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Abstract: An artificial neural network (ANN)-based supplementary frequency controller is designed
for a doubly fed induction generator (DFIG) wind farm in a local power system. Since the optimal
controller gain that gives highest the frequency nadir or lowest peak frequency is a complicated
nonlinear function of load disturbance and system variables, it is not easy to use analytical methods
to derive the optimal gain. The optimal gain can be reached through an exhaustive search method.
However, the exhaustive search method is not suitable for online applications, since it takes a long
time to perform a great number of simulations. In this work, an ANN that uses load disturbance,
wind penetration, and wind speed as the inputs and the desired controller gain as the output is
proposed. Once trained by a proper set of training patterns, the ANN can be employed to yield
the desired gain in a very efficient manner, even when the operating condition is not included in
the training set. Therefore, the proposed ANN-based controller can be used for real-time frequency
control. Results from MATLAB/SIMULINK simulations performed on a local power system in Taiwan
reveal that the proposed ANN can yield a better frequency response than the fixed-gain controller.

Keywords: doubly fed induction generator (DFIG); wind generation; frequency control; artificial
neural network (ANN)

1. Introduction

To increase the percentage of green energy, wind farms are being built in Taiwan. It is expected
that the installed capacities of these wind farms will reach 4.2 GW by 2025 [1]. For a system with a
high penetration of wind power, the frequency regulation of the local power system becomes very
important, especially when it is disconnected from the main grid due to a fault, resulting in islanding
operation. How to design a proper supplementary frequency controller for the wind farm, such that
the frequency for a local power system in the islanding operation can be controlled satisfactorily, is of
major concern in this work.

Numerous works have been devoted to the design of a supplementary frequency controller for a
doubly fed induction generator (DFIG) in order to improve the system frequency under disturbance
conditions [2–14]. Both a proportional (droop) controller [2–6] and proportional (droop)–derivative
(inertial) (PD) controller [7–9] have been extensively studied.

In the design of proper gains for the droop controller and inertia controller, the objective is to
improve the dynamic system frequency response and keep the DFIG speed within the allowable
range after a disturbance. Since the dynamic system frequency response is a complicated nonlinear
function of load disturbance and system variables such as wind speed and the percentage of wind
power penetration, it is not easy to derive an analytical formula relating the system frequency and
DFIG speed to the load disturbance and system variables and get the desired optimal solutions for
the droop and inertia gains using analytical methods. In the literature, numerous works have been
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reported [9–19] to get the desired gains using a simulation-based method. The frequency and speed
responses with and without droop control were compared in [9]. The effect of proportional gain on the
frequency response was investigated in [15], with the derivative gain being fixed at 15. The influence of
governor speed, droop gain, and inertia gain on frequency deviation was examined in [16]. The effect
of DFIG penetration on the frequency deviation was also studied [16]. System frequency and maximum
transient frequency deviation under different values of droop and inertia gains were investigated in [17].
In [18], the frequency nadir and rate of change of frequency for different wind power penetrations,
different percentages of steam turbines, and combined cycle gas turbines were analyzed in order to
reach the optimal droop and inertia gain settings. It was found that the optimal inertia gain was
near zero for most cases, and the inertia term could be neglected. In [19], the root locus and system
frequency response for proportional and inertia control were depicted under different wind speeds.
The effect of increased wind penetration on the root locus and frequency response was also studied.

The optimal controller gain that gives the highest frequency nadir for a system under a particular
condition of load disturbance, wind speed, and wind penetration can be reached by an exhaustive
search method in which the dynamic frequency response curves following a disturbance are simulated
for all possible gains, and the gain that gives the highest frequency nadir is selected as the optimal
gain. However, the exhaustive search method is not suitable for online applications, since it takes a
long time to perform a great number of simulations.

The main purpose of this work is to design an artificial neural network (ANN) [20,21]-based
frequency controller that gives the desired droop gain in a very efficient manner. The inputs to the ANN
are the load disturbance and system variables, such as the wind speed and percentage of wind power
penetration, which have significant impacts on the system frequency response [17–19]. Computer
simulations are first conducted to obtain the optimal droop gains that give the highest frequency
nadir (FN) (in the case of load increase) or lowest peak frequency (in the case of load decrease)
for the system under different values of load disturbances, wind power penetrations, and wind
speeds. The compiled ANN outputs (optimal droop gains) and the corresponding ANN inputs (load
disturbance, wind penetration, and wind speed) are employed as the ANN training patterns. Once the
ANN is trained, it can be used to provide the desired droop gain in a very efficient manner without
any time-consuming simulations. Therefore, the proposed ANN-based frequency controller can be
used for online applications.

The main contributions of the paper are summarized as follows:

1. The effects of load disturbance, percentage of wind penetration, and wind speed on the optimal
droop gain are investigated.

2. The designed ANN-based frequency controller can yield the desired droop gain in a very efficient
manner. Thus, it is suitable for real-time applications.

3. The proposed ANN-based frequency controller can give a better frequency response than the
fixed-gain controller. In addition, the ANN can yield controller gains that are very close to the
optimal gains, even when the input variables such as wind speed, wind penetration, and load
disturbance are not included in the training patterns of the ANN.

2. System Model

The system under study is a local power system in Taiwan with wind farms that are lumped
together as an equivalent DFIG [6]. The six fossil-fired steam turbine generators in the local power
system are lumped together as an equivalent synchronous generator (SG). Figure 1 depicts the nonlinear
block diagram for the synchronous generator frequency control and DFIG supplementary frequency
control. Details on the block diagrams for the governor, turbine, synchronous generator, and DFIG
were described in [6].

In this work, an ANN-based controller as shown in Figure 1 is proposed to adapt the gain KPD

for the DFIG supplementary frequency controller based on the load disturbance ∆PLoad, wind power
penetration, and wind speed VW .
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where PmS is the mechanical power of the synchronous machine, PeD is the electrical power of the 
DFIG, PLoad is the load demand, and HS and D are the equivalent per unit inertia constant for all 
synchronous generators in the power system and the load damping constant, respectively. 

It is observed from Equation (1) that the system frequency deviates from its nominal value f0 (1 
pu or 60 Hz) when there is a disturbance ∆PLoad in the system load. In order to restore the system 
frequency to its nominal value, the mechanical power PmS of the synchronous generators will be 
adjusted through the action of speed governors and turbines, and the DFIG electrical power output 
can also be modulated by the supplementary frequency controller denoted by −KPD∆f in Figure 1. 

The main purpose of this work is to design a proper gain KPD to meet the following objective 
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Note that only the frequency nadir or peak frequency is considered in the objective function, 
since the main purpose is to keep the system frequency within the allowable limit to avoid load 

Figure 1. Block diagram for a frequency control system. SG: synchronous generator, ANN: artificial
neural network, DFIG: doubly fed induction generator.

3. Effect of Load Disturbance, Wind Power Penetration, and Wind Speed on the Optimal
Controller Gain

As shown in Figure 1, the system frequency f under disturbance conditions for a power system
with a DFIG wind farm is governed by the swing equation of the synchronous machine:

2HS
d f
dt

= PmS + PeD − PLoad − D∆ f (1)

where PmS is the mechanical power of the synchronous machine, PeD is the electrical power of the
DFIG, PLoad is the load demand, and HS and D are the equivalent per unit inertia constant for all
synchronous generators in the power system and the load damping constant, respectively.

It is observed from Equation (1) that the system frequency deviates from its nominal value f0
(1 pu or 60 Hz) when there is a disturbance ∆PLoad in the system load. In order to restore the system
frequency to its nominal value, the mechanical power PmS of the synchronous generators will be
adjusted through the action of speed governors and turbines, and the DFIG electrical power output
can also be modulated by the supplementary frequency controller denoted by −KPD∆ f in Figure 1.

The main purpose of this work is to design a proper gain KPD to meet the following objective
function and constraints: [8,22,23]

Objective function:
Maximize FN (in case of load increase) or
Minimize peak frequency (in case of load decrease)

(2)

Constraints:
(1) Frequency range: 59.5 Hz < f < 60.5 Hz.
(2) DFIG speed range: 0.7 pu ≤ wmD ≤ 1.2 pu.
(3) Controller gain: 16 pu ≤ KPD ≤ 50 pu (2–6% droop).

(3)

Note that only the frequency nadir or peak frequency is considered in the objective function,
since the main purpose is to keep the system frequency within the allowable limit to avoid load
shedding in an isolated power system. In addition, only the droop control is considered, since it was
pointed out in [18] that the inertial constant is near zero and can be omitted.



Energies 2020, 13, 5320 4 of 15

It is observed from Figure 1 that the DFIG output power PeD can be written as

PeD = TeDωmD (4)

where TeD and ωmD are the electrical torque and speed of the DFIG, respectively.
Note that the mechanical torque TmD is given by

TmD =
1
2ρACp(λ, β)V3

W
ωmD

(5)

It is concluded from Equations (4) and (5) that the DFIG output power PeD is a function of
wind penetration and wind speed VW . Therefore, the dynamic frequency response following a load
disturbance will be affected by the load disturbance ∆PLoad, wind penetration, and wind speed VW ,
and the optimal controller gain KPD will be function of the three parameters of ∆PLoad, wind penetration,
and VW .

In the design of a fixed-gain supplementary frequency controller, the controller gain is usually
determined based on a nominal operating condition, e.g., ∆PLoad = 30 MW, wind penetration = 29.4%,
and VW = 11 m/s.

Figure 2 depicts the dynamic response curves for the system subject to a load disturbance of ∆PLoad
= 30 MW (wind penetration = 29.4% and VW = 11 m/s). An observation of the frequency response in
Figure 2a reveals that the controller gain KPD = 32 gives the highest frequency nadir. Additionally
shown in Figure 2a are the frequency response curves for the case with a smaller gain KPD = 20 and for
the case with a larger gain KPD = 40. As shown in Figure 2c, the DFIG delivers less electrical power to
the system and results in a lower frequency nadir when a smaller gain KPD = 20 is employed. On the
other hand, a larger gain of KPD = 40 causes smaller frequency dips in the first few seconds following
the disturbance and results in a lesser mechanical power increase for the synchronous generator and
lower frequency nadir than the case of KPD = 32. Therefore, an optimal gain of KPD = 32 is selected for
the base case of ∆PLoad = 30 MW, wind penetration = 29.4%, and VW = 11 m/s.

Figure 2. Dynamic response curves for a load disturbance of ∆PLoad = 30 MW (wind penetration
= 29.4% and VW = 11 m/s). (a) Frequency, (b) DFIG speed, (c) DFIG electrical power, and (d) SG
mechanical power. KPD: the optimal gain.
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Since the optimal gain changes with the load disturbance ∆PLoad, wind penetration, and wind
speed VW , the effect of these parameters on the optimal gain is examined below.

3.1. Effect of Load Disturbance ∆PLoad on the Optimal Gain KPD

Figure 3 depicts the dynamic response curves for the system subject to load increases of ∆PLoad =

62 MW and ∆PLoad = 63 MW, respectively.
It is observed from Figures 2 and 3a that the optimal gain KPD decreases from 32 to 23 as the ∆PLoad

is increased from 30 MW to 62 MW. It is also observed from Figures 2 and 3a that the frequency nadir
decreases with the increasing load disturbance. Note that the frequency nadir reaches the lower limit
of 59.5 Hz as the load disturbance is increased to 62 MW. If the load disturbance ∆PLoad is increased
further to 63 MW, the frequency nadir is below 59.5 Hz when the gain KPD remains at 23. When the
gain is increased to 25, the DFIG speed drops to a value lower than 0.7, and the frequency nadir is still
below 59.5 Hz. If the gain is decreased to 16, the DFIG speed will be higher than 0.7 but the frequency
nadir lower than 59.5 Hz.

It is thus concluded from Figure 3 that it is impossible to find a proper gain within the allowable
range (16 ≤ KPD ≤ 50) when the load disturbance is 63 MW. Therefore, ∆PLoad = 62 MW is the upper
limit for the load increase.

Figure 3. Dynamic response curves for the system subject to a load increase of ∆PLoad = 62 MW and
63 MW (wind penetration = 29.4% and VW = 11 m/s). (a) Frequency and (b) DFIG speed.

Figure 4 depicts the optimal gain KPD as a function of the load disturbance ∆PLoad. It is observed
from Figure 4 that the optimal controller gain KPD varies with the magnitude of the load disturbance
∆PLoad. This motivates the design of an ANN-based controller such that the controller gain can be
adapted with the load disturbance, and the load disturbance must be selected as one of the inputs to
the ANN-based controller.
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3.2. Effect of the Percentage of Wind Penetration on the Optimal Gain KPD

Figure 5 depicts the optimal gain KPD as a function of the percentage of wind penetration (∆PLoad
= 30 MW and VW = 11 m/s).
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It is observed from Figure 5 that the optimal gain KPD varies from 32 to 28 and 23 as the wind
penetration changes from 29.4% to 22.05% and 14.7%, respectively. No feasible solution that satisfies
the frequency and DFIG speed constraints can be found as the wind penetration is decreased to 7.35%.
It is thus concluded that the wind penetration has a significant impact on the design of the optimal
controller gain and must be employed as one of the inputs to the ANN-based controller.

3.3. Effect of the Percentage of Wind Speed on the Optimal Gain KPD

Figure 6 depicts the optimal gain KPD as a function of wind speed (∆PLoad = 30 MW and wind
penetration = 29.4%). It is observed from Figure 6 that the optimal gain KPD varies from 34 to 32, 31,
and 17 as the wind speed is decreased from 12 m/s to 11 m/s, 10 m/s, and 9 m/s, respectively. Therefore,
the wind speed is selected as one of the inputs to the ANN-based controller, as it has a considerable
effect on the optimal controller gain KPD.
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4. ANN-Based Frequency Controller

As shown in Figure 1, the gain for the supplementary frequency controller is adjusted by ANN
based on the present load disturbance (∆PLoad), wind penetration, and wind speed (VW), which are
provided as the inputs to the ANN. The output of the ANN is the desired gain KPD for the DFIG
supplementary frequency controller. A feedforward neural network with two hidden layers and ten
nodes for each layer as shown in Figure 7 was used [21].
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As shown in Figure 7, the output of the jth node in the nth layer, y(n)j , is a nonlinear function of
the outputs from the nodes in the (n − 1)th layers, as described below:

y(n)j = g (
10∑

i=1

w(n)
ji y(n−1)

i ) (6)

where w(n)
ji is the connection weight between the ith node in the (n − 1)th layer, and the jth node in the

nth layer and g is a nonlinear hyperbolic-tangent activation function.
The desired droop gain KPD is obtained from the following equation:

KPD= g (
10∑

i=1

w(4)
1i y(3)i ) (7)

Before the ANN can be employed to yield the desired droop gain KPD, the connection weights
must be determined using a set of training patterns. In this paper, a total of 27,920 training patterns
were used in the ANN training process to cover different combinations of ∆PLoad, wind penetration,
and VW .

The flow chart in Figure 8 was used to reach the desired ANN output (KPD) for a particular
combination of ANN inputs (∆PLoad, wind penetration, and VW).

The procedures to create training patterns are described as follows:

Step 1 Set the ∆PLoad, wind power penetration, and VW that are considered in this work and the
minimum value of the KPD.

Step 2 Solve the dynamic frequency response of the system using the nonlinear model in Figure 1.
Step 3 If the dynamic response satisfies the requirements defined in Equation (3), record the KPD and

the frequency nadir.
Step 4 Find the KPD that gives the highest frequency nadir under different scenarios and record the

∆PLoad, wind power penetration, VW , and KPD.

The created training patterns are depicted in Figure 9 for the cases under four different wind
speeds: VW = 9 m/s, VW = 10 m/s, VW = 11 m/s, and VW = 12 m/s.
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Among the 27,920 training patterns as shown in Figure 9, 80% were used for training and 20%
were used for testing. In the ANN training process, the connection weights between the inputs nodes,
the nodes in the two hidden layers, and the output node are determined based on the criterion to make
the droop gain from the ANN as close to the optimal gain in the training pattern as possible. In other
words, the objective is to minimize the cost function, as described below:

E =
1
2
(K PD −K∗PD

)2
(8)

where KPD and K∗PD are the droop gain from the ANN and the optimal droop gain in the training
pattern. Detailed procedures to determine the connection weights from the cost function in Equation
(8) can be found in [21].
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5. Case Studies

To demonstrate the effectiveness of the proposed ANN-based supplementary frequency controller,
the local power system as shown by the block diagram in Figure 1 with the parameters in the
Appendix A was simulated using MATLAB/SIMULINK. The results are described below.

5.1. Comparison of ANN-Based Controller and Fixed-Gain Controller under Different Load Disturbances

Figure 10 compares the droop gain KPD from the ANN-based controller, optimal controller,
and fixed-gain controller with KPD = 32 under different load disturbances. It is observed from Figure 10
that the droop gain KPD from the ANN-based controller is very close to those from the optimal controller.
However, the ANN-based controller can be used for online applications, since the droop gain is reached
in a very efficient manner. On the other hand, the optimal controller cannot be employed in real-time
situations, since a great number of simulations are performed in order to reach the optimal droop gain
by using the exhaustive search method.
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Figure 10. Droop gain KPD from the ANN-based controller, optimal controller, and fixed-gain controller
(wind penetration = 29.4% and VW = 11 m/s) under different load disturbances.

Figure 11 depicts the frequency, DFIG speed, SG energy, and DFIG energy for a load disturbance
of ∆PLoad = 62 MW. It is observed from Figure 11 that, in the case of a load increase of 62 MW, the DFIG
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speed fails to remain in the allowable range of 0.7 pu ≤ ωmD ≤ 1.2 pu when the controller gain is
fixed at 32. On the other hand, the satisfactory frequency and speed responses can be achieved by the
ANN-based controller by adapting the gain to a lower value of 23.59.

The frequency, DFIG speed, SG energy, and DFIG energy for a load disturbance of ∆PLoad =

40 MW are depicted in Figure 12. As the observation of the response curves in Figure 12 indicates,
the ANN-based controller gives better frequency and speed responses than the fixed-gain controller.

Figure 11. Dynamic response curves from the ANN-based controller and fixed-gain controller (∆PLoad

= 62 MW, wind penetration = 29.4%, and VW = 11 m/s). (a) Frequency, (b) DFIG speed, (c) SG energy,
and (d) DFIG energy.

Figure 12. Dynamic response curves from the ANN-based controller and fixed-gain controller (∆PLoad

= 40 MW, wind penetration = 29.4%, and VW = 11 m/s). (a) Frequency, (b) DFIG speed, (c) SG energy,
and (d) DFIG energy.
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5.2. Comparison of the ANN-Based Controller and Fixed-Gain Controller under Different Wind
Power Penetrations

The droop gain and FN from the ANN-based controller and fixed-gain controller under different
wind power penetrations are depicted in Figure 13. It is observed from Figure 13 that the ANN-based
controller gives better frequency than the fixed-gain controller, since its droop gain is varied according
to the percentage of the wind power penetration.
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frequency nadir (FN).

5.3. Comparison of the ANN-Based Controller and Fixed-Gain Controller under Different Wind Speeds

In order to examine the dynamic performance of the ANN-based controller under different wind
speed conditions, the droop gain and FN under different wind speeds are shown in Figure 14. It is
observed from Figure 14 that it is impossible to find a feasible solution that satisfies the frequency
and speed constraints by using the fixed-gain controller when the wind speed is lower than 9.8 m/s.
However, satisfactory frequency nadir can still be achieved by the ANN-based controller. It is also
observed that the ANN-based controller gives better FN than the fixed-gain controller, since the droop
gain is varied with the changing wind speed.
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5.4. ANN Performance Test for Untrained Cases

A major feature of the ANN is that, once the ANN is trained using an appropriate set of training
patterns, it can be used to generate the desired output (controller gain KPD) directly even when the
input variables (∆PLoad, wind penetration, and wind speed) are not within the set of training patterns.
Time-consuming simulations for the untrained cases can thus be avoided.

Figure 15 compares the droop gain KPD from the ANN-based controller and the optimal controller
for the case of VW = 10.5 m/s, which was not included in the training patterns. It is observed from
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Figure 15 that the ANN-based controller can yield droop gains that are very close to the optimal gain
from the exhaustive search method even when the wind speed (VW = 10.5 m/s) is different from the
wind speeds in all training patterns for the ANN.
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5.5. Feasible Operating Regions for the ANN-Based Controller

The feasible operating regions for the ANN-based controller and fixed-gain controller are compared
in Figure 16 for cases under four different wind speeds: VW = 9 m/s, VW = 10 m/s, VW = 11 m/s,
and VW = 12 m/s. It is concluded from Figure 16 that the proposed ANN-based controller with variable
gain provides a wider operating zone than the fixed-gain controller.
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6. Conclusions

An ANN was designed to yield the droop gain KPD for the supplementary frequency controller of
a DFIG wind farm under different load disturbances, wind penetrations, and wind speeds. The effects
of the load disturbances, wind penetrations, and wind speeds on the optimal gain were first studied.
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It was found that the load disturbance, wind penetration, and wind speed had significant impacts
on the optimal controller gain. Therefore, the three variables were employed as the inputs to the
ANN, and the output of the ANN was the desired droop controller gain. The specific conclusions are
as follows:

1. The droop gain KPD decreases with the increasing magnitude of the load disturbances.
2. The droop gain should be increased when the wind power penetration is increased.
3. The droop gain increases with the increasing wind speed.
4. The ANN-based controller yields essentially the same droop gain as the optimal controller using

the exhaustive search method. However, the ANN-based method is more efficient than the
exhaustive search method, since time-consuming simulations can be avoided after the ANN is
trained. Therefore, the ANN-based controller can be used in online applications, and the optimal
controller using the exhaustive search method cannot be employed for real-time applications.

5. A major feature of the ANN-based controller is that it can be employed to provide the desired
droop gain without the need to perform additional simulations, even when the load disturbance,
wind penetration, and wind speed are not within the set of training patterns.

6. By using the ANN-based controller with different gains under different operating conditions,
the feasible operating regions under different wind speeds and different wind penetrations can
be expanded.

7. In practical applications, the load disturbance can be estimated from the rate of change of

frequency (∆PLoad = −2Hs
d f
dt ). The wind penetration is computed using the rated capacities of

online units. The wind speed is assumed to be available at the local wind farm.
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Nomenclature

D load damping
HS, HD equivalent inertia time constants of synchronous machine and DFIG
f0, f nominal frequency and system frequency
F5, F4, F3 power fractions of the high, intermediate, and low-pressure turbines
Kopt maximum power point tracking constant
KPD DFIG supplementary proportional controller gain
KPS, KIS synchronous machine droop and integral controller gains
Pc, Psr, Xgov control signal, speed relay output signal, and steam valve position of the synchronous machine
Pt5, Pt4, Pt3 mechanical output power of the high, intermediate, and low-pressure turbines
PLoad Load demand
PeD electromagnetic power of DFIG
PmS mechanical power of synchronous machine
Tsr, Tsm speed relay and servo-motor time constants of the synchronous machine
Tt5, Tt4, Tt3 steam chest, reheater, and crossover time constants of the synchronous machine
TmD, TeD mechanical torque and electromagnetic torque of DFIG
T∗eD, MPPT electromagnetic torque command of DFIG for MPPT operation
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T∗eD DFIG torque command
ωmD DFIG speed
VW wind speed
CP wind turbine power coefficient
A area swept by the wind turbine blades
ρ air density
λ,β wind turbine tip speed ratio and blade pitch angle
∆ incremental quantity

Appendix A

Synchronous machine:
Rated power: 480 MVA.
Machine parameters: HS = 3.3 s.

Speed governor and turbine:
Droop and integral controller gains: KPS = 20 and KIS = 0.1.
Speed relay and servo-motor time constants: Tsr = 0.1 s and Tsm = 0.3 s.
Steam chest, reheater and crossover time constants: Tt5 = 0.68 s, Tt4 = 5.3 s, and Tt3 = 0.58 s.
Power fractions: F5 = 0.241, F4 = 0.399, and F3 = 0.360.

DFIG:
Rated power: 200 MVA.
Machine parameters: HD = 3.5 s.
Load parameters:
Load damping coefficient: D = 1.
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