as abundant
and low-cost ore minerals, residues from industrial wastes or side products for their potential use as
TCES material. The materials’ shaping and integration in reactor systems for heat storage and release
are also another area of interest that requires the design and optimization of suitable reactor and
heat exchanger concepts. Further investigations in the area of TCES should also focus on the kinetic
investigations of the charge/discharge steps for practical implementation of TCES systems. Finally,
systems analysis (heat and mass flow optimization, dynamic simulation for investigating impact of
transient effects, energy/exergy performance analysis), process flowsheets and techno-economic analysis
of the integrated system are also necessary to demonstrate the beneficial impacts of thermochemical
energy storage on increasing the capacity factor of the solar plant thanks to continuous operation and
on enhancing the viability of the whole solar process.
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