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Abstract: The Air-conditioning System (ACS), used in office buildings in the hot summer and cold
winter zone of China, are always operate intermittently. The dynamic thermal behaviors of building
walls with real climate conditions may be different from those with only the representative day’s
climate conditions, due to the time varying nature of the climate, which will lead to the variation of
the ACS loads. A numerical calculation was performed to analyze the effects of insulation form on
heat behavior of external walls and ACS loads. The results indicate that cooling transmission load
with inside insulation reaches its maximum value when the solar-air temperature in daytime is the
highest, while that with outside insulation occurs at the time when the air temperature at night is the
highest during summer. Heating transmission load for the wall with external and internal insulation
both peaks in the day with lowest mean outdoor temperature during the last non-working period.
Inside insulation can be considered a better way to reduce the peak load, peak-valley load difference
and energy consumption.

Keywords: intermittent operation; insulation form; peak load; peak-valley load difference;
energy consumption

1. Introduction

The hot summer and cold winter (HSCW) climate zone of China is characterized by a developed
economy and high population density [1]. To maintain better indoor comfort, demand for air
conditioning systems (ACS) has increased. It is estimated that the ACS loads in peak periods are
continuously rising, and are the main reason for the peak load and the peak-valley difference of the
power grid increasingly prominent, which has even reached the historical extreme value in 2019 [2].
Therefore, establishing ways to reduce ACS energy consumption is urgently needed.

Appropriate design of building envelope is one of the useful ways to realize effective energy
conservation, given that 35% of the ACS energy consumption is caused by the heat transfer of building
envelope in HSCW climate zone [1]. Proper distribution of thermal mass and insulation layer for
building walls, not only helps to reduce transmission load and peak load, but also helps to maintain
maximum load levelling [3,4]. Maximum load levelling is realized by reducing peak and enhancing
valley of loads, i.e., reduction of the difference between peak and valley load [3]. The reduction of load,
peak load and peak-valley load difference are quite significant; first, it reduces the large energy demand;
second, it allows smaller ACS capacity and higher ACS energy efficiency [4]; third, it promote ACS
operational stability, and hence, increases ACS energy efficiency [3]. Therefore, peak load, peak-valley
load difference and energy consumption of ACS are all key aspect of its design.
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However, previous research on optimization of insulation forms of building walls have focused
more attention on continuously conditioned buildings [5–10]. In fact, the office buildings in HSCW
zone are only conditioned during working time, i.e., ACS is intermittently operated. There are few
studies focused on building partly occupied and intermittently conditioned. Barrios et al. [11] and
Tsilingiris [12] studied the annual ACS energy consumption of an intermittently conditioned building
under periodic ambient conditions. The results showed that inside insulation gives lowest ACS energy
consumption. The research on the effectiveness of the insulation form of the external wall on ACS
energy consumption obtained the same conclusions under the climate conditions of representative
day. Wang et al. [1] investigated the dynamic thermal characteristics of intermittently heated rooms by
employing CFD techniques. The results show the heat release of internal mass during non-working
time causes the heating load increasing. Zhang et al. [13] and Yang et al. [14] found that envelope with
heavy thermal mass can reduce transmission loads as the heat storing by the indoor side layer during
daytime will be removed by ventilation at night. On the contrary, Yuan et al. [15] studied the thermal
performance of walls with outside and inside insulation. The results indicate that the envelope with
heavy thermal mass layer placed inside increase the transmission loads, for the thermal mass layer
stores excess heat and this heat must be removed by ACS in next cooling period.

By comparison the above studies, it is found that the heat storage or release of the indoor side of
the wall plays a significant role in cooling and heating loads in an intermittently conditioned room
and it is determined by two factors, i.e., the capacity of the inside layer of the wall and ambient
condition during ACS non-working time [1,13–15]. However, the above research was performed for
the representative day, in which the ambient air temperature during non-working period is onefold,
just low or high. However, in reality, both low and high outdoor air temperature at night occurs,
which results the heat storage or release of the indoor side of the wall is difficult to confirm. Therefore,
these researches only qualitatively explain the influence of wall insulation on the energy consumption
of air conditioning, but they cannot comprehensively predict the load characteristics, such as the peak
load and the daily load peak-valley difference during the whole cooling and heating seasons.

In the present paper, the most suitable insulation form of external walls from the peak load,
the peak-valley load difference and total load of ACS has been investigated numerically based on the
climate conditions throughout the whole cooling and heating season, as the conceptual framework
shown in Figure 1.
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Figure 1. Conceptual framework of the present study.

2. Method

2.1. Climate Conditions

The HSCW zone involves Henan, Jiangsu, Anhui, Jiangxi, Fujian, Hunan, Sichuan and Guangxi
Province and Shanghai [16]. In this region the mean temperature of the coldest month is between 0
and 10 ◦C, while that of the hottest month is between 25 and 29 ◦C. Additionally, the relative humidity
is between 75% and 80% [17]. In this paper, the representative of HSCW zone is Shanghai. The climate
data of outdoor air temperature and sol-air temperature are taken from the China Meteorological Data
Sharing Service System and given in Figure 2.
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Figure 2. Climate data of Shanghai (a) in summer and (b) in winter.

2.2. Building Model

Office buildings are always multi-story buildings in the hot summer and cold winter zone. In such
buildings, most of the rooms are with one exterior facade exposed to exterior conditions. The other
walls between the two rooms can be considered interior walls. Therefore, a room located in the
middle of an intermediate floor in a multi-story building is chosen as the calculation model [1,18],
shown in Figure 3a. The internal walls between two rooms assumed to be at the same temperature,
so intermediate layer of these walls can be considered as an adiabatic boundary.
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The room used in this study was a single room with dimension of 6 m × 3.6 m × 3 m ((Long ×
Wide × High) and has a sliding double-glazing window with the dimension of 2 m × 1.6 m, as shown
in Figure 3a. The windows are thermally controlled double 6 mm glass with a 5mm air gap (with heat
transfer coefficient Uw = 3.0 W/m2

·K, solar heat gain coefficient SHGC= 0.37) [19]. The internal
envelope are 10 cm walls and 20 cm floor/ceiling built in reinforced concrete. The external wall structure
was composed of 2 cm thick exterior plaster, an Extruded polystyrene (XPS) layer of variable thickness,
20 cm thick reinforced concrete and 2 cm thick interior plaster. Insulation was placed at outside (Wall-1)
and inside (Wall-2) as shown in Figure 3b. Insulation thickness was increased from 1.5 to 9.0 cm,
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corresponding to the thermal resistance R = 0.5, 1.0, 2.0, 3.0 m2
·K/W, respectively. Thermophysical

properties of the external walls are presented in Table 1.

Table 1. Thermo-physical properties of external wall [17,18].

Material Thickness
δ (cm)

Density
ρ (kg/m3)

Thermal Conductivity
λ (W/(m·K)

SpecificHeat Capacity
ρcp (J/(kg·K))

Reinforced concrete 20 2500 1.74 920
XPS 1.5, 3.0, 6.0, 9.0 35 0.03 1213

2.3. HVAC System

The cooling and heating season of Shanghai are 15 June–15 September, and 1 December–15 March,
respectively [18]. The ACS was switched on-off intermittently, running only from 8:00 to 18:00.
The window was kept closed when the ACS is off. Here indoor set point temperature was 26 ◦C for
cooling and 20 ◦C for heating [16], the air change rate resulted by infiltration was 1.0 h−1(one air change
per hour).

2.4. Internal Loads

There are two people (10 m2/person), two computers and four lightings in each room, with 76 W
person’s sensible and 32 W latent heat gains, 400 W heat gains of the equipment. Operating time of the
equipment is half of the working time [16].

2.5. Mathematical Formulation and Calculation Procedure

To analyze the temperature distribution of composed walls, Figure 4a shows the temperature
distribution across the roof thickness at two different times by employing a numerical method.
The temperature distribution of reinforced concrete (the gray area) was nearly invariable because of
the fast thermal diffusion. Figure 4b presents the measured indoor air temperature of a test chamber
whose walls were composed of thermal insulation layer and metal board. It can be seen that the peak
temperature of outdoor and indoor air nearly has no time lag. This proves the heat conduction of
insulation layer can be deemed steady.
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and (b) the variation of outdoor and indoor air temperature [21].

To simplify the analysis, some assumptions are used to establish for mathematical model based
on the above results and other studies, as follows:

(1) The temperature distribution across the reinforced concrete layer is uniform because of high
thermal conductivity. This implies the convection heat-transfer at its surface is quite slower than
the thermal diffusion [14,15,22].

(2) The heat conduction of insulation layer is deemed as steady heat conduction, as the heat storage
capacity of the insulation can be ignored for its low density [4,15].
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(3) There exists thermal radiation between the room surfaces due to temperature difference. However,
temperature difference will be reduced by adding insulation layer on the external walls, and hence
some studies neglected this thermal radiation [4,15,22]. For simplicity, this thermal radiation is
also ignored in the present study.

Based on the above assumptions, the heat balance equations can be written as:

2.5.1. Heat Balance Equations of External Walls

ho(Tsa − θe) =
λi

δi
(θe − Tm) (1)

λi

δi
(θe − Tm) − hi(θi − Ti) = ρmcmδm

dTm

dτ
(2)

with the boundary condition
θi = Tm (3)

By solving the above questions, exterior and interior surface temperature θe and θi of Wall 1 is
expressed by:

θe =
hoTsa +

λi
δi

Tm

ho +
λi
δi

(4)

and,

θi =
(ho +

λi
δi
)hiTi +

λi
δi

hoTsa

(ho +
λi
δi
)(hi +

λi
δi
) − (λi

δi
)

2 + C1 exp(−
(ho +

λi
δi
)(hi +

λi
δi
) − (λi

δi
)

2

(ho +
λi
δii
)ρmcmδm

τ) (5)

for exterior insulation, and

ho(Tsa − θe) −
λi

δi
(Tm − θi) = ρmcmδm

dTm

dτ
(6)

hi(θi − Ti) =
λi

δi
(Tm − θi) (7)

with the condition,
θe = Tm (8)

for interior insulation.
By solving the above questions, θe and θi of Wall 2 is expressed by,

θe =
(hi +

λi
δi
)hoTsa +

λi
δi

hiTi

(ho +
λi
δi
)(hi +

λi
δi
) − (λi

δi
)

2 + C2 exp(−
(ho +

λi
δi
)(hi +

λi
δi
) − (λi

δi
)

2

(hi +
λi
δi
)ρmcmδm

τ) (9)

θi =
hiTi +

λi
δi

Tm

hi +
λi
δi

(10)

where hi and ho is the convection heat transfer coefficient at the wall inside and outside surface, here,
hi = 8.0 W/m2

·K [12] and ho= 23 W/m2
·K [23]. λi is the thermal conductivity of insulation layer (W/m·K).

cm and ρm are the specific heat capacity (J/kg·K) and density (kg/m3) of the thermal mass material,
respectively. δm and δi are the thicknesses of the thermal mass and insulation layers (m). Ti and Tm is
the temperature of indoor air and the thermal mass (◦C). Tsa is solar-air temperature, which can be
written as [11]:

Tsa(τ) = To(τ) +
aI(τ)

ho
−
σ∆R
ho

(11)
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where To is the ambient air temperature (◦C); I is the total solar radiation (W/m2). a is the solar
absorptivity at the envelope exterior surface, here, a = 0.7. ε∆R/ho is the correction coefficient and it is
0 ◦C here [5].

2.5.2. Heat Balance Equations of Indoor Air

Under the case of ACS intermittently operated, Ti is the set temperature during ACS working
periods, and controlled by Equation (4) when ACS is off,

n
3600ρcpV(To(τ) − Ti(τ+ ∆τ)) + hiF(θi(τ) − Ti(τ, τ+ ∆τ)) + hiFcf(θcf(τ) − Ti(τ, τ+ ∆τ))+

UwFw(To(τ) − Ti(τ, τ+ ∆τ)) = ρcpV (Ti(τ+∆τ)−Ti(τ))
∆τ

(12)

Ti(τ, τ+ ∆τ) =
Ti(τ+ ∆τ) + Ti(τ)

2
(13)

with the initial condition,
τ = 0, Ti (0) = Tc (14)

where ρ and cp are the density (kg/m3) and specific heat capacity of air (J/kg·k). n is the room air change
rate (h−1). Uw is the heat transfer coefficient of the windows. Tc is the initial temperature of indoor air,
◦C. V is the volume of the rooms (m3). θcf are the inner surface temperature of the internal wall (◦C).
Fw, F and Fcf are the areas of the windows, external walls and internal walls (m2), respectively. ∆τ is
the time step (s).

2.5.3. Heat Balance Equations of Internal Walls

hiFi(Ti(τ, τ+ ∆τ) − θcf(τ)) =
1
2
ρmcmδcf

dθcf

dτ
(15)

Combining above equations, numerical calculations were performed with MATLAB program.
In this way, the inner and the outer surfaces temperature of envelopes, indoor air temperature could
be determined.

2.6. Model Validation

In order to validate the created model, the calculated results were compared with the experimental
results. The experiment is conducted in a chamber in dimension of 3.6 × 3.0 × 2.6 m (Long ×Wide ×
High), which was constructed in a laboratory. Its envelope configuration contains 7 mm rock wool
layer placed at inside and 10 mm stainless steel layer. A thick insulation layer was placed on its bottom
to prevent heat transfer of the floor. Three boxes filled with sand were regarded as internal envelopes,
with the dimensions of 0.5 × 0.4 × 1.2 m (Long ×Wide × High). The air temperature of laboratory was
set at 22 ◦C. The chamber was heated 12 h each day, with the set temperature of 28 ± 0.5 ◦C. The door
of the chamber is always closed.

The air temperature was measured using type-K thermocouples, which was installed on 4 poles
with 7 measuring points. In addition, 4 thermocouples were also employed to measure the temperature
of the sand. The distribution of the measuring poles and points are presented in Figure 5b–d. The air
and sand temperature are obtained by averaging the values at different measuring points, respectively.

The calculated and experimental results about air (Ti) and sand temperature (qi) are compared in
Figure 6. It shows that good agreement is achieved between the two sets of results. To quantify the
error between the two sets of results, CV(RMSE)(Cumulative Variation of Root Mean Square Error) is
calculated, with the detailed calculation procedure of CV(RMSE) given in [24]. The CV(RMSE) is 1.3%
and 2.3% for Ti and θi, respectively. Comparing results demonstrates the analytical model are reliable
in this study, so it will be used for the following discussions.
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Figure 6. Comparisons between the calculated and experimental data of indoor air and interior
surface temperature.

3. Results and Discussion

3.1. Effects of Insulation form on the Hourly Transmission Loads

Figure 7 shows the hourly temperature variation of the interior surface of external wall (θi) with
1.5 cm thick insulation layer in the hottest month, and in the coldest month, respectively. A detailed
variation of inner surface temperature (θi) and indoor air temperature for three days (Ti) is presented.
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Figure 7. Variations of the inside surface temperature (a) in cooling season (b) in heating season.

It can be seen that the θi of Wall 2 fluctuates more significantly due to the variation of solar-air
and indoor air temperature. The maximum temperature swing for Wall 2 (inside insulation) can be
more than 10 ◦C in summer and reach 20 ◦C in winter, but for Wall 1 (with external insulation) it can
only be less than half of that for Wall 2.
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Due to the low heat capacity of the insulation materials, the insulation layer responds rapidly
to the change of the ambient air temperature. When the ACS is switched on, θi of Wall-2 decreases
and approaches to the set point (26 ◦C) immediately, but θi of Wall-1 decreases gradually. When the
ACS is switched off, the thermal mass layer can prevent rapid increase of θi of Wall 1, so it increases
only 3 ◦C during ACS non-working time, while increases 8 ◦C for Wall 2. Moreover, θi and Ti of
Wall-2 increases nearly simultaneously, i.e., there is no time lag. But for Wall-1, there is at least 5 h
time lag. Similar results are obtained in winter. Therefore, a smaller difference between inner surface
temperature and the design room value for inside insulation than that for outside insulation when the
ACS starts to run. The cooling or heating transmission load would be proportional to this temperature.

Similar trends of variations are calculated for other cases of external walls with 3.0, 6.0, 9.0 cm
insulation layer, so no more detailed description about these.

The transmission load is expressed by:

qi(τ) = hiF(θi(τ) − Ti(τ)) (16)

Figure 8 indicates that a variation exists in relation to the transmission load for two different
insulation form. Wall 2 provides a smaller transmission loads both in summer and winter. For most
days in summer, the maximum transmission load of Wall 2 is about less than 70% of the minimum
transmission load of Wall 1 in summer. Even the largest difference of the cooling transmission load
between two walls is that the former is only about 30% of the later. In winter, the maximum transmission
load of Wall 2 is nearly equivalent to the minimum transmission load of Wall 1.
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Interestingly, the transmission load for the wall with external and internal insulation peaked at
definitely different time in summer. Peak transmission load of Wall 1 occurs in the day with maximum
mean outdoor from 18:00 to 8:00 in next day (Tn,max) and that of Wall 2 occurs in the day with maximum
mean sol-air temperature from 8:00 to18:00 (Td,max) in summer, see the red box in Figure 8a. Differently
from summer, in winter the transmission load for Wall 1 and Wall 2 both peaks in Jan. 10 with the
maximum mean outdoor temperature (Tn,max), shown in Figure 8b.

For exterior insulation (Wall 1), the thermal mass layer who has high heat capacity stores (releases)
much heat during ACS off period in summer (winter). Thus, a large amount of energy applies to
cool (or heat) the inner layer of envelopes in the first few hours of the next cooling (heating) period.
This leads to the peak transmission load occurs in the day with highest (lowest) mean outdoor
temperature during ACS off time.
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The reason why the transmission load for Wall 2 peaks at different cases in summer and winter
is twofold, one is the temperature difference between indoor and outdoor air (∆T) and another is
the insulation layer’s low heat capacity. In winter, large ∆T results in the insulation layer releasing
quite much heat during ACS off period, which causes large increase of the load of the next heating
period. However, in summer with small ∆T, the insulation layer stores little heat during ACS off time,
which has slight effect on the transmission load in the next cooling period.

Figure 8 indicates that inside insulation does not only reduce heat transfer, but also reduce peak
heat transmission load significantly. The transmission load peak-valley difference is also different for
the two walls.

3.2. Effects of Insulation form on Peak Loads

Figure 9 compares the peak heat transfer load of the two walls with respect to different insulation
resistance. Inside insulation (Wall 2) gives lower peak transmission loads. The larger the insulation
resistance is, the greater the advantage of inside insulation is. even if the wall has a low insulation
resistance of 0.5 m2

·K/W, the peak heat transfer load of Wall 2 is about 40% lower than that of
Wall 1 (outside insulation) in summer. Inside insulation has a stronger advantage of reducing peak
transmission load in winter than in summer.

Energies 2020, 13, x FOR PEER REVIEW 9 of 15 

 

applies to cool (or heat) the inner layer of envelopes in the first few hours of the next cooling (heating) 

period. This leads to the peak transmission load occurs in the day with highest (lowest) mean outdoor 

temperature during ACS off time. 

The reason why the transmission load for Wall 2 peaks at different cases in summer and winter 

is twofold, one is the temperature difference between indoor and outdoor air (ΔT) and another is the 

insulation layer’s low heat capacity. In winter, large ΔT results in the insulation layer releasing quite 

much heat during ACS off period, which causes large increase of the load of the next heating period. 

However, in summer with small ΔT, the insulation layer stores little heat during ACS off time, which 

has slight effect on the transmission load in the next cooling period. 

Figure 8 indicates that inside insulation does not only reduce heat transfer, but also reduce peak 

heat transmission load significantly. The transmission load peak-valley difference is also different for 

the two walls. 

3.2. Effects of Insulation form on Peak Loads 

Figure 9 compares the peak heat transfer load of the two walls with respect to different insulation 

resistance. Inside insulation (Wall 2) gives lower peak transmission loads. The larger the insulation 

resistance is, the greater the advantage of inside insulation is. even if the wall has a low insulation 

resistance of 0.5 m2·K/W, the peak heat transfer load of Wall 2 is about 40% lower than that of Wall 1 

(outside insulation) in summer. Inside insulation has a stronger advantage of reducing peak 

transmission load in winter than in summer. 

 
(a) (b) 

Figure 9. Comparison of the peak transmission load between the two walls with respect to different 

insulation resistance; (a) in cooling season; (b) in heating season. 

Cooling and heating loads consist of transmission load of exterior wall (q1), and other 

components of cooling and heating loads (qo) including fresh air load (qv), transmission load of 

interior walls (qi), the load due to heat conduction through windows (qw), the load; due to solar 

radiation heat gain (qs) and internal heat gain (qh). Solar radiation and internal heat gain are first 

absorbed by the internal mass and later transferred from the surfaces of internal mass to the air by 

convection, i.e., loads are forming after a time delay. Therefore, the load factor method, by which the 

effect of thermal internal gains by solar radiation transferred to load has been considered, is 

employed to calculate these two loads. Detailed calculation procedures for qo are given by Equations 

(17)–(23): 

o v i w h+ sq q q q q q     (17) 

o i
v

( ( ) ( ))

3600
oM ρ H τ H τ

q


  (18) 

in summer, and 

i o

v

( ( ) ( ))

3600

o pM c ρ T τ T τ
q


  (19) 

Figure 9. Comparison of the peak transmission load between the two walls with respect to different
insulation resistance; (a) in cooling season; (b) in heating season.

Cooling and heating loads consist of transmission load of exterior wall (q1), and other components
of cooling and heating loads (qo) including fresh air load (qv), transmission load of interior walls (qi),
the load due to heat conduction through windows (qw), the load; due to solar radiation heat gain (qs)
and internal heat gain (qh). Solar radiation and internal heat gain are first absorbed by the internal
mass and later transferred from the surfaces of internal mass to the air by convection, i.e., loads are
forming after a time delay. Therefore, the load factor method, by which the effect of thermal internal
gains by solar radiation transferred to load has been considered, is employed to calculate these two
loads. Detailed calculation procedures for qo are given by Equations (17)–(23):

qo = qv + qi + qw + qs + qh (17)

qv =
Moρ(Ho(τ) −Hi(τ))

3600
(18)

in summer, and

qv =
Mocpρ(Ti(τ) − To(τ))

3600
(19)

in winter:
qi = hiFi(θcf(τ) − Ti(τ)) (20)

qw = UwFw(To(τ) − Ti(τ)) (21)
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qs = CaCsFwDjCLQ (22)

qh = qSCL + qL (23)

where Mo is the fresh air volume and Mo = 30 m3/h [23]. Ho and Hi are the enthalpy of the ambient
and indoor air, (J/kg). CLQ and CL are the load factor of windows and internal heat gains [23]. CS and
Ca is the shading and effective area coefficient and their value are 0.93 and 0.85 [23]. Dj is the solar heat
gain factor and its value is 174 W/m2 and 207 W/m2 for summer and winter [23]. qS and qL are indoor
sensible, and latent heat gain, respectively.

Insulation form affects the heat transmission load directly, and it further have an effect on the
total load of air conditioning. Therefore, we define the peak load rate (ε) to represent compare the
advantage of two walls to reduce peak load, as follows,

ε =
qmax,out − qmax,in

qmax,out
× 100% (24)

where qmax,out and qmax,in are the peak cooling or heating load of the insulated buildings with outside,
and inside insulation, respectively (W).

The peak cooling or heating loads of buildings with outside and inside insulation, and peak load
rate (ε) in relation to the insulation thermal resistance (R) is reported in Figure 10.
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Figure 10. Comparison of the peak load between the externally and internally wall with respect to
different insulation resistance; (a) in cooling season; (b) in heating season.

Figure 10a shows when the wall has a low insulation resistance of 0.5 m2
·K/W, the peak cooling

load of the room with inside insulation is about 15% lower than that of the room with external insulation.
When the insulation resistance is large enough (R = 2.0 m2

·K/W), peak load rate can be reached 25%.
Compared with summer, the advantage of inside insulation to reduce peak loads is more significant
in winter. Even when the wall has a low insulation resistance of 0.5 m2

·K/W, peak load rate can be
reached 25%. When the insulation resistance is large enough (R = 2.0 m2

·K/W), peak load rate can be
as high as 35%.

3.3. Effect of Insulation form on Daily Peak-Valley Load Difference

To evaluate the swing of the load during ACS working time, the peak-valley load difference
are calculated, in which the peak and valley load is the maximum and minimum daily cooling or
heating load during ACS working time. The variations of the daily peak-valley load difference for
R = 0.5 m2

·K/W during cooling and heating seasons are shown in Figure 11, respectively. It indicates
that the daily peak-valley load of Wall 2 is larger than that of Wall 1 in summer. Winter is the opposite,
i.e., the daily peak-valley load difference of Wall 2 is smaller than that of Wall 1.

Figure 12 presents the daily peak-valley load difference visually using a boxplot broken out for
different insulation resistance. As clearly shown in Figure 12a, the medians and the interquartile ranges
of Wall 1 are lower than Wall 2. However, the difference between them gradually narrow with the
insulation resistance increasing. Conversely, in winter, the medians and the interquartile ranges of
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Wall 1 are higher than that of Wall 2, and this advantage of inside insulation is more significant for
higher insulation resistance.Energies 2020, 13, x FOR PEER REVIEW 11 of 15 
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Figure 11. The peak and valley load difference of ACS for different insulation form; (a) in cooling
season; (b) in heating season.
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Figure 12. Boxplot of the daily peak-valley load difference for different thermal resistance; (a) in cooling
season; (b) in heating season.

Comparing Figure 12a,b, the medians in winter are larger than in summer, meaning that decreasing
peak-valley load difference of winter is more essentially. When the insulation is placed on the indoor
surface, the peak-valley load difference is greatly reduced in winter. Therefore, inside insulation can be
considered a better way to maintain the ACS running steady.

3.4. Effects of Insulation form on ACS Energy Consumption

To compare the effects of insulation form on the ACS energy consumption of each month, the
energy consumption index, written as Equation (25), in the considered months for different insulation
forms are presented in Figure 13,

Q = Q1 + Qo =

∫ τ
0 q1dτ

Af·τ
+

∫ τ
0 qodτ

Af·τ
(25)

where Q1 and Qo are the energy consumption index due to heat transfer through the external wall and
other components energy consumption index (due to fresh air load, heat conduction through windows,
solar radiation heat gain and internal heat gain), W/m2. Af is the floor area of the office room, m2.
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Figure 13. Effect of insulation form on transmission load and total loads for different month; (a) in
cooling season; (b) in heating season.

The results in Figure 13a show that in July and August, Q1 of Wall-2 is much lower comparison
with Wall-1. But it is just the reverse in June and September. As a result, the trend of Q is similar to that
of Q1. The reason is that the outdoor air temperature during ACS off period is lower than the cooling
set temperature frequently in June and September, so the inside layer of the wall is cooled which can
decrease the transmission load of next cooling period. Wall-1 with the mass layer inside releases more
heat, so results to more significant reduction of the transmission load, and hence, lower total cooling
loads. However, the reduction of energy consumption caused by internal insulation in the hottest
months is much larger than that caused by external insulation in June and September.

Figure 13b indicates that inside insulation always gives lower energy consumption and the
difference of q1 between two walls is quite big. The reason for that has two, first, the heat capacity (ρ × c)
of the thermal mass is about 54 times higher than that of the insulation material; second, the ambient
temperature is really low, such as the temperature deviates from the set temperature (20 ◦C) by more
than 15 ◦C for nearly 50% of the winter time (see in Figure 2). This will lead to a large amount energy
to heat the inside layer of Wall 1 during the first few hours of the next heating period.

To compare the energy saving of outside and inside insulation, the relative energy saving index
(ξ), expressed as Equation (26), are presented in Figure 14.

ξ =
Qout −Qin

Qout
× 100% (26)

where Qout and Qin is the energy consumption of the rooms with exterior and interior insulation,
respectively (W/m2).
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Figure 14 shows that inside insulation gives lower energy consumption caused by the wall heat
transfer (Q1) more significantly and total energy consumption than outside insulation. In summer,
when the insulation resistance is as low as 0.5 m2

·K/W, Q1 of Wall 2 is about 2/3 of that of Wall 1, and the
relative energy saving index (ξ) can reach 8%. In winter, for the same case, Q1 of Wall 2 is only 1/5 of
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that of Wall 1 and ξ can reach 35%. A more significant energy saving can be achieved when insulation
placed towards the inside, and the advantage of inside insulation is more significant in winter.

Further, it can be seen that increasing insulation resistance, ξ cannot be increased significantly,
such as when the insulation resistance increases from 0.5 to 3.0 m2

·K/W, the energy saving increases
about 3% in summer and less than 2% in winter. Increasing the thermal resistance of insulation cannot
enhance the energy saving advantage of inside insulation.

The above conclusions confirm that the inner layer of the envelope storing/dissipating excess heat
during ACS off period is the main reason influencing cooling/heating loads. This part of loads can
be reduced by placing the insulation inside effectively, especially in winter with larger outdoor and
indoor temperature difference. Hence, inside insulation is an effective way to achieve energy savings
of buildings intermittently conditioned in HSCW zone.

3.5. Study Limitations

The main limitations of this paper are as follows: (a) there are some assumptions for the model,
and based on these, the lumped parameter method was used for the modelling of the reinforced
concrete layer of the wall. It might be simplified for the actual situation; (b) the applicability of the
building mode has a limited range for the specific thermal properties of building materials; (c) no
simulation tool was used and the selected model is not based on real-time monitoring.

4. Conclusions

The effects of insulation form on peak loads, peak-valley loads difference and total loads were
studied under the real climatic conditions of Shanghai, presenting HSCW zone in China. For this
purpose, investigation is carried out for an office with the insulation layer placed at exterior and
interior of the wall. The results show that:

(1) In the cooling season, when the wall insulated externally and internally, cooling transmission
loads peaked in the day with the maximum mean outdoor temperature during the last ACS
non-working period and with maximum mean sol-air temperature during ACS working time,
respectively. Contrary to the cooling season, the heating transmission loads for the wall with
external and internal insulation both peaked in the day with lowest mean outdoor temperature
during the last ACS off period.

(2) Compared with outside insulation, inside insulation gives lower peak loads. The peak cooling
and heating loads of the room with interior insulation are at least 15% and 25% lower than that of
the room with exterior insulation.

(3) The steady running of ACS in winter is more difficult to realize in winter than in summer, meaning
that decreasing peak-valley load difference of winter is more essential. When the insulation
placed on the indoor surface, the peak-valley load difference is reduced greatly in winter. Thus,
inside insulation can be considered a better way to maintain the ACS running steady.

(4) A more significant energy saving can be achieved when insulation placed towards the inside,
and this advantage of inside insulation is more significant in winter.
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