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Abstract: The purpose of the “Made in China 2025” strategy is to enhance the innovation capabilities
of the local manufacturing industry and achieve green and sustainable development. The role of
innovation in the development of manufacturing is a hotspot in academic research, though only
a few studies have analyzed the interaction between green technology manufacturing efficiency
and its external innovation capabilities. This study used the 2011–2017 Chinese A-share listed
manufacturing companies as samples to discuss whether regional innovation capabilities can promote
the improvement of green technology manufacturing efficiency. The results showed that a significant
spatial correlation between regional innovation capability and green technology manufacturing
efficiency was prevalent within spatial heterogeneous bounds. In addition, regional innovation
capability directly promoted the effective manufacturing of green technology efficiency, which was
strongest in the eastern region of the country. Regional innovation capabilities also had a positive effect
on human capital and government revenue, thereby further enhancing the green technology efficiency
of manufacturing through the intermediary effect. Based on the above conclusions, some policy
recommendations are put forward to facilitate the improvement of China’s regional innovation
capabilities in terms of green technology efficiency in manufacturing.

Keywords: innovation capability; spatial association; industry upgrade; Tobit model; intermediary effect;
sustainable development; China

1. Introduction

Over the past few decades, many countries have begun to take sustainable action in anticipation
of environmental backlash [1]. Global climate change is the basis for a universal awareness of
environmental protection for future generations. It also encourages innovation in various facets of
human life. Previous research from India highlighted that changes within the energy industry strongly
interlinked energy, population, and urbanization [2]. In terms of reducing environmental impacts, the
emergence of “green innovation” has increasingly become a popular trend in research, as well as a
point of discussion for academics, industry partners, and politicians alike [3,4]. Schiederig et al. [5]
summarized green innovation into six essential elements: innovation object (i.e., product, process,
service, and method), market orientation, innovation environment, its full life cycle (i.e., as the
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central consideration for material flow reduction), intention toward the reduction of economic or
ecological demands, and green standards (i.e., in terms of the firm). Despite this, the implementation
of green innovation often encounters challenges when applied in non-green industries due to the
limitation of new resources and the competencies and capabilities of the industry in terms of changes
to the production processes [6]. In the application of green innovation, modifying many factors,
as well as the role of participants, should be the first step in terms of developing an environmental
protection-based system. Reciprocally, the use of the sustainable resources and green technological
processes of the system should be highly dependent (i.e., correlative) to the product market [6,7].
As such, green technology plays a vital role in achieving green sustainable development programs.

The National Bureau of Statistics of China announced that China’s total manufacturing volume
has been ranked first in the world for many consecutive years, in which the added value from the
manufacturing industry accounted for 27.17% of GDP in 2019. China’s economic growth is greatly
influenced by developments in the manufacturing industry. However, its manufacturing industry
has a weak independent innovation capacity and a low resource utilization rate, causing a series of
environmental pollution-related problems. As a result, the Chinese government has been focusing
on formulating policies to increase research and development investment specific to this field [8,9].
In terms of reducing greenhouse gas emissions, as well as pushing for renewable energy, China has
begun to develop renewable energy sectors more actively since 2005. This was marked by the issuance
of supporting measures and regulations for stimulating renewable energy development [10,11].
Apart from the many factors that motivated the formulation of policies in terms of stimulating
these sectors, increases in the budgetary allotment have been extraordinary and have become essential
in supporting the effort to save the environment. Innovations in the field of green technology
have also led to more effective, efficient, and economical systems [12]. Thus, conducting research
on the manufacturing industry’s green technology efficiency in correlation with innovation in
China, including green technology and its application to support the sustainability of green
development programs, is crucial.

The application of green technology in China has been a growing concern for the
Chinese government, which has been working on encouraging many enterprises to apply this
technology to activities in all regions [13]. With the widespread application of green technology
throughout many industries nationwide, a key issue is how to formulate the development of green
technology efficiency and measure regional differences in terms of implementation. It becomes
apparent that the spatial correlation between the developing regional innovation and the efficiency of
applied green technology overlaps. Previous studies have discussed enterprise preparedness for green
innovation in terms of technological, environmental, organizational, and policy constraints [11,13,14].
However, limited studies have been conducted to reveal the regional innovation related to green
technology efficiency and its implementation. First, most of the studies on the relationship between
innovation and technological efficiency are from the perspective of enterprise innovation investment,
with limited studies from a research perspective. Second, the evaluation indicators of existing regional
innovations are expressed mostly in terms of the number of published papers or patent authorizations.
The indicator system is relatively unrepresentative, which makes it difficult to reflect upon the actual
(i.e., complete) regional innovation capability. Finally, the role of geographic space is generally ignored,
and the regional heterogeneity and spatial correlation between research elements are not considered.
Listed companies, as representatives of high-quality enterprises, need to accept external auditing,
which involves disclosing its information publicly such that its data is transparent and easily accessible.

This study used the spatial autocorrelation and Tobit model to select 2011–2017 Chinese A-share
listed manufacturing companies as the research sample to answer whether regional innovation
ability directly affects the green technology efficiency of China’s manufacturing industry. In addition,
regional innovation has a significant spillover effect that inevitably affects factors such as human capital,
government revenue, and the waste treatment rate [15]. Can changes in the above factors indirectly
affect the green technology efficiency of manufacturing? Differences in resource endowments in various
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regions will cause differences in innovation capability and technical efficiency [16]. As such, it is
necessary to explore the heterogeneity of the impact of different regions’ innovation capabilities on their
green technology manufacturing efficiency. Thus, the foregoing is an attempt to analyze the impact of
regional innovation capabilities on the efficiency of green technology in China’s manufacturing industry,
where three aspects are examined: (1) direct effects, (2) spatial heterogeneity, and (3) indirect effects.
The specific research framework is shown in Figure 1.
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The contributive factors of this research were central to the following three viewpoints.
First, it combined geographical and economic methods to comprehensively explore the interaction
between regional innovation capabilities and green technology manufacturing efficiency, as well as
compensated for the shortcomings of the existing literature. Second, it innovatively explored the effects of
manufacturing external innovation capability on its green technology efficiency, broke the constraints of
traditional enterprise perspective research, focused on urban units, and expanded the research perspective
of the interaction between innovation and technological efficiency. Third, it sorted out the direct and
intermediate roles between regional innovation capabilities and green technology manufacturing efficiency
by providing theoretical and practical guidance for enterprises and government, which can help with
decision-making and efficiency. The paper is organized as follows: Section 2 reviews the literature,
Section 3 introduces the indicator construction and data sources, Section 4 lists the research methods,
Section 5 illustrates the spatial correlation and empirical analysis results regarding regional innovation
capability and green technology efficiency of China’s manufacturing industry, and Section 6 elucidates the
concluding remarks and policy implications.

2. Literature Review and Theoretical Framework

2.1. Literature Review

The significant impact of climate change has brought forth a worldwide paradigm shift, especially in
terms of the use of green technology. Previous research has shown that a government’s essential role
in encouraging the application of green technology in industry varies greatly [17,18]. The application
of green technology will differ and be influenced by the capacity and ability of institutions that are
specific to each country. Green technology policy requires not only consistency from the industry
but also political stability from political actors in a country. The framework of its development plan
needs to be sustainable, as well as flexible, and should not be changed due to political intervention [17].
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Therefore, political, economic, and sustainable promotion in a country should encourage the industry
and society at large to create more effective and efficient innovations in the field of green technology.

Since 2006, when the Chinese government began to adopt strategic policies, by encouraging
innovation-driven development, it began driving significant social and economic development by
focusing on industries such that they could develop rapidly through extraordinary innovation [19,20].
Government funding and tax incentives played, and continue to play, an important role in
promoting green technology innovation. This interaction, i.e., between government regulations
and government research, has been a vital part of promoting green product innovation [18].
Various studies have indicated that government regulations contribute significantly to low-carbon
technology innovation compared with technology pushes and the market [21]. Based on the evidence,
the importance of government regulations and initiatives to promote innovation (i.e., especially in
terms of green technology applications) in industry can be observed.

According to the results of a study conducted in a democratic country, no direct correlation between
democracy and innovation could be found [22]. The national innovation activities are located mostly
in areas where companies, universities, and governments interact directly and the encouragement
of the local government in such innovation is crucial [23]. Thus, understanding how the influence
of innovation in certain regions effectively and efficiently supports and maintains the sustainable
implementation of green technology becomes paramount to its realization and advancement [22,23].

In terms of China, the manufacturing industry has not only become its main economic contributor
but also the most important contributor to energy consumption and environmental pollution,
which has signaled an urgency for the development of green technologies in manufacturing [24].
Previous studies showed that the development of green growth was influenced considerably
by a paradigm shift in China’s manufacturing industry, which had begun to move toward a
green-oriented focus regarding innovation. At the same time, however, the disparity in the inefficiencies
between the western and eastern regions of China was also increasing [8,25]. Different research
concluded that green growth performance in China is profoundly influenced by regional innovation
capacity, technological innovation, and the technical and institutional instrument coordination [26].
Based on this evidence, regional innovation is also key to the success of green technology
implementation. However, differing results experienced in each region due to varying causes,
e.g., geographical location, economic development, flexible innovation mechanisms, the role of a strong
market economy, intellectual property protection, corporate credit, market financing, and government
public education investment, should be taken into account [26,27].

Strict environmental regulations and openness to external international policies have encouraged,
and to some degree compelled, the application of green technology in China’s manufacturing
industry. This increase in green development, especially in China’s high-end manufacturing industry,
is not in line with the innovation and efficiency of green technology compared with the traditional
manufacturing industry [28]. This continual adjustment has resulted in a win–win scenario for
its manufacturing industry. Other research from Shenzhen showed that regional innovation is
significantly dominated by large, high-tech firms and the dynamics of high-tech entrepreneurship,
which is closely related with high impact human capital (i.e., high-quality talents) [29]. In summary,
the topic of green development, which includes innovation and green technology and development,
has attracted the attention of many scholars, industry, and the government. The growing awareness and
importance within the field exemplify key issues in terms of environmental and human sustainability
for future generations. Further research recommendations include conducting more in-depth,
innovation-oriented, region-based studies and exploring the effects on the efficiency of green technology,
as well as how the effects of intermediary variables and many others have been echoed [29,30]. Based on
a review of the existing literature, this research sought to contribute to the knowledge base and fill the
literature gap with a focused study on manufacturing industries in China. This is important because
this industry is not only a significant contributor to the economic growth of China but also a significant
contributor to pollution and related environmental issues.
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2.2. Theoretical Framework

2.2.1. Direct Effect

Regional innovation is the fundamental driving force for promoting social and economic
development. It started with investments in technology development, with the ultimate goal of converting
technological outputs into commercial value [31]. The direct impact of regional innovation capability
on the efficiency of manufacturing green technology is mainly manifested in (1) enterprises innovating
energy-saving and environmental protection technologies that change production methods and
eliminating high-energy-consuming old technologies through new technologies, and (2) reducing
energy consumption and pollutant emissions in the production process and realizing the improvement
of green technology efficiency in manufacturing [32]. Based on these direct effects, this study proposed:

Hypothesis 1. Regional innovation capabilities can directly promote the progress of green technology
manufacturing efficiency.

2.2.2. Spatial Heterogeneity

The location conditions of different spatial regions are heterogeneous because different locations have
different attributes or qualifications and the elements provided for human production are also different [33].
The geographical differences in the manufacturing industry will lead to differences in the number of
universities and scientific research institutes, traffic accessibility, government technology policies,
infrastructure, and other innovation factors, which will affect the differences in the absorption,
creation, and transformation of green technology efficiency in different regions. Therefore, in terms of
spatial heterogeneity, this study proposed:

Hypothesis 2. The impact of different regional innovation capabilities on the efficiency of manufacturing green
technology has spatial heterogeneity.

2.2.3. Indirect Effect

Regional innovation capabilities have an important impact on human capital, government revenue,
and waste treatment rates, and these factors inevitably have an indirect spillover effect on green technology
manufacturing efficiency. First, regions with a higher level of regional innovation capability can attract
more high-quality talents who bring advanced production technology and management experience to
promote the improvement of green technology efficiency in manufacturing [34]. Second, the improvement
of regional innovation capability adds vitality to social and economic development, thereby promoting
the increase of government revenue, and providing strong support and guarantees for the update of green
technology manufacturing efficiency. Third, the innovation of resource recycling and waste treatment
technology can improve the reuse and distribution of resources, increase the efficiency of raw materials
and energy use, and thus promote the progress of green technology efficiency in manufacturing [35].
As a result of these indirect effects, this study proposed:

Hypothesis 3. Regional innovation capabilities can indirectly promote the progress of green technology efficiency
in manufacturing through human capital, government revenue, and the waste treatment rate.

3. Indicator Construction and Data Sources

3.1. Construction of a Green Technology Efficiency Index System for China’s Manufacturing Industry

The green technology efficiency of the manufacturing industry is essential for obtaining the largest
possible economic output (i.e., in terms of manufacturing) with the least input from production factors
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and the lowest environmental cost, thereby reflecting the relationship between the manufacturing
economy and resource utilization and environmental protection [36]. Jorgenson [37] decompose
inputs into three major elements: labor force, capital, and energy. This study took the total number
of employees, fixed asset net worth, and hydroelectric energy consumption of the listed companies in the
manufacturing industry as input indicators, as well as the operating income as the measure of economic
benefit output, to build the green technology efficiency index system of Chinese manufacturing,
based on input–output theory. The methods of measuring industrial technical efficiency were divided
into data envelopment analysis and stochastic frontier analysis. Because traditional data envelopment
analysis cannot process time series data, it is not suitable for the study of efficiency-influencing
factors using panel data and ignores the effects of random factors on the efficiency estimation;
contrarywise, the stochastic frontier analysis method compensates for the above shortcomings and is
employed as a viable measuring approach.

3.2. Construction of the Regional Innovation Capability Index System

Regional innovation capability is aimed at enhancing the driving force of regional economic
growth, giving full play to the enthusiasm of regional innovation behaviors, efficiently allocating
regional innovation resources, and transforming innovative ideas into the comprehensive capabilities
of new technologies, new products, new processes, and new services [38]. This study referred to the
index systems of the OECD Innovation Index and the China Science and Technology Development
Strategy Research Group. Based on the principles of scientificity and representativeness, this research
comprehensively built a regional innovation capability index system from the three dimensions of
knowledge production capability, technological innovation capability, and innovative infrastructure,
with a total of 12 indicators (Table 1). Then, the entropy method was used to calculate the comprehensive
index of each city’s innovation capability (INN).

Table 1. Index system for innovation capacity.

Target Layer Feature Layer Indicator Layer Unit

Regional
innovation
capability

Knowledge
innovation
capability

Number of ordinary colleges and universities Institute instead

Number of full-time teachers in ordinary
colleges and universities Person

Public library book collection Ten-thousand volumes

Proportion of education expenditure that made
up local public financial expenditure %

Technological
innovation
capability

Number of employees in scientific research,
technical services, and geological exploration Person

The proportion of foreign capital actually used
in that year as a percentage of GDP %

Total patent grants at the end of the year Grant

Science and technology expenditure accounts
for the local public finance expenditure %

Innovative
infrastructure

Greening rate of the built-up area %

Telecommunications revenue Ten-thousand yuan

Number of Internet broadband users Ten-thousand households

Urban road area at the end of the year Ten-thousand square meters

3.3. Control Variable Setting

Controlling other variables that affect the efficiency of green technology in the manufacturing
industry is necessary to obtain unbiased estimation results. This research systematically and
comprehensively selected control variables from the perspective of manufacturing (i.e., city) and itself
(i.e., industry). First, the economic development level in the form of regional gross domestic product
(GDP) and foreign cooperation (FC) indicators were selected at the city level. Economic development
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provides abundant capital support for the rise of green technology efficiency, and regions with
high levels of economic development having higher levels of industrialization and relatively
complete environmental policies. Hence, regional GDP was used to measure the level of urban
economic development [39]. The cooperation between local and foreign enterprises, and as a result,
the knowledge and technology spillover effect in mutual exchange may promote the improvement of
production efficiency. However, when foreign capital enters, it will also squeeze the market share of
domestic enterprises, thereby inhibiting their development, which is not conducive to the improvement
of the local green technology manufacturing efficiency. The number of foreign direct investment contract
projects was used to measure the variables of foreign cooperation. Second, government subsidies (GI)
and manufacturing scale (MS) indicators were selected at the industrial level. Government grants to
enterprises reduce the cost and risk of upgrading the technology efficiency of enterprises but they
may also have a “crowding out effect” [40]. The level of government subsidies to manufacturing
is measured by government investment in enterprises. If a certain scale of the manufacturing
industry is formed in the city, it will inevitably bring about the concentration of enterprises in
the upstream and downstream industrial chains and the improvement of the infrastructure level,
which will contribute to the improvement of the technological efficiency of those enterprises [28].
On the downside, the continuous expansion of the manufacturing industry in cities may bring
about environmental pollution, vicious competition, and reduction of market management and
control capabilities, which will damage the efficiency of green technology. As a result, the value of the
total assets of manufacturing enterprises was employed to represent the manufacturing scale variables.

3.4. Selection of Intermediary Variables

Human capital, government revenue, and the waste treatment rate as intermediary variables
were used to explore the indirect impact mechanisms of regional innovation capability on green
technology manufacturing efficiency. Human capital (HC) was measured using the number of students
in ordinary colleges and universities. Innovation activities require a large number of high-quality,
professional talent, and as such, the improvement of human capital will promote the upgrading of
green technology manufacturing efficiency [35]. Government revenue (GR) was characterized by
public fiscal revenue. Schumpeter’s innovation theory states that innovation is the endogenous driving
force for economic development. The improvement of the economic development level will inevitably
bring about an increase in government revenue. The government builds a complete green ecology
for the manufacturing industry through fiscal and tax policies [39]. The waste treatment rate (WTR)
variable was obtained using the entropy method to comprehensively calculate the three indicators
of general industrial solid waste: comprehensive utilization rate, centralized treatment rate of the
sewage treatment plant, and harmless treatment rate of domestic garbage. Innovation promotes the
technological upgrading of the waste treatment industry, while the technological innovation of the
waste treatment rate promotes the improvement of the overall green technology efficiency of the
manufacturing industry.

3.5. Data Sources

This study merged listed manufacturing companies in Chinese prefecture-level cities and above
as research units. The Renminbi common stocks (i.e., A-shares) only include companies registered
in mainland China, Chinese Taiwan, Hong Kong, and Macau were temporarily not listed as analysis
objects. The observation period of this study was 2011–2017 to address the issues on the availability
and completeness of data since Chinese listed companies had fewer requirements regarding the
disclosure of environmental information before 2011. The data of listed companies in China’s
manufacturing industry were obtained from the Choice database (i.e., http://choice.eastmoney.com/),
and the total amount of urban patents obtained was from the Chinese Research Data Service Platform
(i.e., https://www.cnrds.com/Home/Index/). All other data were derived from the “China City
Statistical Yearbook” of the corresponding year. The missing data were extrapolated according to

http://choice.eastmoney.com/
https://www.cnrds.com/Home/Index/
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the interpolation method. The vector data of national boundaries and territorial boundaries were
derived from the national 1:1 million basic geographic databases published by the China National
Basic Geographic Information Center in 2017 (i.e., http://www.webmap.cn/).

4. Research Methods

4.1. Entropy Method

The entropy method determines the weight of an index based on the influence of the relative change
degree of the index on the overall system. It is an objective weighting method that comprehensively
considers various factors and is suitable for multiple indicators. The entropy method has certain
objectivity and scientific characteristics because it can overcome randomness problems in terms of
subjective weighting and solve the problem of information overlap between multiple index variables.
Taking this into account, this study constructed a regional innovation capability index system,
standardized the original data, and used the entropy method to calculate the innovation capability of
each city. The calculation steps of the entropy method are as follows.

First, calculate the proportion of the jth index in city i (i.e., Equation (1)); second, calculate the entropy
value of the indicator (i.e., Equation (2)); third, calculate the information utility value of the jth indicator
(i.e., Equation (3)); fourth, calculate the weight of the index xi (i.e., Equation (4)); finally, calculate the level
of innovation capability of each city (i.e., Equation (5)).

Pi j = xi j/
n∑

i=1

xi j, (1)

e j = −k
n∑

i=1

Pi j ln Pi j, k = 1/ ln(n), (2)

g j = 1− e j, (3)

w j = gi/
p∑

j=1

g j, (4)

INN =

p∑
j=1

w jxi j. (5)

4.2. Stochastic Frontier Analysis

The stochastic frontier production function model was originally proposed by Aigner et al. [41].
It is a typical parameter efficiency measurement method that can distinguish production function
errors into two parts: random errors caused by uncontrollable random factors and management errors
caused by technical inefficiency. Battese and Coelli [42] introduced panel data and proposed that
the BC model of stochastic frontier analysis be used to measure the industrial technical efficiency,
resource utilization efficiency, and urban development efficiency. This study drew on the research
method of Yang et al. [43] to construct a stochastic frontier production function to measure the green
technology efficiency of China’s manufacturing industry. The formulation, i.e., Equations (6)–(10),
was as follows:

ln(Yit) = β0 + β1 × (X1it) + β2 × ln(X2it) + ... + βn × (Xnit) + vit − uit, (6)

TEit = exp(−uit), (7)

β(t) = exp[−η× (t− T)], (8)

uit = β(t) × ui, (9)

http://www.webmap.cn/
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γ =
σ2

u

σ2
v + σ2

u
,γ ∈ [0, 1], (10)

where Y is the output variable; X is an input variable; i is a research unit; t is time; T represents the time
trend of technological changes; β0 is the intercept term; β1, β2, ....βn, η, and γ denote the parameters
to be estimated; vit is a random error term subject to a normal distribution N(0, σ2

v); uit denotes a
non-negative management error term, subject to a non-negative truncated normal distribution N(0, σ2

u);
TE indicates the technical efficiency value.

4.3. Spatial Autocorrelation Method

Spatial dependence means that a certain element does not exist independently in a spatial unit but
is instead related to the adjacent spatial unit, where spatial autocorrelation is a quantitative index to
check the strength of the association between the attribute value of a certain element and the attribute
value of the adjacent space [44].

4.3.1. Local Indicators of Spatial Association (LISA)

Local spatial autocorrelation is used to measure the degree of similarity (i.e., positive correlation)
or difference (i.e., negative correlation) of a certain attribute at its local position with its neighboring
spatial unit attributes. The heterogeneous characteristics of spatial elements can be understood
more fully, including how spatial dependence changes with location [45]. The use of local spatial
autocorrelation methods to explore the spatial distribution characteristics of the regional innovation
capability and the green technology efficiency of Chinese manufacturing was applied. Local Moran’s I
is a quantitative index of local spatial autocorrelation; its calculation is formulated using Equation (11):

Ii =
(xi − x)

S2

n∑
j,i

wi j(x j − x), x =
1
n

n∑
i=1

xi,S2 =
1
n

∑
i

(xi − x)
2
, (11)

where n indicates the total number of observation points; wi j is the space weight; xi and x j denote the
spatial elements i and j of the attribute, respectively; x represents the average value of the attribute;
S2 is the variance of the attribute.

4.3.2. Bivariate Moran′s I

A bivariate global spatial autocorrelation can be used to show the overall agglomeration
characteristics and spatial correlation between two attributes. The expression can be found in
Equation (12):

I =
n∑

i=1

n∑
j=1

wi j(xi − x)(y j − y)/S2
n∑

i=1

n∑
j=1

wi j, (12)

where I is a bivariate global spatial autocorrelation coefficient that represents the correlation between
the overall spatial distribution of the independent variable of spatial element i and the dependent
variable of the spatial element j, xi and y j are the spatial elements i and j of the attribute, and other
symbols are the same as in Equation (11) above [46].

4.3.3. Bivariate Local Moran′s I

A bivariate global spatial autocorrelation can be used to show the overall agglomeration
characteristics and spatial correlation between two attributes. Equation (13) was used, as follows:

Ii, j = zi

n∑
j=1

wi jz j, (13)
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where zi and zj represent the standardized variance values of the spatial elements i and j, respectively, and Ii,j
is the local correlation between the independent variable of region i and the dependent variable of
region j, according to which, the spatial elements can be divided into the four types of agglomeration,
namely, H–H (high–high), L–L (low–low), H–L (high–low), and L–H (low–high). The H–H cluster means
the independent variable value of spatial element i and the dependent variable value of spatial element j
are both high, the L–L cluster means that both attribute values are low, where the H–H and L–L clusters
mean that the independent variable of space element i has a positive effect on the dependent variable of
spatial element j [47].

4.4. Empirical Methods

In this study, the explained variable of China’s green technology efficiency in manufacturing
had an obvious range limit. This value was represented in the range of zero to one. The results of
the traditional ordinary least squares method may be biased. Therefore, our benchmark regression
used Tobit estimation, a common processing method for censored data, and considered the upper
and lower thresholds of the data. Based on the aforementioned literature, the following direct impact
measurement model was constructed:

Teit = β0 + β1Iait + βnControlit + εit, (14)

where Teit represents city i’s green technology manufacturing efficiency level during period t,
Iait measures the innovation capability index of the city i in period t, β0 is the intercept term, β1 denotes
the regression coefficient of the innovation ability for the green technology manufacturing efficiency,
Controlit is the set of control variables, and εit is a random disturbance.

This study added intermediary variables Med to construct the following intermediary effect
measurement model to further explore the indirect effect of the regional innovation capability on the
green technology efficiency of manufacturing, as formulated in Equations (15) and (16):

Medit = β0 + β1Iait + εit, (15)

Teit = β0 + β1Iait + β2Tsit + εit. (16)

Some unobservable missing variables or a two-way causal relationship between innovation
capabilities and green technology manufacturing efficiency may lead to endogenous problems.
This study referenced Lin and Tan [48] to add terrain slope tool variables Ts and used a panel
data two-stage least squares method to solve possible endogenous problems. The model settings,
i.e., Equation (17), were applied as follows:

Teit = β0 + β1Iait + β2Tsit + βnControlit + εit. (17)

5. Research Results

5.1. Spatial Association Pattern

5.1.1. Spatial Correlation Distribution Characteristics of Green Technology Efficiency and Innovation
Capability in the Manufacturing Industry

First, the applicability of the method was checked. The global spatial autocorrelation Moran’s
I indices of China’s green technology manufacturing efficiency and the urban innovation capacity
were calculated from 2011 to 2017 with the help of ArcGIS 10.2 software (Environmental Systems
Research Institute, Redlands, CA, USA). The results showed that the Moran’s I estimates passed
the significance level test with a confidence level of 99%, indicating that China’s green technology
manufacturing efficiency and urban innovation capacity were spatially clustered. Thus, local spatial
autocorrelation analysis could be used. This study selected 2011 and 2017 as the beginning and end



Energies 2020, 13, 5467 11 of 22

time nodes, respectively, and drew the LISA cluster map of China’s manufacturing industry’s
green technology efficiency, as well as its regional innovation capability level in terms of the
spatial autocorrelation (Figures 2 and 3). This study divided the local spatial units into four types:
high–high cluster (i.e., H–H), high–low cluster (i.e., H–L), low–high cluster (i.e., L–H), and low–low
cluster (i.e., L–L) to reveal their degree of association and distribution in the local spatial position pattern.
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In general, the local correlation pattern of the green technology efficiency in China’s manufacturing
industry was characterized by “a large agglomeration and a small dispersion.” The H–H cluster areas
were located in some cities along the eastern coast of Beijing-Tianjin-Hebei, Shandong Peninsula,
Yangtze River Delta, Fujian Province, and Guangdong Province. Such regions had a high level of
economic development; large industrial scale; abundant capital; rich, high-quality talent; top infrastructure;
advanced and sophisticated industrial technology; a large output of economic benefits, and thus, the green
technology manufacturing efficiency levels were in the lead position. The H–H cluster areas in the Pearl
River Delta were gradually decreasing, while the number of high and high-concentration areas in inland
Xinjiang increased. On the one hand, because of the overall “large input and low output” phenomenon in
the Pearl River Delta, the input of production factors, such as labor, land rent, water supply, and electricity,
increased such that the traditional manufacturing industry moved out in large numbers, the overall output
scale declined, and high-tech industries are still to be developed; as a result, various factors weakened
the green technology efficiency in the manufacturing industry throughout the Pearl River Delta region.
On the other hand, as the core area of the “Belt and Road” strategy, Xinjiang attracted a large number of
manufacturing industries with its preferential policies, low labor and land rents, and abundant resources,
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which led to the formation of the H–H cluster area of manufacturing industrial green technology efficiency
in Urumqi and its surrounding cities.

The L–H cluster areas were attached to the surrounding areas of H–H cluster areas, such as Yancheng,
Zhenjiang, Taizhou, Huzhou, Zhoushan, Huangshan, Chizhou, Rizhao, and Ma'anshan. Such cities had
relatively poor industrial economic benefits, an irrational industrial structure, and a weak “diffusion effect”
from the surrounding developed cities, resulting in a large gap between the green technology efficiency value
of neighboring H–H cluster cities, and thus, a “collapsed” formation in terms of space. However, the number
of L–H cluster areas gradually decreased, indicating that the technology spillover effect of surrounding
cities increased over time and the regional “unbalanced” problem has been alleviated to a certain extent.
The H–L cluster areas were scattered in the provincial capital of central cities in the west and northeast,
including Chongqing, Chengdu, Guiyang, Kunming, Xining, Harbin, and Shenyang. As an administrative
center in less developed regions, the efficiency of green technology is closer to the frontier of production
than other surrounding cities. With the existence of the “siphon effect,” promoting the improvement
of green technology efficiency in the surrounding cities is difficult and the “Matthew effect” eventually
appears in the region. During the study period, the spatial units of the H–L cluster did not change and the
L–L cluster areas did not appear.

The regional spatial agglomeration characteristics of China’s regional innovation capability were
remarkable and the H–H cluster was the main distribution type. In 2011, H–H cluster areas were
distributed in a “planar form” in Beijing, Tianjin, Hebei, Shandong, Jiangsu, Anhui, Zhejiang, Fujian,
Jiangxi, Henan, and Guangdong provinces, with a total of 78 spatial units. In 2017, the number
of spatial units in the H–H cluster area decreased to 67 but a trend extending from the coast to
the inland “axial belt” was observed. The H–H cluster area continued to expand to central and
western provinces, such as Hunan, Hubei, Shaanxi, and Shanxi. The conditions of innovation resources,
platforms, and the milieu in the above regions were relatively superior, and the strong intercity
spatial linkages enabled it to acquire more knowledgeable flows. Hence, the development level
of innovation capabilities was higher. Figure 2 shows that the H–L cluster area appeared in the
capital cities of the western region, namely, Kunming, Xining, and Urumqi. Most western cities
had relatively low levels of innovation capacity, while the province’s main innovation factors and
social development resources were concentrated in the provincial capital cities, thereby forming a
“polarized” differentiation pattern with a high middle and low surrounding. Only Panzhihua city in
Sichuan Province had a positive correlation of low innovation capacity. The generally low efficiency
of knowledge creation and knowledge flow in the surrounding areas eventually led to Panzhihua
becoming a low-concentration depression.

5.1.2. Bivariate Spatial Correlation Distribution Characteristics of Green Technology Manufacturing
Efficiency and Innovation Capability

A Geoda 1.14 software (developed by Dr. Luc Anselin and his team, University of Chicago,
Chicago, IL, United States) spatial analysis module was used to calculate the bivariate Moran’s I value
of China’s regional innovation capability and green technology manufacturing efficiency in 2011–2017.
It explored the overall spatial correlation characteristics and changes between the two elements.
The results showed that the bivariate Moran’s I estimates were positive during the study period,
fluctuating between 0.1034 and 0.1347. With a highly correlative (i.e., passing) significance level
test of 0.01, it can be inferred that China’s regional innovation capability and green technology
manufacturing efficiency had a spatially significant positive correlation.

A bivariate global autocorrelation Moran’s I can determine whether an aggregation characteristic
of this phenomenon exists in space but it cannot indicate the location of the aggregation exactly.
The local spatial correlation characteristics and distribution pattern between the two variables were
explored and 2011 and 2017 were selected as the time nodes. The Geoda software was used to conduct
a bivariate local spatial autocorrelation analysis of China’s regional innovation capability and green
technology manufacturing efficiency indicators. The results are shown in Figure 4. The bivariate LISA
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agglomeration map of China’s regional innovation capability and green technology manufacturing
efficiency was based mainly on H–H cluster (i.e., core areas) and L–L cluster (i.e., edge districts)
spatial units. The spatial evolution characteristics were as follows: the number of core areas
rose slowly and the number of edge districts declined rapidly. Specifically, the core areas were
distributed in eastern cities, such as Beijing, Yantai, Qingdao, Shanghai, Suzhou, Jiaxing, Shaoxing,
and Dongguan, in which urban innovation played a significant role in promoting the improvement of
green technology efficiency in the manufacturing industry. Specifically, it was found that innovation
factors became increasingly important for improving the green technology manufacturing efficiency in
Shandong Province. In contrast, the bottleneck of Guangdong’s (i.e., except Shenzhen) manufacturing
industry’s green technology efficiency was difficult to break through and the spatial core area
shrunk gradually due to a series of locking effects that hampered the development path of the
manufacturing industry; these effects included an excessive reliance on capital and labor-intensive
industries and various problems that hindered the upgrading of the industrial structure, such as the
imperfect transformation mechanism of scientific and technological achievements, wasted research
and development investment in innovation, lack of core technology, population, and the disappearance
of policy “dividends.” The fringe areas were distributed in a scattered manner in the northeastern,
central, and western regions of China. With time, the fringe areas narrowed gradually in size,
shifting from northeast and central areas to the west, indicating that after a period of development
in China, the “double-low” areas with a low innovation capability and a low green technology
manufacturing efficiency were decreasing, but the effects of innovation in the western region on green
technology manufacturing efficiency remained weak.
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5.2. Empirical Analysis and Testing

5.2.1. Benchmark Regression Results

A random effect panel Tobit model regression was used to examine the direct effect of the regional
innovation capability on the green technology efficiency of China’s manufacturing industry. The results
are shown in Table 2.
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Table 2. Regression results for the direct effect.

Indicator
(1) (2) (3) (4) (5) (6) (7)

Tobit Tobit OLS East Central West Northeast

INN 0.297 *** 0.211 *** 0.182 *** 0.285 *** 0.041 0.188 −0.117
(0.057) (0.048) (0.049) (0.060) (0.134) (0.117) (0.162)

GDP 0.590 *** 0.239 ** 0.651 *** 0.703 *** 0.045 1.074 ***
(0.113) (0.110) (0.192) (0.198) (0.262) (0.255)

FC 0.078 *** 0.040 * 0.052 *** 0.152 *** 0.079 ** 0.159 ***
(0.012) (0.022) (0.015) (0.029) (0.033) (0.031)

GI −0.050 * −0.049 * 0.037 −0.057 −0.063 −0.078 *
(0.025) (0.026) (0.054) (0.052) (0.043) (0.045)

MS −1.149 *** −1.493 *** −1.260 *** −1.094 *** −1.184 *** −1.081 ***
(0.099) (0.094) (0.157) (0.226) (0.187) (0.248)

Cons 0.159 *** 0.677 *** 1.312 *** 0.606 ** 0.642 ** 1.170 *** 0.469
(0.047) (0.143) (0.134) (0.237) (0.302) (0.293) (0.411)

Sigma_u:_cons 0.238 *** 0.280 *** 0.278 *** 0.279 *** 0.301 *** 0.247 ***
(0.014) (0.017) (0.027) (0.032) (0.037) (0.048)

Sigma_e:_cons 0.055 *** 0.045 *** 0.043 *** 0.043 *** 0.048 *** 0.029 ***
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003)

N 887 887 887 371 241 212 63

Standard errors are in parenthesis. Note: *** p < 0.01, ** p < 0.05, * p < 0.1.

In Table 2, only the innovation capability variables were added to column 1 and column 2, hence the
result of introducing the control variables of the economic development level, foreign cooperation,
government subsidies, and manufacturing scale were exercised. The addition of control variables
had little effect on the regression coefficients of the innovation ability variables, which indicated that
the research results were robust. The regression coefficients of the innovation capacity variables in
columns 1 and 2 were positive and significant, indicating that the overall regional innovation had
a significant role in promoting the green technology efficiency of China’s manufacturing industry
and innovation had become a key power-driver force for improving green technology efficiency in
the contemporary era. Therefore, Hypothesis 1 proved to be correct. This conclusion was consistent
with the conclusions based on other research fields [49,50]. The regression results of the ordinary
least-squares fixed-effect model of the regional innovation capacity and green technology efficiency of
manufacturing in Table 2 column 3 also verified the above findings.

From the perspective of regional heterogeneity, columns 4–7 reflect the estimated results of
the effects of innovations on the green technology efficiency in the four major sectors of East,
Central, West, and Northeast China. The innovation in the central and western regions and the green
technology efficiency showed an insignificant positive correlation, while the innovation capacity variable in
the northeastern region had an insignificant negative relationship. This result indicated that the innovation
capabilities of China’s central, western, and northeastern regions had not achieved the effect of promoting
green technology efficiency in manufacturing within the study period. The above results corroborated the
conclusions obtained in Figure 3 and also proved that Hypothesis 2 was valid. First, the eastern region had
strong scientific research strength and a huge technological innovation platform. The scientific research
funds and talents were used mostly in the field of experimental development, which was highly relevant to
production activities. Therefore, its innovation had a strong spillover bonus to green technology efficiency,
which was generally higher than the level of other regions in the country. Second, because of the constraints
of the level of economic development of the central and western regions, insufficient investment in
scientific and technological innovation, less high-quality knowledge innovation output, and the scarcity
of green and efficient high-tech enterprises inhibited the positive effects of innovation on the green
technology efficiency of manufacturing. Finally, the northeast region was once China’s largest old industrial
base but the emergence of the “resource curse” phenomenon caused the northeast economy to show a
“cliff-like” downward trend since 2013 [51]. The system and mechanism reform in this area lagged and the
manufacturing industry was mostly high-energy-consuming heavy industry, where the development mode
was extensive. As a result, one-third of the country’s total, i.e., 24 cities, are resource-depleted and face the
problem of lagging behind the development of innovative capabilities and green technology efficiency [52].
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Among the control variables, government subsidies and manufacturing scale variables deserve
further attention. Column 2 shows that the variable sign of the government subsidies was negative and
significant at the level of 10%, indicating that the subsidies granted by the Chinese government
to manufacturing companies had a significant inhibitory effect on the improvement of green
technology efficiency. The reason for this may be that the government subsidies crowded out the private
green input of enterprises (crowding-out effect). Enterprises rely heavily on government subsidies,
reducing their enthusiasm for green production activities, and the green technology efficiency that
was improved by the government investment was offset in whole or in part by the reduction
in private investment. In addition, it may also be because China’s manufacturing industry is
currently at the low-end of the international division of labor. Short-term economic benefits are more
attractive than green technology upgrades that have a “large investment and a long payback period.”
Government subsidies are used mostly to purchase raw materials and expand production, while green
technology transformation expenditure accounts for a relatively small amount. China’s manufacturing
industry has fallen into a path dependence that involves low-tech production models, which hinders
the improvement of green technology efficiency. The results in column 7 show that the government
subsidies in the northeast region were negatively correlated with the technological efficiency of the
manufacturing industry, thereby verifying the above views, while the variables of the government
subsidies in columns 4–7 were not significant. From the regression results in columns 2–7, the effects of
the manufacturing scale on green technology efficiency were negative, passing the 1% significance level
test, and the regression coefficient was significantly higher than for other variables. This finding shows
that the larger the scale of manufacturing, the lower the efficiency of green technology in manufacturing.
On the one hand, the larger the scale of the enterprise, the lower the production flexibility, and the
decreasing effect of scale inhibited the improvement of the green technology efficiency. On the
other hand, the extensive development model of high pollution, high energy consumption, and high
emissions in China’s manufacturing industry restricted the “green” transformation and upgrading of
the manufacturing industry.

5.2.2. Mediation Effect Regression Results

This study referred to Wen et al.’s [53] intermediary three-step test method. First, we determined
whether the regional innovation capability could promote the improvement of green technology
efficiency in China’s manufacturing industry. Second, this study examined the role of regional
innovation capacity on the intermediary variables. Finally, it explored whether regional innovation
capacity and intermediary variables could simultaneously affect the green technology efficiency
in manufacturing. According to Muller et al. [54], the existence of intermediary effects must meet the
following conditions. First, when no intermediary variables are added, regional innovation capacity
has a significant positive effect on the green technology efficiency of manufacturing. Second, this effect
is weakened after the intermediary effects are added. Third, regional innovation capacity has a positive
effect on intermediary variables. Finally, intermediary variables have a positive effect on the green
technology efficiency of manufacturing. Human capital, government revenue, and the waste treatment
rate were selected as intermediary variables, and the core explanatory variables and explained variables
were consistent with the above. The human capital interpretation index was the number of students in
colleges and universities, considering that it will take a certain amount of time for students to convert
into labor, i.e., one year from the time of graduation before entering the job market. The statistics of
government revenue funds were generally lagging, and thus, we set this indicator to lag one year.
The mixed Tobit model was used to test the mediation effect in which the Sobel test results were given
(Table 3).
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Table 3. Regression results for the mediation effect.

Indicator
(1) (2) (3) (4) (5) (6) (7)

Tobit Human Capital Government Revenue Waste Treatment Rate

INN 1.320 *** 0.901 *** 0.684 *** 0.156 *** 1.051 *** 0.102 1.316 ***
(0.103) (0.036) (0.145) (0.014) (0.129) (0.067) (0.103)

HC 0.676 ***
(0.109)

GR 1.727 ***
(0.312)

WTR 0.034
(0.042)

Cons −0.588 *** 0.134 *** −0.640 *** −0.031 *** −0.537 *** 0.847 *** −0.617 ***
(0.077) (0.027) (0.082) (0.011) (0.090) (0.050) (0.085)

Sigma:_cons 0.236 *** 0.077 *** 0.225 *** 0.029 *** 0.240 *** 0.154 *** 0.236***
(0.006) (0.002) (0.006) (0.001) (0.006) (0.004) (0.006)

Obs. 887 717 717 717 717 887 887
Sobel Z 0.0000 4.722 0.6596

Standard error 0.1002 0.0530 0.0810
- P-value 0.0000 0.0000 0.2316

Proportion 0.4740 0.1929 0.0025

Standard errors are in parenthesis. Note: *** p < 0.01.

The results in column 1 of Table 3 were similar to the previous findings, and thus, the regional
innovation capability had a significant positive effect on the green technology efficiency of China’s
manufacturing industry. Columns 2 and 3 give the regression results with human capital as an
intermediary variable. Column 2 shows that the regression coefficient of innovation capability
on human capital was positive and highly significant at 1%, indicating that regional innovation
capability significantly promoted the improvement of the human capital level. The regression
coefficient of human capital on green technology manufacturing efficiency in column 3 was also
significantly positive, which indicated that regional innovation capability can promote the progress
of green manufacturing efficiency in China’s manufacturing industry through the positive impact of
human capital. Specifically, under the condition that other factors remained unchanged, each additional
unit of regional innovation capacity directly promoted the green technology efficiency of the
manufacturing industry by 0.684 units while promoting the level of human capital by 0.901 units,
and thus, the green technology efficiency of the manufacturing industry was increased indirectly by
0.609 units (0.901 ×0.676 = 0.609). The total effect (1.293) was the sum of indirect effect and direct effect,
where the indirect effect accounted for 47% of the total effect. Columns 4 and 5 show the estimates of
the government’s public fiscal revenue as an intermediary variable. The results showed that regional
innovation capacity had a positive effect on government revenue. Government fiscal revenue also
has a positive effect on the green technology manufacturing efficiency. Compared with column 1,
the regression coefficient of the regional innovation capability in column 5 decreased after adding the
intermediary variables, thereby indicating that government fiscal revenue was one of the channels for
regional innovation capability to promote green technology efficiency in manufacturing. The indirect
effect of government fiscal revenue accounted for 19% of the total effect and the intermediary effect
was relatively weak compared with human capital. The results of the waste treatment rate as an
intermediary variable are listed in columns 6 and 7. Column 6 shows the effect of regional innovation
capability on the waste treatment rate and column 7 shows the combined effect of regional innovation
capability and the waste treatment rate on the green technology manufacturing efficiency. The results
showed that the waste treatment rate did not have a significant effect on regional innovation capability
and the green technology manufacturing efficiency, and thus, the waste treatment rate was not a
medium for regional innovation capability to promote the green technology manufacturing efficiency.
Based on the above results, Hypothesis 3 was partially verified.
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5.2.3. Robustness and Endogenous Test

To test the reliability of the above results, i.e., the ability of regional innovation to have a significant
positive effect on the progress of the green technology efficiency in China’s manufacturing industry,
the following robustness tests were conducted. Cities with a special administrative status have
comprehensive resource advantages that are unmatched by ordinary prefecture-level cities. Column 1
in Table 4 shows the results of the re-measurement regression after excluding China’s municipalities
and provincial capital cities. Next, to verify whether the effect of innovation on green production
efficiency made a difference with time, column 2 of Table 4 shows the results of randomly deleting
the samples of time nodes in 2012, 2014, and 2016 for re-estimation. Then, we investigated whether
the core explanatory variables still had a positive effect on the explained variables under different
indicator systems. Column 3 of Table 4 shows the effect of replacing the core explanatory variables with
urban innovation capability indicators in the “China Urban and Industrial Innovation Capability Report”
published by the Industrial Development Research Center of Fudan University in China to estimate
the robustness. Finally, outliers and non-randomness affected the regression results adversely. Column 4
in Table 4 shows the results of the core explanatory variables and the explained variables being subjected
to the winsorized process of 1% up and down and re-evaluating the regression.

Table 4. Regression results of robustness and endogeneity tests.

Indicator
(1) (2) (3) (4) (6) (7)

Tobit 2SLS IV–Tobit

INN 0.219 *** 0.529 *** 0.214 *** 0.244 *** 2.327 *** 2.237 ***
(0.055) (0.071) (0.033) (0.055) (0.807) (0.794)

GDP 0.742 *** 1.026 *** −4.567 *** 0.548 *** −2.322 *** −2.231 ***
(0.122) (0.145) (0.144) (0.114) (0.846) (0.815)

FC 0.096 *** 0.029 0.797 *** 0.082 *** 0.072 0.078
(0.015) (0.037) (0.063) (0.012) (0.071) (0.066)

GI −0.045 −0.094 ** −0.001 −0.047 * −0.197 ** −0.194 **
(0.029) (0.038) (0.014) (0.025) (0.091) (0.093)

MS −1.178 *** −0.966 *** −0.268 *** −1.116 *** 3.357 *** 3.391 ***
(0.121) (0.143) (0.067) (0.098) (0.187) (0.191)

Cons 0.507 *** −0.035 4.131 *** 0.658 *** −2.035 *** −2.080 ***
(0.164) (0.200) (0.122) (0.144) (0.219) (0.222)

Sigma_u:_cons 0.258 *** 0.262 *** 0.318 *** 0.278 ***
(0.017) (0.016) (0.019) (0.017)

Sigma_e:_cons 0.046 *** 0.052 *** 0.024 *** 0.044 ***
(0.001) (0.002) (0.001) (0.001)

N 668 505 759 863 887 887

Standard errors are in parenthesis. Note: *** p < 0.01, ** p < 0.05, * p < 0.1. 2SLS: two-stage least-squares,
IV: instrumental variables.

The above robust regression results maintained a high degree of consistency with the
benchmark regression, where regional innovation capabilities still had a significant role in promoting
the progress of China’s green technology manufacturing efficiency. Therefore, the conclusions of
this study were stable for different model settings and time interval selections. The regression
coefficient of the innovation capacity variable in the basic regression was 0.211, and the regression
coefficient of the innovation capacity variable after replacing the core explanatory variables with
the “China Urban and Industrial Innovation Capacity Report” was 0.214. The comparison found
that the regression results were extraordinarily similar, and all passed the 1% significance level test.
Consequently, the multi-dimensional and comprehensive index system of the innovation capability
level constructed in this study had strong rationality.

Potential sources of endogeneity include missed variable bias. Although we added as many
control variables as possible in the model, because the data used in this study were panel data
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of China’s prefecture-level cities and China is a vast territory, certain gaps may exist in the data
statistics in which important control variables may be missed. The inclusion of these missing
variables in the random error term will cause endogenous problems, resulting in the overestimation
or underestimation of the regression coefficient of innovation ability variables. The sources of
endogeneity also have mutual causality. It is generally believed that an endogenous relationship
exists between innovation and green technology efficiency, i.e., innovation capacity will affect green
technology efficiency, whereas regions with a higher green technology efficiency generally have a
stronger innovation capacity. Hence, to solve the errors caused by the endogenous problem, the use of
the instrumental variable method was tested. The ideal instrumental variable should have a strong
correlation with the endogenous variable and must meet the exogenous requirements that are not
related to the disturbance term. Geographical indicators are naturally formed and do not affect various
indicators in the existing economic system directly, thereby satisfying the exogenous conditions. Lin and
Tan [55] used terrain fluctuations as a tool variable for analyzing the effects of the economic aggregation
on the efficiency of the green economy. The urban slope is a geographically existing factor that does not
affect the green technology efficiency of manufacturing directly but the urban slope is related closely to
the urban population, transportation, and other innovative factors. Accordingly, this study used the
average slope of the city as a tool variable for innovation ability and used the two-stage least-squares
and instrumental variables (IV)–Tobit methods to further identify the causal relationship between
innovation ability and green technology manufacturing efficiency.

Column 6 of Table 4 is the result of adopting the two-stage least-squares method with all control
variables added. The innovation capability still had a significant positive effect on the green technology
efficiency of the manufacturing industry. Moreover, the regression coefficient of innovation ability
was improved significantly compared to the estimated value of the benchmark regression coefficient,
indicating that benchmark regression underestimated the positive effect of innovation ability on
the green technology efficiency of manufacturing. The F-test value of the first stage was 25.84,
which was greater than 10, which indicated that there was no weak instrumental variable problem.
This study also attempted to use the IV–Tobit method for testing. The results in column 7 of Table 4
show that innovation capability was also conducive to improving the efficiency of green technology
in manufacturing.

6. Conclusions and Discussion

Based on the 2011–2017 panel data of prefecture-level cities in China, this study used a spatial
autocorrelation method and a Tobit model to analyze the effects of regional innovation capacity
on the green technology efficiency of China’s manufacturing industry and drew the following
conclusions. First, the local correlation pattern of green technology efficiency in China’s manufacturing
industry was characterized by “large agglomeration and small dispersion.” The H–H clusters areas
were concentrated in cities along the eastern coast of Beijing–Tianjin–Hebei, Shandong Peninsula,
Yangtze River Delta, Fujian Province, and Guangdong Province. The L–H clusters areas were attached
around the H–H clusters areas, and H–L clusters areas were scattered in the provincial capital of central
cities in the west and northeast. The above conclusion was consistent with that of Wang et al. [56].
Second, Wang et al. [56] viewed the innovation capability gap as an important factor in the imbalance
between regions in China. We further found that the regional spatial agglomeration characteristics of
China’s regional innovation capability were noteworthy, with H–H clusters as the main distribution
type. The characteristics of the spatial pattern were distributed as “planar” contiguous patches and the
trend inward, extending from the coast to the inland “axial band,” appeared gradually. H–L cluster
areas all appeared in the capital cities of the western region and only Panzhihua City in Sichuan Province
had a positive correlation with low innovation capacity. Third, the regional innovation capacity had a
positive spatial correlation with the green technology efficiency of China’s manufacturing industry.
Specifically, the eastern region had a more prominent role, while the western region had a weaker effect.
Fourth, regional innovation had a significant direct promotion effect on the green technology efficiency
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of China’s manufacturing industry. Innovation has become a key driving force in the improvement of
green technology efficiency in the contemporary era but the regional differences between the four major
sectors were still very significant. The intermediary effect indicated that the regional innovation capacity
had a positive effect on the green technology manufacturing efficiency through human capital and
government revenue and that the waste treatment rate was not a medium for the regional innovation
capacity to promote the green technology manufacturing efficiency. Finally, the various robust
regression results maintained a high degree of consistency with the benchmark regression, indicating
that the conclusion of this article is credible. After using the instrumental variables, the estimated
value of the innovation coefficient of the benchmark regression was found to be improved significantly,
and to a certain extent, the positive effect of innovation capacity on the green technology efficiency of
the manufacturing industry was underestimated.

The research conclusion of this article has obvious policy implications. First, upgrading
the innovation capabilities of the central, western, and northeastern regions is urgently needed.
The construction of innovative basic platforms, such as national engineering laboratories and
national key laboratories in the central, western, and northeastern regions should be strengthened,
along with the dominant position of enterprises in technological innovation. The industrial
technology innovation in terms of strategic alliances with universities and research institutes in
the eastern region should continue to be built, and the innovation network that collaborates with
industry chains across regions should be reinforced to accelerate research and development of key
technologies in manufacturing. Policy support for innovation should be increased, intellectual property
protection bolstered, further innovation reform programs should be formulated, and the overall
innovation ecosystem should be improved. Second, human resource reserves should be consolidated,
and priority should be given to the development of education. Basic education should be
promoted to improve quality and efficiency, accelerate the development of modern vocational
education, and build a new system of industrial talent training. A higher education innovation
consortium should be created and support should be provided to local universities and internationally
renowned universities to jointly carry out teaching and scientific research activities such that they
can strive to cultivate a batch of internationally-renowned strategic scientific and technological
talents, as well as high-level innovation-based teams. Finally, the transformation and upgrading of
manufacturing green industries should be promoted. The implementation of “Made in China 2025”
should be accelerated and energy-saving and environmental protection, new materials, new energy,
and other emerging industries should be explored through the use of big data, cloud computing,
blockchain, and other new technologies to promote enterprise products to the middle and high ends of
the market. Furthermore, high pollution, high-energy-consuming industries should be eliminated
gradually by creating an industrial chain of resource recycling in enterprise parks, improving the level of
harmless treatment and comprehensive utilization of waste, reducing energy and material consumption,
implementing cleaner production supervision, and improving green technical efficiency.

Although some possible problems with the study have been considered, further deficiencies
include certain limitations of the data, as well as its focus on only A-share listed companies in the
manufacturing industry. As a result, the study does not comprehensively analyze the green technology
efficiency of all manufacturing industries in China. Moreover, since 2017, the statistical caliber of
the China City Statistical Yearbook has changed, where important factors, such as transportation,
population density, and fixed asset investment, were now being considered as control variables.
Subsequent research can be carried out from the following aspects: comparing the heterogeneous
effects of innovation capabilities on the efficiency of different types of green manufacturing technologies
and clarifying the in-depth mechanism of the differences of the effects of regional innovation capabilities
on green technology manufacturing efficiency in the different regions in China. This would provide
theoretical support for the government to formulate scientific and technological innovation strategies
and manufacturing industry planning for the future.
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