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Abstract: We present a novel methodology for the control of power unit commitment in complex ship
energy systems. The usage of this method is demonstrated with a case study, where measured data
was used from a cruise ship operating in the Caribbean and the Mediterranean. The ship’s energy
system is conceptualized to feature a fuel cell and a battery along standard diesel generating sets for
the purpose of reducing local emissions near coasts. The developed method is formulated as a model
predictive control (MPC) problem, where a novel 2-stage predictive model is used to predict power
demand, and a mixed-integer linear programming (MILP) model is used to solve unit commitment
according to the prediction. The performance of the methodology is compared to fully optimal
control, which was simulated by optimizing unit commitment for entire measured power demand
profiles of trips. As a result, it can be stated that the developed methodology achieves close to optimal
unit commitment control for the conceptualized energy system. Furthermore, the predictive model
is formulated so that it returns probability estimates of future power demand rather than point
estimates. This opens up the possibility for using stochastic or robust optimization methods for unit
commitment optimization in future studies.

Keywords: maritime; optimization; model predictive control; predictive model; Gaussian Process;
mixed-integer linear programming

1. Introduction

Many industries across the world have pledged to lower atmospheric pollution drastically by
2050, including the maritime sector. The International Maritime Organization (IMO) has made a
preliminary plan on how to reduce shipping-related greenhouse gas (GHG) emissions by 50% by
2050 [1].

The emission-related regulations for marine traffic are set by MARPOL Annex VI [2], which limits
shipping-related carbon dioxide (CO2) emissions via an energy efficiency design index (EEDI) that
must be met by newbuilds. The annex also regulates the amount of sulfur in marine fuel to reduce
sulfur oxide (SOx) emissions, especially in emission control areas which are also specified by the
annex. Emission of particulate matter (PM) is governed by the same rules as those that apply to
SOx emissions. Finally, MARPOLs Annex VI limits the amount of nitrogen oxide (NOx) emissions of
ships, depending on engine size and engine revolutions per minute (RPM). The PM, NOx and SOx

regulations were originally planned to come into effect in cascadingly more stringent tiers, of which
we are currently at the most stringent tier. However, EEDI is planned as a continuously evolving GHG
emission reduction strategy, with new more stringent regulations coming into effect gradually.

These restrictions appear to work well, as indicated by [3], where the authors concluded
that switching to low-sulfur fuels reduces shipping-related premature mortality by 34%.
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Furthermore, the PM emission restrictions reduce PM related cardiovascular and lung cancer deaths
by roughly 2.6%, and childhood asthma by 3.6%.

EEDI and its affiliate emission reduction strategies are the main restrictions that are supposed to
pave the way towards the goal of 50% reduced GHG emissions by 2050. Some studies suggest that EEDI
should be drastically tightened if the emission goal of 50% less GHG emissions by 2050 is to be met [4].
Nevertheless, the restrictions set forth by EEDI are currently in such a stage that they cannot be reached
by only increasing the performance of existing standard technologies. Instead, new technologies,
new fuels and their combinations must be considered in the near future.

An overview of these new technologies and their potential in reducing GHG emissions is given
in [5]. The study highlights that meeting emission targets via one technology or methodology alone
is not feasible. Rather, the approach should be focused on a combination of different technologies.
Different future maritime technology and fuel pathways were assessed in [6]. Based on the findings,
using liquefied natural gas (LNG) in combustion engines as the main power source seems like the
best current option to reduce GHG emissions in the near future, especially for deep-sea shipping.
Towards 2050, LNG will need to be gradually phased out and replaced with some zero-emission
alternative, such as power-to-fuel (PtoF) energy carriers. PtoF energy carriers are fuels that are
produced primarily from hydrogen, which is in turn has been produced via electrolysis from renewable
or nuclear energy. Such energy carriers boast near zero emissions, but to meet demand, a substantial
amount of renewable hydrogen production would be needed. These changes will need to be
accompanied by a 35% to 40% decrease in energy usage per ton-mile to achieve the planned 50% GHG
emission reduction by 2050.

Fuel cells have been receiving a lot of attention from the maritime sector recently due to them
having a higher efficiency than traditional combustion engines. The efficiency of fuel cells ranges
between 50% to 85%, depending on the specific technology employed [7], whereas the efficiency of
marine diesel engines is approximately 50% at most [8]. However, the adoption rate of this technology
is currently low in the maritime industry. Nonetheless, the future may see widespread use of fuel
cells as energy converters once competitiveness with combustion engines has been reached through
economies of scale. Test and research installations of fuel cells in ships already exist [7], and some
technology providers offer fuel cell systems for shipping [9].

Batteries are not a feasible solution as the primary energy source for most of the
shipping, because of their low volumetric and gravimetric energy densities and high price.
However, smaller batteries can serve the purpose of increasing the energy efficiency of the main
power system in ships of all sizes, as well as helping with auxiliary tasks such as port operation.

Because of these reasons, fuel cells and batteries seem like reasonable candidates for reducing
the GHG emissions of ships in the future. Furthermore, current new builds often have reservations in
their energy systems for new technologies, even though they are not yet implemented at a large scale.
However, the well-to-tank emissions for both of these alternatives depends heavily on the source of
the electricity charged to the battery and the fuel used in the fuel cell [10].

The main research question of the present study is how to control the unit commitment of complex
marine energy systems in real time. We propose a novel ship energy system unit commitment controller,
based on MPC, to address this research question. The controller is demonstrated with a use case,
where measured operational data is used to control the energy system of a ship with generating sets,
a fuel cell and a battery. The methodology is meant to be general and applicable to a wide range of
different energy system topologies.

The proposed control methodology uses a Gaussian Process (GP) to predict a ships future power
demand profile for a singular trip. The GP is trained to predict ship power demand from speed over
ground (SOG) according to historical trip speed and power demand data. A ship’s SOG is the best
singular indicator of overall power demand, as it is linked directly to the ship’s propulsion power,
which forms most of the ship’s overall demand. Furthermore, it can be relatively easily estimated
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beforehand. A novel MILP optimization model is used to optimize the unit commitment of the ship’s
energy system according to the predicted power demand profile at 15 min increments during the trip.

The future power demand profile predicted by the GP is not always too accurate, as the prediction
relies solely on the predicted SOG profile of the ship. The power demand may further be affected
by weather, currents, mass of the ship or demand sources not related to propulsion power. Most of
the electric power demand originates from propulsion in the ship that is used for case study in this
research. However, there are other notable demand sources as well, such as hotel load and demand
for auxiliary devices like thrusters. As the GP prediction is based on SOG only, these other power
demand sources fall into the error margin of the prediction model. For these reasons, the future power
prediction is continuously corrected locally by a fitted regression model. Furthermore, a rule-based
system is used to match the instantaneous response of the energy system according to the discrepancy
between predicted and actual power demand.

This research makes the following original contributions to existing literature:

• real-time unit commitment control methodology for complex ship energy systems without
assuming a known power demand profile,

• a two-step robust power demand predictor that updates demand estimates online and
• demonstration of how to reduce ship emissions in the vicinity of coastal areas.

2. Background

2.1. Energy System Unit Commitment

Traditionally, unit commitment refers to the practice of optimizing the usage and production
of power producing units and network balance of land-based energy grids on an hourly basis.
However, the term can be used to describe the commitment problem of any energy system, so it
is used in this research to refer to the highly similar problem concerning a ship’s energy system.

A review of different types of unit commitment problem formulations and solutions is given
in [11]. A unit commitment problem is often formulated as either a stochastic or deterministic
optimization problem, where the object to minimize is fuel consumption or emissions or maximize
profit. Unit commitment optimization problems are usually characterized by similar sets of
constraints, such as power balance constraints, unit ramp-up constraints and maximum unit power
rating constraints.

Well-planned unit commitment ensures that an energy system consumes as little resources
as possible to meet energy demand, while still operating so that the system is robust against
unforeseen changes in power demand. While unit commitment has been studied in land-based energy
systems [12,13], the methodologies holistic implementation to ship energy systems is quite limited.

2.2. Energy Demand Prediction Models

The solution of a unit commitment optimization problem is only as good as the prediction
of future demand. For this reason, finding a suitable model for predicting power demand is
decidedly important and a holistic energy system control methodology looks at both facets of
the whole problem. Prediction of power demand is always highly case-specific. In this section,
various methods for predicting a ship’s power demand will be addressed based on how prevalent they
are in existing literature.

Ship power demand predictors can be divided into black-box models, which are based on
statistical models fitted to observed data, white-box models which are based on first principles or
grey-box models which are combinations of black- and white-box models. The power demand profile
of a ship is most profoundly dominated by propulsion demand, especially in merchant ships. For this
reason, grey-box methods such as the Holtrop and Mennen’s methodology [14] are widely used.
Holtrop and Mennen’s method specifically is focused on estimating the resistance encountered by
a ship.
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Black-box models for power demand prediction in ships have been developed in [15–19]. In [15],
an artificial neural network (ANN) was combined with more traditional regression models to produce
an accurate power demand predictor for a merchant vessel. ANNs and GPs for demand prediction
were compared in [16]. The authors concluded that the developed ANN model was slightly more
accurate than the GP, but the GP had the advantage of producing a probabilistic demand estimation
rather than a point estimate. Full ANN approaches were presented in [17,18], and a full GP model
in [19], where multiple model inputs, such as weather conditions, were used to produce an accurate
estimate of future demand.

Along the traditional Holtrop and Mennen’s method, grey-box models have been developed
in [20,21]. In [20], the authors combined various methods, such as the Holtrop and Mennen’s method,
hull fouling models and Isherwood’s model for wind resistance [22], with an ANN to estimate a ship’s
future power demand. In [21], white-, grey- and black-box models were compared. The study used
multiple different statistical models as black-box models. As a conclusion, the authors stated that
grey-box models seemed to be the most accurate in estimating future power demand.

2.3. Control of Ship Energy Systems

The unit commitment of ship energy systems has traditionally been handled by the crew deciding
which units to commit, or then a relatively simple rule-based system that responds to current demand
values. The main issue with rule-based expert systems is that the number of rules grows tremendously
in more complex energy system topologies, and their optimization is extremely difficult. On the other
hand, unit commitment based on crew decisions is prone to human errors, and highly dependent on
skill and expertise of the crew.

Optimal solutions to the unit commitment problem in ships have been studied in [23–26], where a
linear optimization model is solved assuming that the future demand profile is known. In [23] the
unit commitment problem was formulated for an all-electric cruise ferry comprising only generating
sets as power producing units. In [24–26], the unit commitment problem was solved for energy
systems comprising a battery along the generating sets. However, the future power demand profile
was assumed to be known beforehand. The linear optimization problem formulations in these
studied were computationally efficient, but were used rather to study the different energy system
architectures in action for comparisons of cost, emissions and efficiency, rather than to produce a
holistic control methodology.

In MPC models, unit commitment is optimized according to some predicted demand horizon,
the first optimized action is taken and the actual the state of the energy system is observed.
Unit commitment is then optimized again using the observed state as the initial condition, the first
control action taken, and the methodology continued in a similar fashion. Such approaches have been
employed in [27–32]. In [27], the future power demand profile was expected to be given beforehand.
The research in [28,29] was focused on combat ships where the operation of a railgun produced large
power peaks. Power production required for these power peaks was known beforehand and before
their occurrence, the energy system was requested for the required ramp-up rates. The energy system’s
response to these requests was then optimized and the actuation of units controlled according to MPC.
Similar work was also carried out in [30]. An MPC with a dynamic model was used to manage power
fluctuations caused by propulsion in [31]. However, although this method dealt with managing power
demand, the solved problem was not related exactly to unit commitment. In [32], a novel multi-stage
MPC methodology was formulated to first predict ship propulsion demand under uncertainty, and then
optimize the short-term power split between engines, a battery and a super capacitor to meet that
projected demand. The prediction horizon used to demonstrate the aforementioned method was 1 s.

In the context of ship energy system control under uncertainty, observer-based tracking control
was established in [33] to control a DC-DC boost converter to achieve a stable network in a ship with
DC power system under uncertain load fluctuations. A reinforcement learning approach was taken
in [34] to control the unit commitment of four generating sets in a similar fashion as in this research.



Energies 2020, 13, 4748 5 of 21

However, such approaches are hard to extend to systems with continuous control variables, such as
battery and fuel cell powers.

In [35], the unit commitment between diesel engines and a battery was optimized with particle
swarm optimization at 30-min intervals based on the ship’s initial condition at the beginning of each
interval. Although the demonstrated method was sophisticated, it did not account for future demand
scenarios in the unit commitment strategy.

Rule-based control is transparent in its actions, yet quite rigid and hard to scale. Such systems
are on the other hand flexible in the sense that they do not need to know the energy demand of the
entire trip beforehand. Bassam et al. [36] conducted an experimental study of a fuel cell battery hybrid
passenger vessel by comparing four rule-based control strategies.

In summary, holistic research of unit commitment in ship energy systems is limited in the
sense that most studies focused on the unit commitment problem assume that the future demand
profile of the ship is known beforehand. Some studies exist that focus on the combined problem
of demand prediction and power split optimization, but these are focused on the short-term
optimization of unit use. Therefore, our aim is to introduce a straight-forward, scalable and robust
approach that accounts for both the power demand prediction side of the problem, along with the
optimal solution to long-term unit commitment. We also show how to combine these two facets
seamlessly. Furthermore, the suggested demand prediction model is formulated to produce probability
estimates of future demand, which opens up the possibility for modern robust and stochastic unit
commitment solutions. However, the present study is focused on solving the deterministic unit
commitment problem.

3. Methods

3.1. Case Study Ship

The case study ship is a diesel-electric cruise ship that operates in the Caribbean and the
Mediterranean. The ship’s main parameters are displayed in Table 1. The energy system layout
of the ship is shown in Figure 1. The battery, fuel cell and their respective DC-AC converters are not a
part of the actual ship’s energy system and are modelled only for the purposes of this study.

Figure 1. Simplified line diagram of the case study ship including battery and fuel cell systems
modelled in this study.
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Table 1. Ship main parameters.

Parameter Value

Length 295 m
Beam 42 m

Year built 2017
Gross tonnage 98811

Generating sets 2 × 9.6 MW, 2 × 14.4 MW
Capacity 2534 passengers, 1030 crew

Propulsion Diesel-electric

A dataset of the ship operation spanning 32 days with a measuring interval of 1 min was used for
this study. Signals used in the proposed model were the following:

• total power demand,
• speed over ground,
• the ship’s longitude and
• the ship’s latitude.

Coast proximity was not originally a part of the dataset. The dataset was enhanced by adding a
signal that indicated whether a coast was within a 10 km radius around the ship. Coordinate points
from the GSHHG world shoreline dataset [37] were compared to the ship’s location at each time step
to flag time steps where a coast was within 10 km from the ship.

This 10 km coastal proximity radius was selected semi-arbitrarily for this study. Some inspiration
was drawn from research such as [38,39] that studied the negative health impact of living in close
proximity to a power plant. It should be expected that this value is highly case-specific and dependent
on the ship operator preferences as well.

To support answering the research question about controlling complex energy systems, the ship’s
energy system was modelled to also include a fuel cell and a battery. The fuel cell was modelled as a
solid-oxide fuel cell (SOFC), as this particular fuel cell type has been suggested to be most applicable in
high power marine environments [7,40]. This is because the cell’s total efficiency can be increased with
a heat recovery system, as a SOFC needs to operate in a high temperature. SOFCs have a very long
start-up time [41] and a relatively low ramp-up rate [42]. For this study, the fuel cell was modelled
to be always online (i.e., heated), and the ramp-up rate was selected to be 1% of the fuel cell’s rated
power per minute.

The battery was modelled as a lithium-ion battery with a LiNiMnCoO2 (NMC) chemistry, as in [26].
The C-rate of a battery describes the maximum continuous power that can safely be drawn from the
battery, as a multiplier of the batteries capacity. The modelled batteries C-rate was assumed to be 4,
and the state of charge (SoC) dependent open circuit voltage drop was assumed to be 18% between
a fully charged and fully depleted battery. This means that the maximum battery discharge power
available is 18% lower when the battery is depleted compared to maximum SoC.

The size of the battery and the fuel cell and the capacity of the ship’s hydrogen tank were selected
roughly so that the ship could operate with them as the main power source near coasts. Table 2 lists
the battery and fuel cell parameters selected for this study.

Table 2. Battery and fuel cell parameters.

Parameter Value

Battery chemistry NMC
Battery capacity 5 MWh
Battery C-rate 4

Fuel cell rated power 5 MW
Fuel cell type SOFC
Fuel cell fuel Hydrogen

Hydrogen capacity 3000 kg
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Establishing the feasible and optimal sizes of these components was not in the scope of this study.
However, this could be done with methodologies developed in [26], although prices and possible sizes
are especially hard to determine for fuel cells currently. The capacity of the battery is in the range
of technical feasibility, as orders and completed projects exist for similar marine installations as the
proposed battery system [43,44]. The highest rated power of a maritime fuel cell installation on order
is a 3.2 MW system [45]. Consequentially, the fuel cell sizing selected for this study is hypothetical.
However, given how eager early adopters are to push the capacity of this technology further, it is
reasonable to expect that 5 MW fuel cell systems will also be installed aboard ships. Assessing whether
such installations will be economically feasible is difficult as all fuel cell technologies have not even
reached technological maturity yet.

Having these additional power sources means that some of the original generating sets would
no longer be needed. However, the generating sets were kept in their original configuration for this
study, and it is ultimately up to the control methodology whether it uses all of the generating sets or
not. Furthermore, it was assumed that the battery is charged each time the ship visits a port, and that
the hydrogen tank is refueled. Determining how the infrastructure for shore-charging and hydrogen
bunkering develops was not inside the scope of this study. Nonetheless, the developed model can be
quite flexibly tuned depending on which ports might offer shore-charging or hydrogen bunkering
opportunities. This could be done by concatenating two subsequent trip into one in the case that
hydrogen cannot be refueled or the battery charged between these trips.

3.2. Complete Model

The methodology is formulated as an MPC model, where a novel 2-stage predictive model is used
to predict future power demand of the ship. A MILP optimization model then takes the predicted
power demand profile as input, and is used to optimize the commitment of each power source at
each time step for the remainder of the current trip. As no predictive model is absolutely perfect,
unit response needs to be corrected at each time step according to the actual demand encountered.
In this study, a simple rule-based system was developed to handle this task.

The full methodology is depicted as a flow-chart in Figure 2. The process of generating the
general global demand prediction model is included in the flow-chart as a separate process, as training
this global model takes place before adjourning on trips. Furthermore, at the beginning of each trip,
the ship’s route and SOG profile must be planned. This part was not developed in the current study,
rather, the ship’s route and SOG profiles were assumed to be known beforehand and actual measured
route and SOG data were used to produce these profiles.

The methodology starts by calculating time segments in the trip where a coast is in close
proximity. Coast proximity segments need to be identified because fossil fuel consumption is penalized,
especially in these regions. Next, the global GP-based model is used to predict the ship’s power demand
profile, on the basis of the SOG profile. This power demand prediction is passed on to the optimization
model, which produces vectors containing the optimal unit commitment at each time step. The ship’s
energy system is then controlled according to the optimization result, while using the rule-based
system to correct response according to actual observed demand.

At each time step, the most recent observed SOG and demand values are stored into a buffer, and a
Bayesian ridge regression model is fitted to these values. This produces a reliable prediction of demand
in the short term. This local prediction is then combined with the global power prediction profile,
to produce a locally corrected prediction. Unit commitment is then optimized based on this corrected
demand prediction, and the ship’s energy system is controlled according to the enhanced optimized
unit commitment. The next sections in this chapter explain the various steps more thoroughly.
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Figure 2. Full model.

3.3. Global Prediction Model

The global power demand predictor is formulated as a GP. A GP [46] is a generalization of
a multi-variate Gaussian distribution with an infinite number of random variables, which is fully
specified by its mean and covariance function. Although a multi-variate Gaussian distribution is a
distribution over vectors, a GP is a distribution over functions. A GPs covariance function, or kernel,
determines the shape and form of sampled functions. For this study, the kernel function was selected
to be the Matérn covariance function [47] as it estimated the power demand most closely out of the
different tested kernels.

The usage of GPs for power demand prediction was selected for various of reasons. First of
all, choosing the kernel of a GP allows us to inject expert knowledge into the predicting process,
which enhances the end results. The selection of the Matérn covariance function in this study was
partly made because it was known beforehand that the power demand signals were somewhat noisy.
Secondly, since GPs are non-parametric, the same model can be fitted to a wide variety of functions of
different complexity. Finally, and perhaps most importantly, GPs return probability estimates rather
than point estimates of values. This allows greater flexibility in using and interpreting the results
produced by a GP.

However, one significant downside of GPs is that training them and using them to predict new
values is computationally expensive. A GP is O(n3) complex with respect to the amount of training
data. This renders the usage of GPs unfeasible for standard training tasks, where there might be
millions of points of training data.

For this study, the GP was fitted to predict power demand from the ship’s SOG from trips in the
Caribbean, whereas Mediterranean cruising was used to test the methodology. This training procedure
was coded in Python with the help of the GPFlow library [48]. The amount of training data was too vast
for traditional GPs, so the model was implemented as a Stochastic Variational Gaussian Process [49],
a method which uses stochastic variational inference [50] to produce a small set of inducing values
which summarize the larger training data set.

Figure 3a shows the training data points, the fitted GP demand prediction and the used inducing
locations. The low alpha fill around the mean of the GPs predictive posterior indicates the 95%
confidence interval of the prediction. Figure 3b shows the predicted power demand profile of one of
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the Mediterranean trips compared to actual observed demand, along with the 95% confidence interval
of the prediction.

As the prediction is made solely on the basis of SOG, the model is unable to predict the effect of
other significant contributors to power demand, such as weather or power demand required by using
auxiliary thrusters. This can be seen in Figure 3b as the inaccuracy of the prediction at the start and
end of the trip, when auxiliary thrusters are used to maneuver the ship out of a port, and during the
trip when the prediction is wrong by a semi-constant value, most likely due to weather effects.

(a) (b)

Figure 3. Fitted Gaussian Process to predict demand from speed over ground and inducing locations
that summarize the larger set of measured points (a) and Gaussian process demand prediction for one
Mediterranean trip (b).

3.4. Local Prediction Model

Since the global prediction model retains some inaccuracies in its prediction, the full methodology
can be improved by introducing a locally corrective prediction model of power demand. This prediction
model was implemented by estimating local power demand with Bayesian ridge regression [51].

The local model was fitted to 100 previous observations on a 1-minute interval, and it was used to
predict demand 450 min forward on a 15-min interval. A simpler model selection like ordinary least
squares could also be justified for making local demand predictions. However, a Bayesian method
was selected for this study to provide a seamless fit for combining the probabilistic predictions of the
global GP model.

A decaying exponential function was used to combine the local and global predictions to form
the revised demand prediction vector: D = G · Dl + (1− G · Dg), where D is the revised demand
vector, Dl is the locally predicted demand vector and Dg is the global demand vector. G is a vector

of decaying multipliers, where each ith entry is determined by e−
i

10 Once the locally revised power
demand vector has been created, it is simply combined with the rest of the global prediction vector.

Figure 4 shows how this procedure revises the power prediction in an extreme case, where the
global demand prediction deviates significantly from the actual demand. The power prediction is
corrected especially in the near future, which is especially important for controlling the energy system
as optimally as possible.
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Figure 4. Local demand prediction revision.

3.5. Optimization Model

The optimization model is formulated as a mixed-integer linear programming model,
relying heavily on the example set by [26]. The model’s inputs are the predicted future power
demand as a vector, and a vector that indicates at which points the ship is in close proximity to a coast.
Additional inputs to the optimization model are initial engine operating mode, current battery SoC,
current fuel cell power and current hydrogen amount, which are used as initial conditions for the
optimization problem. As an output, the model produces vectors of how much power is produced
with each individual power source at each future time step.

The objective of the optimization model is to minimize the cumulative fossil fuel consumption of
the engines for the predicted future power demand profile, especially near coasts. As the objective
is specifically related to minimizing emissions, hydrogen usage in the fuel cell is not minimized.
The model could be relatively easily modified to maximize profits, in case the accurate cost of using
each fuel was known. To calculate the consumption of an engine in a single time step, we need the fuel
flow rate (FFR) function of the engine. This can be approximated with a linearly fitted function on
measured fuel flow rate points, as shown in Figure 5a. Figure 5b shows the projection of the linear fuel
flow rate curve onto the engines SFOC curve along with measured SFOC points.

The fuel consumption of an engine in a single time step can then be calculated as (A + A′x)T,
where A and A′ are the intercept and slope of the fitted FFR function, respectively, x is the engines
power and T is the size of the time step.

As the optimization model is designed to handle an arbitrary number of generating sets,
the individual powers of the engines are accessed via a matrix (Mj,k) and their online status is decided
according to an operating mode variable (j) in the optimization framework. Matrix Mj,k contains
the rated powers of the engines indexed by the operating mode (j) and individual engines (k). If an
engine is not online in a certain operating mode j, its rated power is marked as 0 in matrix Mj,k.
Furthermore, individual generating set loads must be equal at each time step so that changes in load
do not shift the generating sets into different RPM regions. Additionally, a certain fuel consumption
penalty is associated with starting up and shutting down an engine. Values for these penalties were
selected according to the engine manufacturers product guide [8], assuming a 2 min start-up time and
a required 5 min idling period after a generating set is disconnected from the network. Engine fuel
consumption in a certain time step is then:

K

∑
k=1

[Si,kPk + S′i,kP′k +
J

∑
j=1

(Ayi,j + A′xi,j)Mj,kT], (1)
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where Si,k and S′i,k are the fuel consumption penalties for starting up and shutting down an engine
respectively, Pk and P′k are indicators whether engine k was started or shut down for this time step
respectively, yi,j is an indicator whether operating mode j is active in time step i and xi,j is the load of
all generating sets at time step i.

(a) (b)

Figure 5. Large engine measured fuel flow rates and linear fuel flow rate curve fit (a) and linear fuel
flow rate function projection on engine SFOC curve (b).

The full optimization model can then be formulated as:

Minimize
xi,j, x′i , Xi, X′i , fi, yi,j, Si,k, S′i,k

objective function:

I

∑
i=1

Ci

K

∑
k=1

[Si,kPk + S′i,kP′k +
J

∑
j=1

(Ayi,j + A′xi,j)Mj,kT], (2)

subject to:

J

∑
j=1

K

∑
k=1

Mj,kxi,j + Xiη −
X′i
η′

+ fi ≥ Di, ∀i (3)

{
∑J

j=1 yi,j ≤ 0 if y′ = 0
yi,j=y′ ≥ 1 otherwise

, i = 1 (4)

J

∑
j=1

yi,j ≤ 1, ∀i (5)

xi,j ≤ 0.85 ∗ yi,j, ∀i, ∀j (6)

xi,j ≥ 0.2 ∗ yi,j, ∀i, ∀j (7)

J

∑
j=1

(yi+1,j − yi,j)M′j,k ≤ Si,k, ∀i, ∀k (8)
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J

∑
j=1

(yi,j − yi+1,j)M′j,k ≤ S′i,k, ∀i, ∀k (9)

{
x′i ≤ x′′ if i = 1

x′i ≤ x′i−1 +
X′i−1−Xi−1

E T otherwise
, ∀i (10)

X′i ≤ X′max(V + x′i(1−V)), ∀i (11)

Xi ≤ Xmax(V + x′i(1−V)), ∀i (12)

{
hi ≤ h′ if i = 1
hi ≤ hi−1 − 6.3 ∗ 10−5 fi−1T otherwise

, ∀i (13)

fi ≤ fmax, ∀i (14)

fi ≤ f ′, i = 1 (15)

fi − fi−1 ≤ 0.01 ∗ 60 ∗ fmaxT, ∀i (16)

i ∈ {1, 2, ..., I}
j ∈ {1, 2, ..., J}
k ∈ {1, 2, ..., K}
xi,j, x′i , x′′ ∈ [0, 1]
yi,j, S, S′ ∈ {0, 1}
Xi, X′i , f , f ′, h, h′ ∈ R>0

The objective function (Equation (2)) to minimize is the total fossil fuel consumption of the ship
during the trip. Additionally, the objective function includes a penalty multiplier, Ci, in locations
where the ship is in close proximity to a coast.

Equation (3) is the energy system’s power balance constraint. The power balance constraint
ensures that the combined power of the engines, battery and fuel cell at time step i matches or exceeds
the power demand Di. The constraint acts as an equality constraint because of the minimization of
fuel consumption, but is formatted as an inequality constraint to increase the efficiency of the solver.

Equations (4) and (5) define constraints for selecting engine operational modes at time step i.
Equation (4) constrains the initial operating mode, yi=1,j, to match the given initial operating mode y′.
Equation (5) constrains the engine operating mode vectors yi so that only one engine operating mode
can be active in a time step.

Equations (6)–(9) constrain the operation of the engines. Equations (6) and (7) ensure that engine
load xi,j does not exceed 85% of the engines rated power, and that the load is not below 20% of the
rated power, respectively. Additionally, these equations constrain xi,j so that it can be greater than
0 only in an operating mode yi,j that is active in time step i. A higher engine load level threshold
was set to 85% to make the system more robust, and to allow modelling engine fuel flow rate as a
linear function. The lower engine power threshold of 20% is also specified in the engine product guide.
Equations (8) and (9) constrain the engine start indicator S and engine off indicator S′ to equal 1 only
in time steps when an engine is actually turned on or off, respectively. Equation (9) works in a similar
fashion to indicate an engine going offline.

Equations (10) and (11) constrain the operation of the battery. Equation (10) forces the batteries
initial SoC x′i=1 to equal that of the given initial SoC x′′. In addition, the equation describes how the
batteries SoC behaves depending on how much the battery is charged/discharged. The change in
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battery SoC between time steps i and i− 1 is
X′i−1−Xi−1

E T. Equations (11) and (12) limit the batteries
maximum discharging (Xi) and charging powers (X′i ), respectively, according to SoC dependent
voltage drop of the battery.

Equations (13)–(16) are constraints for the fuel cell. Equation (13) ensures that the initial hydrogen
amount on-board (hi=1) is equal to the given initial hydrogen amount (h′). Additionally, the equation
links subsequent time steps together by determining how much hydrogen is used during a time step
depending on current fuel cell power ( fi). Considering that a mole of hydrogen releases 2 electrons in
fuel cell, we can calculate the molar flow of hydrogen as: ∆Hmol = Pe/(2VcF), where Pe is the power
of the whole fuel cell stack, Vc is the average voltage of cell and F is the Faraday constant. Average cell
voltage Vc is a quantity that decreases as a function of stack current, typically from around 1 V to 0.6 V
at the fuel cells rated power. This means that the efficiency of the fuel cell decreases as more power is
drawn from it. For this study, hydrogen flow rate was conservatively linearized by approximating
the average fuel cell voltage Vc to be 0.65 V in all fuel cell operating regions. Since the molar mass of
hydrogen is 2.02 ∗ 10−3 kg/s, our model’s time steps are in fractions of hours and the fuel power is
given as kW, hydrogen mass flow in a time step can be calculated as: ∆Hkg = 6.3 ∗ 10−5 fiT [52].

Equation (14) simply restricts fuel cell power ( fi) to be smaller than or equal to the fuel cells
rated power ( fmax). Equation (15) sets the initial fuel cell power ( fi=1) to be equal to or smaller than
the given initial fuel cell power ( f ′). The reason fuel cell power is the only one to have such an
initial condition, is that the ramp rate of a SOFC is much slower than a diesel engine’s or a battery’s.
Finally, Equation (16) constrains the ramp-up rate of the fuel cell to a maximum of 1% of the cell’s
rated power per minute.

3.6. Rule-Based System

The rule-based system serves an important role in deciding how to deal with situations where
actual demand either exceeds or is lower than what was predicted for the current time step.
The optimization model has predetermined to commit a certain amount of power in a future time
step, according to predicted demand. This total power might be higher or lower than what is actually
needed. The purpose of the rule-based system is to handle these discrepancies so that the general plan
of the optimization model is not violated.

Thus, the rule-based system was formulated so that it mostly tries to respond to higher than
expected power demands by increasing engine power. The battery and fuel cell both deplete resources
that most likely are planned to be saved in some future portion of the trip. Consequently, using the
engines as much as possible allows us to meet actual demand requirements robustly, while still
following the larger plan that the optimization model has laid out.

Only in extreme cases where the discrepancy between the predicted and actual power is high, is the
battery used to produce power or new engines turned on. The rule-based system never manipulates
the power production of the fuel cell, as the SOFC does not allow large ramp-up rates. In case the
demand is lower than anticipated, the excess power is mainly stored in the battery. The rule-based
system is illustrated in flow-chart format in Figure 6.
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Figure 6. Rule-based system logic.

4. Results

Control with the developed model was tested with the ship’s operational data from the
Mediterranean Sea, as the methods global prediction model was trained with Caribbean Sea operation.
In total, data consisting of operation in the Mediterranean Sea contains measurements from a time
frame of 120 h, divided into three distinct trips from port to port. The results were compared to fully
optimal control by passing in measured power demand profiles into the developed optimization
model. This fully optimal control simulates the hypothetical case where the demand prediction model
is perfect, and as such, it serves as a good benchmark for evaluating the effectiveness of the developed
mpc model.

Figure 7 shows how power production units are controlled under fully optimized control,
whereas Figure 8 shows the control scheme under the developed MPC model in one of the
Mediterranean trips. We can see that the real-time MPC model’s power production unit’s output
powers contain a bit more noise compared to the fully optimized variant. This noise results from
making small corrections to the output power according to the rule-based system.

Figure 7. Mediterranean trip unit commitment with fully optimized control.
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Figure 8. Mediterranean trip unit commitment with model predictive control.

Furthermore, we can see that the MPC model has multiple sections where a generating set is
started for a short period of time. This behavior occurs when the rule-based methodology decides
to start an additional generating set, and the optimization model turns that generating set off.
Altogether, both of the control methodologies regulate generating set operation at time steps where
a coast is nearby, which happen to be the very first and last time steps in this trip. In conclusion,
it can be stated that the MPC model follows the same logic as the fully optimized control, with some
minor differences.

Figure 9a shows the average power each generating is operated at under different control
strategies. Only operation where the generating set was actually used was included in the calculation
of the average. It can be seen clearly that with optimal control and MPC, the generating sets are
mostly operated close to their design point with minimal differences between the two strategies.
The optimal controller does not use generating set 4 at all, which would imply that this generating
set becomes redundant with the fuel cell and battery installations. Figure 9b showcases the total
average generating set power near shores under the different control strategies. In contrast to Figure 9a,
operational periods where no generating sets were used were included in the calculation of these
averages, to demonstrate the fossil fuel reductions near shores that result from these figures.

All of the following numerical results are given as a difference in fuel consumption compared
to the ship’s original operation in the Mediterranean, meaning operation with the original energy
system comprising four generating sets. The fossil fuel consumption of the ship at each time step was
calculated under different control strategies by using the fitted FFR curve in Figure 5a and the power
of each of the generating sets at that timestep.

The overall fossil fuel consumption was reduced by 11.8% with the developed method,
compared to 12.6% reduced fossil fuel consumption with fully optimized control. The main focus of
this study was to specifically reduce emissions near coasts. Average fossil fuel reductions near coasts
were 68% and 74% for MPC and the fully optimized control, respectively. Total engine running hours
were reduced by 18% with MPC, and 26% with fully optimal control. The MPC model started engines
roughly 5 times more often than the original ship’s control system, while the fully optimized control
started engines roughly 2 times more often. The objective of reducing emissions near coasts results in
more frequent engine start-up operations, as power needs to be switched from the engines to the fuel
cell and the battery.
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(a) (b)

Figure 9. Average generating set powers in Mediterranean operation under different control strategies
(a) and average total generating set power near shore under different control strategies (b).

The Gurobi mathematical optimization solver [53] was used to solve the optimization problem
at each time step. The optimization framework was coded using Gurobi’s Python API, and all other
parts of the methodology were coded with Python.

The optimization model is solved in roughly 1–10 s on a computer with a processor operating at
3.6 GHz with 6 cores, and 16 Gb of DDR4 random-access memory. The specific time it takes to solve
the optimization problem depends on the trip, with the length of the trip being the main contributor
to solving time. Nevertheless, solving the optimization model is designed to occur every 15 min,
which means that the specified solving time is highly sufficient for the task.

5. Discussion

The size of the battery and the power rating of the fuel cell were selected for this study based
on the case study ships demand. As the case study ship is a large cruise ship, the power demand
is also considerable which resulted in comparatively large sizes for the additional power producers.
Some existing marine battery installations are similarly sized as the system modelled in this research,
but it will take time before a marine fuel cell system is installed with similar rated power as in
this study.

However, the focus of the present study was on formulating a control methodology that would
enable such power producing unit installations. The problem of unit commitment in complex ship
energy systems is not dependent on the scale of the system. Thus, the developed methodology is
applicable to smaller ships as well, where adoption of technologies such as fuel cells and batteries has
gained traction. Furthermore, the developed unit commitment control methodology was designed to
be flexible in allowing different types of energy system topologies, although it was tested only with
the selected use case.

The impact of using hydrogen as a fuel on reducing overall GHG emissions is difficult to assess as
its well-to-wake CO2 emissions differ significantly depending on how the hydrogen was produced [10].
Similarly, the effect of using a battery on total GHG emissions depends heavily on the source of
shore-charging electricity. Nevertheless, both of these technologies are emission free locally, which was
the focus of this study.

It is important to note that vital components of a ships energy system must be approved by
classification societies. For example, American Bureau of Shipping (ABS) necessitates that any fuel cell
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installation that exceeds 100 kW in electrical power must be approved by ABS [54]. DNV-GL sets out
rules regarding fuel cell and battery installations in [55].

In regard to the actual implementation of the proposed model, it can be stated that the behavior
of undergoing many generating set start-ups and shut-downs is not preferable. This behavior resulted
from the rule-based system making a decision to start additional engines, and the optimization model
shutting down those engines at the next optimization occurrence. Frequent engine start-up operations
induce wear on the engine, which in turn reflects to the ship-owner as higher operational costs due to
the increased need for engine maintenance. The proposed model could be enhanced by decreasing the
frequency of these start-up and shut-down occurrences. This could potentially be achieved by setting a
certain time limit on how soon an engine can be shut down after it has been started. Further research is
needed on how such a limit could be established in the optimization framework. The distance referring
to coast proximity was selected to be 10 km for this study, based on estimates of local emission impact
range. This value could be selected in a more thorough fashion, for example by using methodologies
that eventually lead to ECA definitions or then territorial water boundaries.

Starting generating sets cannot happen instantaneously, even though this is how the rule-based
system is modelled for the purposes of this study. In reality, the rule-based system could initiate the
starting procedure of new generating sets, but exceeded demand should be handled with alternative
ways during the starting procedure. This could be done by allowing online generating sets to exceed
the limit of 85% of their rated power, or then in extreme cases overdrawing the battery for a short
period of time or load shedding.

The formula for calculating the consumption of the fuel cell was linearized for this study. In reality,
the actual measured amount of hydrogen aboard would be passed on to the optimization model at each
optimization occurrence, which would increase the overall accuracy of actual hydrogen consumption.
In addition, in a real system the SoC of the battery could also be measured from the open circuit
voltage of the battery. This way, there is no need to rely on estimates of the battery’s discharging and
charging efficiency to keep track of the battery’s SoC.

Higher discrepancies between actual and predicted demand result in relying more on the
rule-based system, rather than the optimized result, which makes control overall less optimal. As such,
improving the methodology can be done by improving the accuracy of either the global GP-based
predictor, or the local regressor-based predictor. The GP demand predictor could be enhanced,
for example, by taking weather conditions into account and using them as input to the model,
alongside the ship’s SOG profile. A promising avenue would also be to incorporate a hull fouling
model alongside the GP predictor, as the state of the hull has a significant effect on the ship’s propulsion
demand. Furthermore, the control methods employed in [32] could be included alongside the proposed
methodology, either in place of the rule-based system presented in this paper, or then to control the
energy system in between optimization increments.

Finally, the power prediction methodology was formulated so that it returns a probability estimate
of future power demand, rather than a point estimate. This opens up the possibility to use stochastic
and robust optimization methods for more robust operation. Such methods could, for example,
optimize the ships fuel consumption while allowing only a certain amount of risk of black out. This is
a topic for future research.

6. Conclusions

This paper presents a methodology for controlling the unit commitment of complex ship energy
systems. Operational data from a cruise ship operating in the Caribbean and the Mediterranean
was used to produce the methodology, as well as test it. The focus of the study was on producing
a relatively flexible methodology that is applicable to a wide range of different energy systems and
operational profiles.

The proposed methodology is formulated as an MPC problem, where a novel 2-stage predictive
model was developed to predict future power demand based on the ships SOG. A mixed-integer linear
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programming model was used to optimize unit dispatchment according to the future power demand
prediction. The proposed method is highly robust against prediction errors, because of the developed
locally corrective power demand predictor and a rule-based methodology that matches the energy
system’s response to actual observed demand values.

Performance of the model was compared to fully optimal control, which was simulated under
the assumption that future power demand was known exactly. As a result, it can be stated that
near-optimal control was achieved with the method. Overall fossil fuel consumption was reduced by
11.8% with the proposed methodology, compared to the fuel consumption of the original all-electric
energy system. 12.6% fossil fuel consumption reduction was achieved with fully optimal control.
Average fossil fuel consumption near coasts was reduced by 68% and 74% with the developed model
and fully optimal control, respectively. Further enhancements to the methodology can be made by
improving the accuracy of the future power demand predictor. Based on these results, it can be
concluded that the developed methodology is highly suitable for the task of controlling the unit
commitment of complex ship energy systems.
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Nomenclature

Abbreviations
ANN Artificial neural network
EEDI Energy efficiency design index
FFR Fuel flow rate
GHG Greenhouse gas
GP Gaussian process
IMO International Maritime Organization
MILP Mixed-integer linear programming
MPC Model predictive control
PM Particulate matter
RPM Revolutions per minute
SFOC Specific fuel oil consumption
SoC State of charge
SOFC Solid-oxide fuel cell
SOG Speed over ground
Greek Symbols
η Battery discharging efficiency (%)
η′ Battery charging efficiency (%)
Symbols
A Intercept of fuel flow rate function (kg/kWh)
A′ Slope of fuel flow rate function (kg/kWh)
C Indicator for nearby coast
D Demand of electric power (kW)
E Battery capacity (kWh)
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f Fuel cell power (kW)
f ′ Initial fuel cell power (kW)
fmax Maximum fuel cell power (kW)
H Hydrogen capacity (kg)
h Hydrogen amount (kg)
h′ Initial hydrogen amount (kg)
M Maximum power from engine (kW)
M′ Online status of an engine
P Fuel mass penalty for starting an engine (kg)
P′ Fuel mass penalty for shutting down an engine (kg)
S Engine start indicator
S′ Engine shut down indicator
T Size of time step (hours)
V Battery state of charge-dependent voltage drop (%)
X Battery discharging power (kW)
x Load of engines (%)
X′ Battery charging power (kW)
x′ Battery state of charge (%)
x′′ Initial battery state of charge (%)
X′max Maximum battery charging power (kW)
Xmax Maximum battery discharging power (kW)
y Indicator if operating mode is active
y′ Initial operating mode
Subscripts
i Index of time step
j Index of engine operating mode
k Index of an engine
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